An Adolescent Patient with Coarctation of Aorta Treated with Self-Expandable Nitinol Stent

Similar documents
Coarctation of the Aorta

IMAGES. in PAEDIATRIC CARDIOLOGY

Hybrid Coronary Artery Revascularization for Takayasu Arteritis with Major Visceral Collateral Circulation from the Left Internal Thoracic Artery

HOW SHOULD WE FOLLOW PATIENTS AFTER AORTIC ARCH INTERVENTIONS?

Debate in Management of native COA; Balloon Versus Surgery

CP STENT. Large Diameter, Balloon Expandable Stent

Case Report International Journal of Basic and Clinical Studies (IJBCS) 2013;1(1): Elbey MA et al.

CoA Stenting Alexandria Experience

Correspondence should be addressed to Sara Bondanza;

Difficult echocardiography in an adult patient with repaired congenital heart disease

INTEGRATING ECHOCARDIOGRAPHY WITH CATHETER INTERVENTIONS FOR CONGENITAL HEART DISEASE. Krishna Kumar SevenHills Hospital, Mumbai, India

Update on Tack Optimized Balloon Angioplasty (TOBA) Below the Knee. Marianne Brodmann, MD Medical University Graz Graz, Austria

Citation for published version (APA): Luijendijk, P. (2014). Aortic coarctation: late complications and treatment strategies.

Thoracic aortic trauma A.T.O.ABDOOL-CARRIM ACADEMIC HEAD VASCULAR SURGERY DEPARTMENT OF SURGERY UNIVERSITY OF WITWATERSRAND

Malperfusion Syndromes Type B Aortic Dissection with Malperfusion

ROLE OF CONTRAST ENHANCED MR ANGIOGRAPHY IN AORTIC COARCTATION

Vascular Intervention

CONGENITAL HEART DEFECTS IN ADULTS

Multimodality Imaging of Anomalous Left Coronary Artery from the Pulmonary

Patient Information Booklet

KEN-ICHIRO SASAKI, HIDETOSHI CHIBANA, TAKAFUMI UENO, NAOKI ITAYA, MASAHIRO SASAKI AND YOSHIHIRO FUKUMOTO

TRACKABILITY MEASUREMENT OF CORONARY STENT IN A CORONARY VESSEL MODELL

Masked Hypertension and Aortic Coarctation: Impact on Ventricular Function and Morphology

Optimal repair of acute aortic dissection

Dual Arterial Access for Stenting of Aortic Coarctation in Patients with Near-Total Descending Aortic Interruption

Acute dissections of the descending thoracic aorta (Debakey

IMAGING the AORTA. Mirvat Alasnag FACP, FSCAI, FSCCT, FASE June 1 st, 2011

Role of Balloons and Stents in Congenital Heart Disease

Anatomy and Classification of Aortic Dissection

Percutaneous VSD closure

Pre-procedural CT angiography for Transcatheter Aortic Valve Implantation: What a Radiologist Needs to Know?

AORTIC COARCTATION. Synonyms: - Coarctation of the aorta

Surgical Repair Is Safe and Effective After Unsuccessful Balloon Angioplasty of Native Coarctation of the Aorta

Vascular Access: Management of Complications. Chris Burrell, South West Cardiothoracic Centre, Plymouth

Self-Expanding Nitinol Stent Implantation for Treatment of Aortic Coarctation

Min Hur, Eun-Hee Kim, In-Kyung Song, Ji-Hyun Lee, Hee-Soo Kim, and Jin Tae Kim INTRODUCTION. Clinical Research

11 TH ANNUAL VASCULAR NONINVASIVE TESTING SYMPOSIUM NOVEMBER 10, 2018

An Overview of Post-EVAR Endoleaks: Imaging Findings and Management. Ravi Shergill BSc Sean A. Kennedy MD Mark O. Baerlocher MD FRCPC

Protective effect of angulated aorta for saving coronary artery during endovascular repair for ascending aortic pseudoaneurysm

Covered CP Stent CAUTION: FEDERAL (USA) LAW RESTRICTS THIS DEVICE TO SALE BY OR ON THE ORDER OF A PHYSICIAN.

Aortic Coarctation Imaging and Management in Adults. Michael D. Hope, MD

Thoracic Endovascular Aortic Repair (TEVAR) Indications and Basic Procedure

Endovascular Management of Thoracic Aortic Pathology Stéphan Haulon, J Sobocinski, B Maurel, T Martin-Gonzalez, R Spear, A Hertault, R Azzaoui

Transcatheter Closure of Secundum Atrial Septal Defect in Patients Over 60 Years Old

HISTORY. Question: What category of heart disease is suggested by the fact that a murmur was heard at birth?

CT angiography in type I acute aortic dissection complicated with malperfusion - a visual review of obstruciton patterns

Your Angiogram/ Angioplasty and Stenting

For Personal Use. Copyright HMP 2013

How to Assess and Treat Obstructive Lesions

Introduction What Causes Peripheral Vascular Disease? How Do Doctors Treat Peripheral Vascular Disease?... 9

Covered Mounted CP Stent

ACD. The Journal of Thoracic and Cardiovascular Surgery c Volume 139, Number 3 655

Aortic arch pathology. Cerebral ischemia following carotid artery stenosis.

Coronary angioplasty and stents

Christian Wissgott MD, PhD Assistant Director, Radiology Westküstenkliniken Heide

IVUS Guided Case Review Case Performed by Frank R. Arko III, MD Charlotte, NC

Hypertension in Repaired Coarctation: When to Intervene and how to treat?

Two dislodged and crushed coronary stents: treatment of two simultaneously dislodged stents using crushing techniques

Transcatheter Atrial Septal Defect Closure with Right Aortic Arch Is it really difficult? M Tokue, H Hara, K Sugi, M Nakamura

Renal angioplasty (including transplant kidneys) and stent insertion

타카야수혈관염환자에서발생한관상동맥-쇄골하동맥도류증후군

Transcatheter closure of the patent ductus arteriosus using the new Amplatzer duct occluder: Initial clinical applications in children

The Petticoat Technique Managing Type B Dissection with both Early and Long Term Considerations

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

Percutaneous Intervention for totally Occluded Coarctation Of Aorta. John Jose, Vipin Kumar, Ommen K George Dept Of Cardiology

Jae Hoon Lim, M.D., Song Choi, M.D. 2, Yang Jun Kang, M.D. 2, Hyun Ju Seon, M.D., Yun Hyeon Kim, M.D.

Vascular V12. Covered Stent. The New Standard of Care

E xtracardiac conduits placed between the right ventricle

Mitral Regurgitation

Your heart is a muscular pump about the size of your fist, located

Cardiac MRI in ACHD What We. ACHD Patients

EVAR and TEVAR: Extending Their Use for Rupture and Traumatic Injury. Conflict of Interest. Hypotensive shock 5/5/2014. none

Interventions in Congenital & Structural Heart Disease: Who Drives New Techniques and Devices?

CORONARY ANGIOPLASTY

PATENT DUCTUS ARTERIOSUS (PDA)

FLEXIBLE, BALOON EXPANDABLE

Bicuspid Aortic Valve: Only Valvular Disease? Artur Evangelista

The Adolescent and Adult Congenital Heart Disease Program

Case Report Successful Treatment of Double-Orifice Mitral Stenosis with Percutaneous Balloon Mitral Commissurotomy

Nonsurgical Management of Postoperative Pulmonary Vein Stenosis

9 : , cutting balloon 9 : , PTA cutting balloon. bruit. 4 cutting balloon. WBC 5300 µl CRP 0.1 ESR. Hb 11.8 A G. X CT Fig.

The Role of LUTONIX 035 DCB in AV Fistula Dysfunction Management in our Practice

Radiology of the respiratory/cardiac diseases (part 2)

Expanding to every demand: The GORE VIABAHN VBX Stent Graft

Transcatheter Therapy for Coarctation of the Aorta: The Results of Our Efforts

Challenges. 1. Sizing. 2. Proximal landing zone 3. Distal landing zone 4. Access vessels 5. Spinal cord ischemia 6. Endoleak

Estimation of Stellate Ganglion Block Injection Point Using the Cricoid Cartilage as Landmark Through X-ray Review

Covered stents in patients with complex aortic coarctations

Management of In-stent Restenosis after Lower Extremity Endovascular Procedures

Hybrid Muscular VSD Closure in Small Weight Children

Cardiac Catheterization

Introduction 3. What is Peripheral Vascular Disease? 5. What Are Some of the Symptoms of Peripheral Vascular Disease? 6

Angiogram, angioplasty and stenting

PATIENT BOOKLET. Medtronic Transcatheter Aortic Valve Replacement (TAVR) System. medtronic.com/tavr

ANGIOPLASTY AND STENTING

Successful Retrieval of Intravascular Stent Remnants With a Combination of Rotational Atherectomy and a Gooseneck Snare

Efficacy of DEB in Calcification and Subintimal Angioplasty

Outcome of Transcatheter Closure of Oval Shaped Atrial Septal Defect with Amplatzer Septal Occluder

Intravascular Ultrasound in the Treatment of Complex Aortic Pathologies. Naixin Kang, M.D. Vascular Surgery Fellow April 26 th, 2018

Transcription:

Case Report Print ISSN 1738-5520 On-line ISSN 1738-5555 Korean Circulation Journal An Adolescent Patient with Coarctation of Aorta Treated with Self-Expandable Nitinol Stent Woo Sup Shim, MD 1, Jin Young Song, MD 3, Sang Yun Lee, MD 1, Jae Suk Baek, MD 1, So Ick Jang, MD 1, Seong Ho Kim, MD 1, and Yang Min Kim, MD 2 1 Departments of Pediatric Cardiology and 2 Radiology, Sejong Cardiovascular Center, Sejong General Hospital, Bucheon, 3 Department of Pediatric Cardiology, Samsung Medical Center, Seoul, Korea Transcatheter treatment of aortic coarctation, with balloon angioplasty or stent implantation, is now an acceptable alternative to surgical repair. However these procedures may result in complications, such as vascular wall injury and re-stenosis of the lesion. A nitinol self-expandable stent, when deployed at the coarctation site, produces low constant radial force, which may result in a gradual widening of the stenotic lesion leaving less tissue injury ( stretching rather than tearing ). For an adolescent with a native aortic coarctation, a self-expandable stent of 20 mm diameter was inserted at the discrete stenotic lesion of 5 mm diameter without previous balloon dilatation procedure. No further balloon dilatation was done immediately after the stent insertion. With the self-expandable stent only, the stenosis of the lesion was partially relieved immediately after the stent deployment. Over several months after the stent insertion, gradual further widening of the stent waist to an acceptable dimension was observed. (Korean Circ J 2013;43:207-211) KEY WORDS: Aortic coarctation; Stents. Introduction In the last 3 decades of medical development, transcatheter treatment of coarctation of aorta with balloon angioplasty and stent implantation has now become an acceptable alternative to surgical repair. However these procedures may result in complications, such as intimal tearing, neo-intimal hyperplasia, restenosis of the lesion, aneurysm formation, dissections, and, rarely, even fatal aortic rupture. 1-3) When the usual balloon expandable stents are used, some degree of vascular wall injury may be inevitable during the forced immediate dilatation of the stenotic lesion. However, a nitinol self-expandable Received: May 25, 2012 Revision Received: August 10, 2012 Accepted: August 23, 2012 Correspondence: Woo Sup Shim, MD, Department of Pediatric Cardiology, Sejong Cardiovascular Center, Sejong General Hospital, 28 Hohyeon-ro 489beon-gil, Sosa-gu, Bucheon 422-711, Korea Tel: 82-32-340-1121, Fax: 82-32-340-1236 E-mail: wsshim01@gmail.com The authors have no financial conflicts of interest. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons. org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. stent, when deployed at the coarctation site, produces low constant radial force, which may result in a gradual widening (stretching) of the stenotic lesion, instead of tearing vascular wall structures ( stretching rather than tearing ), leaving less tissue injury. 4)5) And when the result of the self-expansion of the stent is not enough, further in-stent balloon dilatation can be done easily immediately or after an appropriate interval. We report our experience with a nitinol selfexpandable stent for the treatment of native aortic coarctation in an adolescent patient. Case An 18-year-old female, height of 165 cm and body weight of 55 kg, was diagnosed with a native aortic coarctation. She has no significant difficulty in her usual activities and exercises. She has complained only of intermittent headache. Her blood pressure (BP) measurements were 123/64 mm Hg and 123/62 mm Hg at her right and left arm, while 86/47 mm Hg and 83/49 mm Hg at her right and left ankle, showing 50 mm Hg higher BP in the upper extremities (Table 1). On echocardiographic study, discrete aortic coarctation was diagnosed with the peak pressure gradient across the stenotic lesion of 50 mm Hg by Doppler study (Fig. 1). On chest CT angiogram a discrete narrowing at the isthmic portion of the aortic arch due to a Copyright 2013 The Korean Society of Cardiology 207

208 Self-Expandable Nitinol Stent in a Native Aortic Coarctation Patient Table 1. Blood pressures (systolic/mean/diastolic, mm Hg) of 4 extremities before and after the insertion of the self-expandable nitinol stent Right arm Left arm Right ankle Left ankle Before the stent insertion 123/88/64 123/84/62 86/67/47 83/63/49 Three days after the stent insertion 124/85/68 127/85/65 121/77/65 118/78/62 Four months after the stent insertion 112//58 117//57 113//51 108//50 One year after the stent insertion 107/78/57 104/75/58 121/82/66 120/79/62 A B Fig. 1. Echocardiographic examination before the insertion of the stent. A: Doppler study showed a maximum pressure gradient of 50 mm Hg across the aortic coarctation. B: M-mode echocardiagram showed relatively good systolic function of left ventricle without significant muscle wall hypertrophy. A B C Fig. 2. Images of the aortic coarctation at the time of stent insertion. A: multi-planar reconstructed CT images before the stent insertion showed discrete narrowing at the isthmic portion of aortic arch due to posterior shelf lesion measuring 4 mm in the narrowest dimension. B: aortic angiogram before the insertion of the stent showed discrete narrowing at the isthmus of the aortic arch measuring 5 mm in the narrowest dimension. C: aortic angiogram immediately after the insertion of the self-expandable nitinol stent showed the dimension of the stent waist 8 mm. posterior shelf lesion was seen (Fig. 2). The narrowest dimension of the stenotic lesion was 4-5 mm, and the dimensions of the pre- and post-coarctation descending aorta were 16 mm and 19 mm, respectively (Fig. 2). The distance from the origin of left subclavian artery to the coarctation site was 24 mm. A 20 mm self-expandable nitinol stent (Hercules vascular stent 20 60 mm, S&G Biotech, Seongnam, Korea) was deployed across the coarctation site, without previous balloon dilatation procedure (Fig. 2). No further balloon dilatation was done immediately after the stent deployment to avoid unnecessary tissue injury. Immediately after the procedure, the peak pressure gradient across the coarctation site decreased from 50 mm Hg to 20 mm Hg (Table 2), and the dimension of the stenotic lesion shown by the stent waist somewhat increased from 4-5 mm to 8 mm on angiography and plain chest X-ray images (Fig. 2). We decided to wait and see for further selfexpansion of the stent. Three months after the procedure, the dimension of the stent waist had enlarged gradually up to 13 mm on plain X-ray and 11.5 mm on CT images (Fig. 3). Further interventional procedure, such as instent low-pressure balloon dilatation, was suggested to trim the re-

Woo Sup Shim, et al. 209 Table 2. Blood pressure data (systolic/diastolic/mean) in the Cath Lab before and after the insertion of the stent Asc Ao Dsc Ao Peak pressure gradient Before stent insertion 129/65/90 78/56/67 51 After stent insertion 115/58/83 95/61/79 20 Cath Lab: Catheterization Laboratory, Asc Ao: ascending aorta, Dsc Ao: descending aorta mnant waist of the stent. But the patient and her parents were happy with the present status and refused any further procedures. One year after the stent deployment, the dimension of the stent waist further increased slightly up to 14 mm (Fig. 4). The BP measurements in the upper extremities somewhat decreased, while the BP measurements in the lower extremities increased significantly up to higher than those of the upper extremities (Table 1). On echocardiographic study, the exact Doppler pressure gradient across the pervious stenotic site was not available because the images of the previous stenotic lesion were poor and definite flow turbulence was not found, suggesting the remnant stenosis not significant. Subjectively, as she felt no significant difficulty in her physical activity before the stent insertion, she felt not so much difference in her physical activity after the stent insertion. However, she said she felt more warmness in her lower extremities after the stent insertion than before, having more tolerance for cold weather when she was wearing skirts. Discussion A nitinol self-expandable stent exerts low constant radial force after the deployment in the stenotic lesion and results in gradual widening of the stenotic lesion. It is flexible and easy to deploy and can A B C Fig. 3. Images of the aortic coarctation 3 months after the insertion of the self-expandable stent. A: multiplanar reconstructed CT images 3 months after the insertion of the self-expandable nitinol stent showed the dimension of the stent waist 11.5 mm. B and C: chest X-ray images 3 months after the insertion of the self-expandable nitinol stent showed the dimension of the stent waist 13 mm (B: anterior-posterior projection, C: lateral projection). A B Fig. 4. Chest X-ray images 1 year after the insertion of the stent. Chest X ray images showed the dimension of the stent waist 14 mm. A: anterior-posterior projection. B: lateral projection.

210 Self-Expandable Nitinol Stent in a Native Aortic Coarctation Patient X Radial forces at the concentric compression of the stent (Resistance force) 3.0 2.0 Spring test Height: None Limit 1: Extension of 47.1 mm Limit 2: Extension of 47.1 mm Repeat: 1 cycles 20 mm 6 cm X Radial forces at the relaxation of the compressed stent (Expansion force) 1.0 0.0 20 mm 15 mm 10 mm 5 mm Machine extension (mm) Stent diameter Radial forces at compression (resistance force) 0.0 N 1.46 N 2.25 N 3.38 N Radial forces at relaxation (expansion force) 0.0 N 0.19 N 0.34 N 3.38 N *N (Newton) 0.1 kg Gravity Fig. 5. In the concentric compression and relaxation experiment of the self-expandable nitinol stent (S&G Biotech, Seongnam, Korea), the radial forces of the stent were measured at varying diameters of the stent. The 20 mm diameter self-expandable stent was tightened gradually by a ringed device to the diameter of 5 mm and thereafter loosened gradually to the diameter of 20 mm. As the stent is deformed to a smaller diameter, the stronger the radial force was observed. And as the diameter of the stent increased, the radial force exerted by the stent decreased rather steeply. The resistance force of the stent measured when the concentric compression force was loaded was greater than the expansion force of the stent measured when the concentric force was unloaded (Data from S&G Biotech, Seongnam, Korea). be used safely in patients with aortic coarctation, leaving less tissue injury. Because the radial force of the self-expandable stent is not so strong, self-expansion ability of the stent depends on the compliance of the stenotic lesion to the radial force. In the native virgin state of coarctation of aorta, where no intimal injury was made by the previous surgery or interventional procedures, the use of nitinol self-expandable stent can be desirable to avoid tearing injury on the vascular wall structure. In the restenosis lesions after the previous balloon dilatation or surgery where the compliance of the stenosis lesion to the radial force is not good, the self-expansion ability of the stent may not be enough. In these cases, further in-stent balloon dilatation or balloon expandable stent insertion can be considered. In using a self-expandable stent in a native coarctation patient, we do not recommend any previous balloon dilatation prior to the stent insertion or any further balloon dilatation immediately after the stent insertion to avoid unnecessary tissue injury. If self expansion of the stent doesn t look sufficient after several months observation period, in-stent low pressure balloon dilatation procedure can be easily done to relieve the remnant stenosis. Mechanical properties of stress (external force inducing deformation of the stent) and strain (degree of deformation, change in the diameter of the stent) of the self-expandable stent showed a kind of linear relation pattern in a limited range of the stent dimension. As the loaded stress increases, the strain increases in linear relationship initially, but after the stress (external force) reaches a certain level, a much larger strain (deformation) is observed at a small change of the stress. And some different curves were observed at the time of stress loading and stress unloading (Fig. 5). 4)5) The resistance force of the stent measured during the external concentric force (stress) was being loaded was larger than the expansion force of the stent measured during the external concentric force was being unloaded. While unloading the stress, as the diameter of the stent (strain) is recovered, the measured stress (radial force exerted by the stent) decreased rather steeply. In an experiment of concentric compression and relaxation of the self-expandable nitinol stent (S&G Biotech, Seongnam, Korea), the radial forces of the stent were measured at varying diameters of the stent. The 20 mm diameter stent was tightened gradually by a ringed device to the diameter of 5 mm and, thereafter, loosened gradually to the diameter of 20 mm (Fig. 5). Generally, the smaller the diameter

Woo Sup Shim, et al. 211 the stent was reduced to, the stronger the radial force exerted by the stent was observed. As the diameter of the stent recovered, the radial force exerted by the stent decreased steeply. When the diameter of the stent increased to a certain level, the radial force exerted by the stent (equivalent to the stress) became quite weak not enough to expand the stent further significantly. When a self-expandable stent of 20 mm diameter was inserted into the 5 mm stenotic lesion in this case, the radial force produced by the stent might be enough to gradually widen the stent waist during the early period after the stent insertion. It might be reasonable to wait and observe the self-expansion of the stent over a several month period. As the diameter of the self-expandable stent increased over several months, the radial force exerted by the stent decreased steeply to an insignificantly low level, allowing no significant further self-dilatation of the stenotic lesion. At this point, instent balloon dilatation procedure can be helpful. For the discrete stenotic lesion of the descending aorta in this case, the stent with a shorter length (40-45 mm) was sought first. However, for the diameter of 20 mm, only 60 mm length stent was available from the product company then. We decided the use of the 60mm length stent could be an acceptable option in the adult sized patient of this case. In conclusion, for an 18-year female with native aortic coarctation, a self-expandable nitinol stent was used successfully. No balloon dilatation procedure was done before or immediately after the stent insertion. Over the following 3-month period, gradual self-expansion of the stent resulting in gradual widening (stretching) of the stenotic lesion to an acceptable dimension was observed. After 1 year, a little further widening of the stent waist was observed. For some patients with native aortic coarctation, where the compliance of the stenotic lesion is well maintained, the use of a nitinol self-expandable stent can be the best treatment option to relieve the stenosis avoiding unnecessary vascular wall injury. Acknowledgments The authors thank Se Chul Lee, PhD and Ui Soo Jang, MS in S&G Biotech, Korea for providing us the valuable experimental data of the self-expandable nitinol stent used in this case. References 1. Chessa M, Carrozza M, Butera G, et al. Results and mid-long-term follow-up of stent implantation for native and recurrent coarctation of the aorta. Eur Heart J 2005;26:2728-32. 2. Kische S, Schneider H, Akin I, et al. Technique of interventional repair in adult aortic coarctation. J Vasc Surg 2010;51:1550-9. 3. Golden AB, Hellenbrand WE. Coarctation of the aorta: stenting in children and adults. Catheter Cardiovasc Interv 2007;69:289-99. 4. Dyet JF, Watts WG, Ettles DF, Nicholson AA. Mechanical properties of metallic stents: how do these properties influence the choice of stent for specific lesions? Cardiovasc Intervent Radiol 2000;23:47-54. 5. Stoeckel D, Pelton A, Duerig T. Self-expanding nitinol stents: material and design considerations. Eur Radiol 2004;14:292-301.