Blood Typing OBJECTIVES

Similar documents
#2 - Hematology I Blood Typing

Selected blood test. Danil Hammoudi.MD

Blood Typing * OpenStax. 1 Antigens, Antibodies, and Transfusion Reactions

Pearson's Comprehensive Medical Assisting Administrative and Clinical Competencies

BLOOD. EEI n: t.ee# Required Name : Due : April 12,2018 COMPOSITION AND FUNCTIONS OF BLOOD. Beginningof Class

Simulated ABO & Rh Bood Typing Lab Activity Student Study Guide

Be sure you have read and understand Chapter 18 before beginning this lab. LEARNING OBJECTIVES: Formed elements Plasma

- Blood performs vital pickup and delivery services. - It also provides much of the protection necessary to withstand foreign "invaders"

I. Concepts: Fill in the following sections with information from the text and lecture.

Cardiovascular System Module 2: Blood Typing *

Mr. & Mrs. Smith s Blood Tests

#2: BLOOD / HEMATOLOGY

Go to slide 11

Blood transports soluble substances to and from all cells. Blood Analysis. exercise 11. Hematocrit Determination. Objectives


A closer look at BLOOD Lab

I B I B or I B i. Rule: Match the antigen of the donor with the antibodies of the recipient. Blood Type Can Donate To Can Receive From A A, AB A, O

BLOOD AND THE IMMUNE SYSTEM. Chapter 11

g/dl g/dl

Activity Overview. P.L.E.P: Parts of Blood. Cast Your Net: Adventures With Blood. Activity 1A. Activity Objectives: Activity Description:

Chapter 19. Blood Types

A Comparison of the Frequency Distribution of Blood Types on Parvus to Frequency Distributions of Blood Types on Nearby Islands

Name: Date: Roll: Score: Biology: Blood Lab or Everything you wanted to know about blood and then some!!!!

How much blood is in the human. About 5 liters. body?

T. Trimpe Forensic Science

Make a list of what you know about blood types

Bellwork Define: hemostasis anticoagulation hemophilia (Then write the underline portion of the two state standards in your notes).

HOW RARE IS YOUR BLOOD? DONATE ( ) CANADIAN BLOOD SERVICES RARE BLOOD PROGRAM

A. Blood is considered connective tissue. RBC. A. Blood volume and composition 1. Volume varies - average adult has 5 liters

Name: Per: Date: Unit 9a: Blood (Composition/Types/Inheritance)

temperature 38 o C (100.4 o F) The temperature of blood is slightly higher than the normal body temperature of 37 o C (98.6 o F).

Essentials of Anatomy and Physiology, 9e (Marieb) Chapter 10 Blood. Multiple Choice

Blood Basics What makes up our blood? tissue infection wounds Karl Landsteiner

Blood ---Ch 14. Whole blood consists of a plasma and cellular component.

Chapter 13 The Blood

What are the functions of blood?

Immunohaematology: a branch of immunology that deals with the immunologic properties of blood.

!!!!!Blood ---Ch 14. Whole blood consists of a plasma and cellular component.

Unit 10 - Blood The only fluid tissue in the human body. c) Plasma rises to the top (55% of blood)

Good Morning! How many miles do your blood cells travel in their lifetime of 3 months? Take out your notes and blood worksheet!

What makes up our blood?

After you read this section, you should be able to answer these questions: What is blood? What is blood pressure? What are blood types?

Transfusion Awareness

Chapter 19: Cardiovascular System: Blood

Unit 10: Blood. 2. Buffy coat contains leukocytes and platelets (less than 1% of blood)

Blood Transfusion. There are three types of blood cells: Red blood cells. White blood cells. Platelets.

Unit Seven Blood and Immunity

The fluid medium (blood) is a highly specialized connective tissue that consists of various blood cells (formed elements) suspended in a fluid matrix

Chapter 19. Openstax: Chapter 18. Blood

Lab 17: Applying Complex Patterns of Inheritance Blood Typing

Blood CHAPTER. Lesson Objectives. Lesson Vocabulary. Introduction. Structure and Functions of Blood. Chapter 1. Blood

Hematocrit. Hematocrit = using a centrifuge to separate out the parts of blood. Plasma Formed elements:

The % of blood consisting of packed RBCs is known as the hematocrit. Blood s color ranges from scarlet (oxygen-rich) to dark red (oxygen poor).

Cardiovascular System Module 1: An Overview of Blood *

Blood Component Testing and Labeling

Blood Dr. Ali Ebneshahidi

LAB TIME/DATE. 1. most numerous leukocyte. 3. also called an erythrocyte; anucleate formed element. 6. ancestral cell of platelets

The circulatory system is a complex series of tubes that transports nutrient-rich blood and waste products throughout the entire body.

Blood. Biol 105 Lecture 14 Chapter 11

Chapter 19(1) An Introduction to the Circulatory System and Blood

There is no substitute for blood. An introduction to what makes this precious human resource unique.

Chapter 11. Lecture and Animation Outline

Chapter 06 Lecture Outline. See separate PowerPoint slides for all figures and tables preinserted into PowerPoint without notes.

8.1 Understanding the River of Life (Blood Typing) Grade 8 Activity Plan Consent form needed!

Essentials of Human Anatomy and Physiology, 11e (Marieb) Chapter 10 Blood Multiple Choice Part I Questions

Forensic Serology. Forensic Science

4/5/17. Blood. Blood. Outline. Blood: An Overview. Functions of Blood

Erythropoietin stimulates stem cells in the bone marrow to produce more red blood cells.

Essentials of Blood Group Antigens and Antibodies

BIOCHEMISTRY OF BLOOD

KEY CONCEPTS AND PROCESS SKILLS. 1. The microscope can be used as a tool for investigation.

A Patient s Guide to Blood Components and Products

Composition of Blood

DUE 2/13/17. HOMEWORK: Student Weekly Grade Tracking #24. What is Inheritance? Video Clip. What is Mutation? Video Clip. Admit Ticket.

Circulation and Blood

Functions of Blood. Transport. Transport. Defense. Regulation. Unit 6 Cardiovascular System: Blood

2. What makes up the most of your blood? least of your blood? 1. Look like red discs, have a pale center, no nucleus, similar in size

What makes up our blood?

Blood: A Fluid Tissue

Blood Groups. Biology 30S

Agenda. Components of blood. Blood is Fluid Connective Tissue. Blood: General functions

Serology Unit Review. Match the following words on the left to their definitions on the right.

Blood ESSENTIALS OF HUMAN ANATOMY & PHYSIOLOGY ELAINE N. MARIEB EIGHTH EDITION

Chapter 14. Blood. Blood Volume. Blood Composition. Blood

Composition and Functions of Blood. Text p WB 193

Blood Groups. Prepared by the one and only Mr.Yeung BIO30S

Chapter 06 Lecture Outline

Hematology. The Study of blood

Blood ESSENTIALS OF HUMAN ANATOMY & PHYSIOLOGY ELAINE N. MARIEB EIGHTH EDITION

Blood Groups. Prepared by the one and only Mr.Yeung BIO30S

Biology 218 Human Anatomy. Adapted form Martini Human Anatomy 7th ed. Chapter 20 The Cardiovascular System: Blood

b) List the steps that may occur in hemostasis with a brief explanation of what happens in those steps.

Study of Blood. 7/3/02 Mr. Davenport 1

WHICH OF THE FOLLOWING COMPRISE A

Blood Transfusion. What is blood transfusion? What are blood banks? When is a blood transfusion needed? Who can donate blood?

BIOCHEMISTRY of BLOOD

2. What makes up the most of your blood? least of your blood? 1. Look like red discs, have a pale center, no nucleus, similar in size

Danielle is insisting that both families have blood type tests to ensure that they have the right babies.

And anti-b

Transcription:

OBJECTIVES Selected Blood Tests 1. Define and understand the relationships between the key terms listed in this exercise. 2. Use the appropriate antisera to determine an unknown blood type. 3. Interpret the results of a blood typing experiment. 4. Determine who can donate blood to and receive blood from an individual of a particular blood type. 5. Explain the experimental method of preparing a hematocrit sample. 6. Determine the hematocrit of a blood sample via two different methods. Blood tests provide a wealth of information on not only the diseased state, but the healthy state as well. Today, you ll be introduced to two common and important blood tests: blood typing and the hematocrit. Blood Typing The human body contains approximately 100 trillion cells. Each cell is marked by unique combinations of carbohydrates, proteins, and other chemicals that inform the immune system that the cell belongs. Such cellular markers are referred to as antigens. The body contains about 30 trillion red blood cells and, not surprisingly, these erythrocytes contain antigens on their surface. Each RBC has about 50 antigens that stud its cell membrane. We ll only be concerned with three of these antigens: the A antigen, the B antigen, and the D antigen. The presence or absence of these three antigens on an individual s RBCs determines his or her blood type. If an individual s RBCs contain the A antigen, the individual will be blood type A. If the RBCs contain the B antigen, the individual will be blood type B. If each RBC contains both the A and the B antigens, the individual will be blood type AB. If neither the A antigen nor the B antigen is present on the RBCs, the individual is blood type O. Figure 2-1. ABO blood types. The D antigen is also referred to as the Rh antigen or the Rh factor. If it is present on the RBCs, the individual is said to be Rh positive. If the RBCs lack the D antigen, the individual is said to be Rh negative. For example, if an individual s RBCs contain both the A and the D antigen, his blood type is A positive (A+). An individual whose RBCs contain the B antigen but lack the D antigen is type B negative (B ).

The presence of such self-antigens allows the immune system to recognize the body s normal cells. If the immune system detects foreign antigens, it will typically attempt to destroy them. One method of destruction involves specialized immune proteins known as antibodies. Normally, the body makes antibodies when exposed to a particular antigen. For example, one will not have antibodies to the chicken pox virus unless one has been exposed to it. However, there is an important exception to this rule. About six months or so after birth, one begins to produce antibodies that target the RBC antigens that one lacks. For example, because someone with blood type A would lack the B antigen, their plasma would contain anti-b antibodies. The plasma of someone with blood type B would contain anti-a antibodies. Figure 2-2. Antigens and antibodies. The plasma of someone with blood type AB would contain neither anti-a nor anti-b antibodies. Finally, the plasma of someone with blood type O would contain both anti-a and anti-b antibodies. Because the anti-a and anti-b antibodies are made without any exposure to the A and B antigens, they are referred to as preformed antibodies. ABO RBCs Contain Plasma Contains Blood Type A A antigens Anti-B antibodies B B antigens Anti-A antibodies AB A and B antigens Neither anti-a nor anti-b antibodies O Neither A nor B antigens Both anti-a and anti-b antibodies

Figure 2-3. ABO antigen-antibody complex. It s important to note that the anti-d antibody is not preformed. It is made by Rh negative individuals only if they are exposed to the Rh factor. The basic antibody looks somewhat like the letter Y and can grasp two antigens at one time. This allows antibodies to cross-link antigens with one another and create a clump of antigens. The clumping process is referred to as agglutination. Unwanted agglutination is not a good thing. Clumps can block blood vessels and even cause death! (However, the agglutination of foreign antigens increases their likelihood of phagocytosis.) Figure 2-4. Agglutination. It is imperative that agglutination is avoided when blood transfusions take place. In order to prevent transfusion reactions, the recipient s antibodies must not be able to attack the donor s antigens. Let s first consider the ABO blood types. Blood Type Can Donate To Can Receive From A A and AB A and O B B and AB B and O AB AB AB, A, B, and O O O, A, B, and AB O Notice that you can always give to and receive from someone with the same blood type. Also, note that individuals with blood type AB can receive blood from all four types, while individuals with type O can give to all four types. Individuals with type AB are the universal recipients because they lack both the anti-a and the anti-b antibodies. Individuals with type O are the universal donors because they lack A and B antigens.

Examine this diagram representing safe transfusions between the ABO blood groups. Now let s consider the D antigen. Blood Type Can Donate To Can Receive From Rh Positive Rh+ Rh+ and Rh Rh Negative Rh and Rh+ Rh Note that the only prohibited transfusion is Rh+ individuals donating to Rh individuals. The immune system of the Rh individual would see the Rh factor as being foreign and produce anti-rh antibodies to destroy it. Examine this diagram depicting safe transfusions when considering the D antigen. Also note that we should modify our designation of the universal donor and recipient. The universal donor is more accurately type O and the universal recipient is type AB+. ACTIVITY 1 You will be given four samples of imitation blood. Your task will be to determine the blood type of each sample. You will also have at your disposal three colored anti-serasolutions. One solution contains anti-a antibodies. One contains anti-b antibodies. And finally, one contains anti-rh antibodies. You will also have four plastic trays (one for each blood sample). Each tray contains three wells, labeled A, B, and Rh. Set a tray on a white piece of paper and add two drops of antibody-a solution in the A well, two drops of antibody-b solution in the B well, and two drops of the antibody-rh in the Rh well. Next add two drops of one of your blood samples to each well. Use a toothpick to gently mix the blood and the antibody solution. (NB: Make sure you use each toothpick only once so as to avoid any contamination.) Repeat the process using a new tray for each blood sample. Make sure you are using a separate tray for each blood sample. You will now examine each well for signs of agglutination, i.e., the appearance of reddish granules. The occurrence of agglutination in a well tells us that an antigen is present. Determining the presence of antigens lets us discern the blood type. Let s consider an example. Recall that you initially placed anti-a antibodies into the A well. Suppose agglutination is visible in the A well after the addition of the blood. That indicates that the anti-a antibodies must have cross-linked A antigens. Thus, the blood sample must contain A antigens. We can now assume that the particular blood sample is type A or type AB, since both contain A antigens. The next step is to examine the B well. Suppose agglutination is visible in it as well. This means that the blood sample must also contain the B antigen. Thus, we know the blood type is AB. To determine whether it is AB+ or AB, we have to

examine the Rh well. Agglutination in the Rh well indicates that the blood sample contains Rh antigens, and is type AB+. A lack of agglutination indicates an absence of the Rh factor and the blood type is AB. Once you ve ascertained the blood type of each sample, fill out the chart below. Sample Blood Type Antigens Antibodies Donates To Receives From HEMATOCRIT Blood is made of myriad components, including water, cells, proteins, electrolytes, and many others. One way of examining any heterogeneous solution is to separate it into its different components. We ll examine one important method of fractionating blood. A centrifuge is a machine that attains a very high speed of revolution. When a tube of blood is centrifuged, its components separate by density. The heavier components will end up at the bottom of the tube while the lighter components will be found at the top of the tube. Three layers appear in a sample of centrifuged blood. However, usually only two of the three layers will be visible to the naked eye. Normally, the material in the lower half of the tube will appear red, while the material in the upper portion will have a yellowish hue. The red portion consists of packed RBCs (hence, the red color). The yellow portion is the plasma. In between the RBCs and the plasma is a section of intermediate density that will not be visible to the naked eye. This section is referred to as the buffy coat. The buffy coat consists of white blood cells and platelets. Figure 2-5. Centrifuged blood. The percentage of the total blood volume that is occupied by the RBCs is referred to as the hematocrit. The hematocrit provides an indication of the body s oxygen-carrying ability. The average hematocrit for males is 49 ±7%. The average hematocrit for females is 42 ±4%.

A decrease in the body s oxygen-carrying ability is known as anemia. A low hematocrit is indicative of anemia. An abnormally high RBC count causes an abnormally high hematocrit. Such a situation is referred to as polycythemia. Somewhat paradoxically, the body s ability to transport oxygen can decline during polycythemia despite the relative abundance of RBCs. This is because the high RBC count increases the blood s viscosity, making blood flow sluggish. ACTIVITY 2 You will be examining a simulated capillary tube containing blood. Your task will be to determine its hematocrit, decide whether it is normal, and, if it is abnormal, suggest a possible cause. There are two methods of determining hematocrit with which you should be familiar. First, you can simply use a ruler. Measure the height of the total blood sample in the tube. Then measure the height of the packed RBCs in the tube. Divide the packed RBC height by the total sample height. Multiply the result by 100 and you have determined the hematocrit. [EQUATION] The second method requires the use of a CRITOCAPS card. Your instructor will demonstrate the procedure. Hematocrit Normal/Abnormal Explanation Chapter 1 Review Name ID No. Instructor Course/Section Partner s Name (if applicable) Date (of lab meeting) 1. Tom has anti-a and anti-d antibodies in his plasma. What is his blood type? What antigens are present on his RBCs? 2. Lucy, who is blood type B, just received a blood transfusion without complications. Suggest a plausible blood type of her donor.

3. Manuel has blood type O+. Name two blood types from which he could receive blood. 4. Terri s RBCs contain one type of antigen and her plasma contains two varieties of preformed antibodies. What blood type does Terri have? 5. Briefly explain the difference between agglutination and coagulation. 6. Ed has a hematocrit of 34%. Is this normal? What term would be used to describe his condition? How would this affect his ability to exercise? 7. Zoë has a hematocrit of 40%. Approximately what percentage of her blood volume is occupied by plasma? 8. In which region of centrifuged blood would the most neutrophils be found? 9. In which region of centrifuged blood would the most albumin be found? 10. Consider the following results of the blood typing experiment described earlier. Note that shading indicates agglutination. For each sample, fill out the accompanying chart.

Blood Type Blood Type Blood Type Antigens Antigens Antigens Antibodies Antibodies Antibodies Donates To Donates To Donates To Receives From Receives From Receives From