Pediatric head trauma: the evidence regarding indications for emergent neuroimaging

Similar documents
Evidence-based Evaluation of Children with Blunt Head Trauma in the Emergency Department

Use of CT in minor traumatic brain injury. Lisa Ayoub-Rodriguez, MD Bert Johansson, MD Michael Lee, MD

Author Manuscript. Received Date : 27-Oct Revised Date : 09-Jan-2017 Accepted Date : 31-Jan-2017

Title of Study: Childhood Head Trauma: A Neuroimaging Decision Rule

Kristin s Head Trauma Board Questions 11/07/14

Derivation of the children s head injury algorithm for the prediction of important clinical events decision rule for head injury in children

Head trauma is a common chief complaint among children visiting

Clarifying Murky Waters: Head Injuries in Children

Disclosure Statement. Dr. Kadish has no relevant financial relationships with any commercial interests mentioned in this talk.

Prevalence of Brain Injuries and Recurrence of Seizures in Children With Posttraumatic Seizures

SUDANESE JOURNAL OF PAEDIATRICS 2014; Vol 14, Issue No. 1

USE OF CT SCAN IN A CHILD WITH MTBI

2016 PQRS OPTIONS FOR INDIVIDUAL MEASURES: CLAIMS, REGISTRY

T raumatic brain injury (TBI) is a

2017 OPTIONS FOR INDIVIDUAL MEASURES: REGISTRY ONLY. MEASURE TYPE: Efficiency

O ne million patients are treated annually in United

DIAGNOSTIC PROCEDURES IN MILD TRAUMATIC BRAIN INJURY: RESULTS OF THE WHO COLLABORATING CENTRE TASK FORCE ON MILD TRAUMATIC BRAIN INJURY

Each year more than children are seen in hospital

Can we abolish skull x-rays for head injury?

The Use of Bedside Ultrasound in the Detection of Skull Fractures in Pediatric Patients

Head injury in children

CLINICAL INVESTIGATIONS

GUIDELINES FOR THE MANAGEMENT OF HEAD INJURIES IN REMOTE AND RURAL ALASKA

Diagnostic Testing for Acute Head Injury in Children: When Are Head Computed Tomography and Skull Radiographs Indicated?

Reviewing the recent literature to answer clinical questions: Should I change my practice?

Avoidable Imaging Learning Collaborative: 2008 Mild Traumatic Brain Injury Clinical Policy Success Story BWH Head and PE CTs with Clinical Decision

Neuroimaging for Pediatric Head Trauma: Do Patient and Hospital Characteristics Influence Who Gets Imaged?

Instructional Course #34. Review of Neuropharmacology in Pediatric Brain Injury. John Pelegano MD Jilda Vargus-Adams MD, MSc Micah Baird MD

2/13/13. Ann S. Botash, MD SUNY Upstate Medical University

Measuring Overuse and Underuse of Brain CTs in Pediatric Patients with mtbi in Two Canadian Emergency Departments

Evaluation of Children with Blunt Abdominal Trauma. James F. Holmes, MD, MPH UC Davis School of Medicine

The Assessment and Management of Mild Traumatic Pediatric Brain Injury Is it Just a Concussion?

Early release, published at on September 9, Subject to revision.

Ultrasound Evaluation of Skull Fractures in Children. A Feasibility Study. Antonio Riera, MD and Lei Chen, MD

PROPOSAL FOR MULTI-INSTITUTIONAL IMPLEMENTATION OF THE BRAIN INJURY GUIDELINES

A bout million patients present to UK hospitals

Andrzej Żyluk 1, Agnieszka Mazur 1, Bernard Piotuch 1, Krzysztof Safranow 2

Children diagnosed with skull fractures are often. Transfer of children with isolated linear skull fractures: is it worth the cost?

Analysis of pediatric head injury from falls

Management of Severe Traumatic Brain Injury

Evidence Based Trauma Radiology

ISSN X (Print) Research Article

Traumatic Brain Injury Pathway, GCS 15 Closed head injury

Original Article. Emergency Department Evaluation of Ventricular Shunt Malfunction. Is the Shunt Series Really Necessary? Raymond Pitetti, MD, MPH

C.L.A.P.P.E.D. Practice Changes 11/16/2015. No conflict of interest to declare. CLinically Applied Pearls from the Pediatric Emergency Department

Imaging Biomarkers Significance S100B NSE. Admitted within 6 hours of injury and CT scan occurred after initial examination. N = 1,064 CT+ N = 50 4.

Canadian CT head rule and New Orleans Criteria in mild traumatic brain injury: comparison at a tertiary referral hospital in Japan

A SERIES OF PAEDIATRIC TOPICS DR DANIEL WATSON

Failure to Obtain Computed Tomography Imaging in Head Trauma: A Review of Relevant Case Law

Epidemiology of blunt head trauma in children in U.S. Emergency Departments

Correlation of Computed Tomography findings with Glassgow Coma Scale in patients with acute traumatic brain injury

Pre-hospital Response to Trauma and Brain Injury. Hans Notenboom, M.D. Asst. Medical Director Sacred Heart Medical Center

UTILIZATION MANAGEMENT POLICY AND PROCEDURE MANUAL

Pediatric Imaging Spine MRI and Spine CT Test Request Tip Sheet

abstract ARTICLE using CDS was associated with modest, safe, but variable decreases in CT use. However, some secular trends were also noted.

Educational Modules for Appropriate Imaging Referrals CLINICAL DECISION RULES

PedsCases Podcast Scripts

:: Closed Head Injury in Adults

Annually in the United States, 1 million patients will require

Adherence to Head Computed Tomography Guidelines for Mild Traumatic Brain Injury

The risk of a bleed after delayed head injury presentation to the ED: systematic review protocol. Correspondence to:

Pediatric Imaging Spine MRI and Spine CT Test Request Tip Sheet

Ovid: Kamerling: Pediatr Emerg Care, Volume 19(6).December Lippincott Williams & Wilkins, Inc.

Comparison of Prediction Rules and Clinician Suspicion for Identifying Children With Clinically Important Brain Injuries After Blunt Head Trauma

Phenytoin versus Levetiracetam for Prevention of Early Posttraumatic Seizures: A Prospective Comparative Study

Head trauma (HT) is one of the most common

Head injuries in children. Dr Jason Hort Paediatrician Paediatric Emergency Physician, June 2017 Children s Hospital Westmead

Head trauma is a common reason for medical evaluation in an emergency department (ED). In Italy, we estimate that

Steven Aaron Ross, M.D. Pediatric Radiologist El Paso Imaging Consultants El Paso Children s Hospital

The Yield of Head CT in Syncope: A Pilot Study

Pediatric Abusive Head Trauma

Sasha Dubrovsky, MSc MD FRCPC Pediatric Emergency Medicine Montreal Children s Hospital - MUHC October 2010

The AHEAD Study: Managing anticoagulatedpatients who suffer head injury

Centers for Disease Control and Prevention Guideline on the Diagnosis and Management of Mild Traumatic Brain Injury Among Children September 2018

ARTICLE. Intracranial Hemorrhage in Children Younger Than 3 Years

Avoidable Imaging Initiative

LOSS OF CONSCIOUSNESS & ASSESSMENT. Sheba Medical Center Acute Medicine Department MATTHEW WRIGHT

Trauma Center Practice Management Guideline Blank Children s Hospital (BCH) Des Moines

emeasure Title Emergency Medicine: Emergency Department Utilization of CT for Minor Blunt Head Trauma for Patients Aged 18 Years and Older

Factors associated with Outcome in Patients Admitted with Traumatic Brain Injury at the University Teaching Hospital, Lusaka, Zambia

Overview of Abusive Head Trauma: What Everyone Needs to Know. 11 th Annual Keeping Children Safe Conference Boise, ID October 17, 2012

Data Collection: Outcomes:

Accuracy of Point-of-Care Ultrasound for Diagnosis of Skull Fractures in Children

The New England Journal of Medicine A POPULATION-BASED STUDY OF SEIZURES AFTER TRAUMATIC BRAIN INJURIES

UHSM ED Pathway ELDERLY FALL / COLLAPSE

CERVICAL SPINE CLEARANCE

recommendations of the Royal College of

TALK TRAUMA Clearing the C-Spine. David Ouellette

Correlation of D-Dimer level with outcome in traumatic brain injury

School of Hard Knocks! Richard Beebe MS RN NRP MedicThink LLC

Pediatric Subdural Hematoma and Traumatic Brain Injury J. Charles Mace MD FACS Springfield Neurological Institute CoxHealth. Objectives 11/7/2017

HEAD INJURY MODULE ASSESSMENT OF HEAD INJURY

Conceptualization of Functional Outcomes Following TBI. Ryan Stork, MD

For Information Only

Mild Traumatic Brain Injury. Timothy Johnson, MD, FACEP, FAAEM Fairview Southdale Emergency Department

Hit head, on blood thinner-wife wants CT. Will Davies June 2014

Screening and Management of Blunt Cereberovascular Injuries (BCVI)

Pediatric Traumatic Brain Injury. Seth Warschausky, PhD Department of Physical Medicine and Rehabilitation University of Michigan

Imaging in the Trauma Patient

PEDIATRIC MILD TRAUMATIC HEAD INJURY

Transcription:

DOI 10.1007/s00247-008-0996-5 ALARA: BUILDING BRIDGES BETWEEN RADIOLOGY AND EMERGENCY MEDICINE Pediatric head trauma: the evidence regarding indications for emergent neuroimaging Nathan Kuppermann Received: 12 August 2008 / Accepted: 13 August 2008 / Published online: 23 September 2008 # Springer-Verlag 2008 Abstract Traumatic brain injury (TBI) is a leading cause of childhood death and disability worldwide. In the United States, childhood head trauma results in approximately 3,000 deaths, 50,000 hospitalizations, and 650,000 emergency department (ED) visits annually. Children presenting to the ED with seemingly minor head trauma account for approximately one-half of children with documented TBIs. Despite the frequency and importance of childhood minor head trauma, there exists no highly accurate, reliable and validated clinical scoring system or prediction rule for assessing risk of TBI among those with minor head trauma. At the same time, use of CT scanning in these children in recent years has increased substantially. The major benefit of CT scanning is early identification (and treatment) of TBIs that might otherwise be missed and result in increased risk of morbidity and mortality. Unnecessary CT imaging, however, exposes the child needlessly to the risk of radiation-induced malignancies. What constitutes appropriate criteria for obtaining CT scans in children after minor blunt head trauma remains controversial. Current evidence to guide clinicians in this regard is limited; however, large studies performed in multi-center research networks have recently been conducted. These studies should provide the foundation of Dr. Kuppermann has no relevant financial relationships or potential conflicts of interest related to the material to be presented. N. Kuppermann (*) Department of Emergency Medicine, UC Davis Medical Center, 2315 Stockton Boulevard, PSSB Suite 2100, Sacramento, CA 95817, USA e-mail: nkuppermann@ucdavis.edu N. Kuppermann Departments of Emergency Medicine and Pediatrics, University of California, Davis School of Medicine, Davis, CA, USA evidence to guide CT decisions by clinicians, help identify TBIs in a timely fashion, and reduce unnecessary radiation exposure. Keywords Traumatic brain injury. Blunt head trauma. Pediatric trauma. Radiation exposure Introduction Trauma is a leading cause of death in children older than 1 year, and traumatic brain injury (TBI) is the leading cause of death and disability due to trauma, accounting for more than 70% of fatal childhood injuries. Each year in the United States, blunt head trauma in children results in approximately 3,000 deaths, 50,000 hospitalizations, and 650,000 emergency department (ED) visits [1, 2]. Approximately one-half of these visits involve CT imaging of the head [1], and the frequency of use of CT has increased substantially in the last decade [1, 3]. For those children who present to the ED with overt signs of injury caused by blunt head trauma, such as a Glasgow coma scale (GCS) score of less than 14, there is little controversy regarding care: an emergent head CT scan should be included in the evaluation in order to assess for an intracranial injury, particularly one requiring operative intervention. Most children with blunt head trauma evaluated in the ED, however, present with few or subtle signs of TBI, and diagnostic and treatment approaches to this cohort of patients are controversial. Variation in care There is substantial variation in the care provided to children with minor head trauma [4, 5], and data to be

used as evidence for clinical decision-making in evaluating children with minor blunt head trauma are limited. For example, studies have shown that approximately 90% of all children evaluated in the ED for blunt head trauma have few or subtle neurological signs (i.e. GCS 14 or 15), including approximately 75% of patients evaluated with CT scans [6 11]. Furthermore, of those children who have findings of TBI documented on the CT, nearly one-half have a GCS of 14 or 15; thus a normal GCS of 15 does not exclude the possibility of an acute brain injury. Among children with a GCS of 15 after head trauma, however, the prevalence of brain injury on CT is low (5% or less) and surgical intervention is required in less than 1% of these patients [6 9, 11, 12]. The controversy over CT use Given the limited evidence to guide acute management of children with minor head trauma, much controversy remains over use of CT scanning. It has been argued that CT scans should be used liberally in the evaluation of these children. For example, pre-verbal children with blunt head trauma are often difficult to evaluate and clinical findings of brain injury can be subtle or overlooked [9, 10]. In addition, one could argue that in children of any age, liberal use of CT scanning could prevent morbidity and mortality caused by unrecognized TBIs. More limited use of CT scans, however, seems prudent when considering that of all the children who undergo CT scans for head trauma each year in the United States, visible TBIs are found in less than 10%. Furthermore, risks of CT might be of consequence, and include the need to transport the patient outside the close observation of the ED, risks associated with pharmacological sedation for CT, and, most important, the theoretical risk of lethal malignancy from CT. Current estimates of this risk from one head CT scan in a child is in the range of 1:2,000 1:5,000, depending on the age of the child [13 15]. Clinical evaluation in the ED: patient history There is particular controversy surrounding certain elements of the patient s history that are used by clinicians to justify the need for a head CT in a child after blunt head trauma. Perhaps the most controversial of these is the reported history of loss of consciousness (LOC). A history of LOC is commonly reported by parents and families of children evaluated in the ED for blunt head trauma (about 15 30% of patients), yet the reliability of this report is not clear. For example, some children who are reported to be out for 5 min are later found to be quite playful and interactive in the ED. The controversy, then, both relates to the reliability of the reporting of duration of LOC, as well as whether LOC is an important historical factor after adjusting for mental status and other findings on physical examination. Indeed, in several multi-variable analyses, LOC has not been found to be an independent predictor of TBI [8, 11, 12, 16]. In a study conducted by our group, an isolated history of LOC without any associated clinical findings (i.e. no abnormal mental status, focal neurological deficit, headache, vomiting, seizure or skull fracture) was associated with positive findings on CT scan in none of 122 cases [17]. Other controversial patient historical factors that have been studied with variable results include complaints of headache and/or vomiting. Although frequently reported at the time of evaluation for blunt head trauma, these symptoms have been of variable reliability as predictors of brain injury visualized on CT. Several recent studies using headache and vomiting as criteria for obtaining head CTs, however, missed no important brain injuries [11, 12, 18, 19], although large multi-center studies are needed to confirm these results. Clinical evaluation in the ED: physical examination findings S671 The most important physical examination finding in the evaluation for TBI is the patient s mental status as assessed by the GCS score. The GCS score has been found to be an important predictor in several multivariate analyses [8, 11, 12, 18, 19]. In aggregate, these studies suggest that the risk of brain injury visible on CT in patients evaluated in the ED after blunt head trauma and with a normal GCS score of 15 is approximately 2 3%; with a GCS score of 14 the risk is approximately 7 8%; and with a GCS score of 13 the risk of injury is approximately 25%. Therefore, based on these data, any patient with a GSC of 13 or lower after blunt head trauma would unquestionably require emergent CT scanning, and clinicians should have a very low threshold for scanning those with GCS scores of 14. For children with GCS scores of 14 15 after blunt head trauma, however, large, reliable and valid decision rules couldplayanimportantrolein determining the need for emergent neuroimaging. Most studies on this topic have been relatively small, with different methodologies and different outcome definitions. Sufficiently large multicenter studies are needed to determine highly accurate point estimates of risk and to apply the results with confidence. Currently, the necessary narrow confidence intervals around the risk of TBI given different combinations of historical and physical examination findings after blunt head trauma are lacking.

S672 Pre-verbal children Unique features of both the history and physical examination must be considered in pre-verbal children with minor head trauma [9, 10]. As with older children, the most important predictor of TBI in this age group is level of consciousness as measured by the Pediatric GCS. Another important predictor in this age range, however, is the presence of a scalp hematoma [9 11]. Evidence also suggests that the younger the child, the greater the risk of brain injury, such that a 1-month-old infant is at greater risk of TBI than a 3-month-old, who is at greater risk than a 12-month-old [9, 10]. Furthermore, an all-too-frequent phenomenon of TBI in pre-verbal children is that of inflicted injury [20 23]. It has been reported that approximately 25% of children hospitalized for head trauma in this age range are victims of child abuse [22, 23]. In addition, if a history elicited from the parents reveals no clear cause of injuries found on examination, or when the mechanism described is inconsistent with physical findings, inflicted injury should be more highly considered [23]. Recent studies have also identified new bio markers that can be useful in identifying children with inflicted TBI [24]. As described above, one of the most important findings on physical examination of the pre-verbal child with blunt head trauma is a scalp hematoma, and this might be the sole finding to suggest underlying brain injury in many headinjured infants [9, 10]. Previous research suggests that nearly 50% of children younger than 2 years with TBI are asymptomatic; however, scalp hematomas are present in more than 90% of otherwise asymptomatic infants with TBIs and in 95% of infants with skull fractures [9, 10, 25]. The risk of TBI in children younger than 2 years with scalp hematomas and underlying skull fractures is approximately 30%, versus less than 1% if no underlying skull fracture is found [9]. Finally, large scalp hematomas and those in nonfrontal locations of the scalp have been found to be associated with a higher risk of TBIs [26]. Developing decision rules for use of CT scans in blunt head trauma When developing decision rules to guide clinical practice in the identification of children at risk for TBI after blunt head trauma, two important issues must be considered: one is that the rule must be highly accurate and supported by evidence, and the second is that it must be simple to apply in practice. If a decision rule is too complex, it will not be easily remembered and applied in the clinical setting. Several prospective studies have been conducted in the last several years to develop decision rules for the use of CT scans in children with blunt head trauma. These studies Pediatr Radiol (2008) 38 (Suppl 4):S670 S674 suggest that criteria exist that might be used in the derivation of an accurate decision rule. None of these rules, however, has been sufficiently large and accurate nor adequately validated for ideal application in the clinical setting. One study evaluated 175 children between the ages of 5 and 17 years with nontrivial head trauma [18]. All patients had a GCS of 15 and normal neurological examinations. CT scans were obtained in all these children in an effort to validate previously published criteria by the same author for identifying adults at risk for TBI. Although all 14 children with TBIs on CT were identified by the rule, 120 other children without TBI on CT met at least one of the rule criteria. Therefore, although the decision rule was sensitive, it was not highly specific. Furthermore, because of the small size of the study, the confidence intervals of the point estimates of the accuracy of the rule are wide. Another head CT decision rule was developed in a multicenter prospective study of more than 13,000 adults and children with blunt head trauma of all severities; CT scans were performed in all study patients [27]. Through binary recursive partitioning analysis, the authors were able to identify eight important clinical predictors, found on either history or physical examination, of significant intracranial injuries on CT scan. In a sub-analysis of the 1,666 pediatric patients enrolled in this study, 1,434 demonstrated 1 or more of the rule predictors for significant intracranial injuries, and 136 of these patients had a significant TBI on the scan [12]. The authors concluded that use of the decision rule criteria would have reduced the number of CT scans by approximately 14%. The limitations of that study include the lack of inclusion of all TBIs on CT, limited patient follow-up to assess for delayed presentations of injury, and the lack of validation of the results. In another multi-center prospective study of 22,772 children in the United Kingdom with blunt head trauma of all severities, the investigators sought to predict the requirement for neurosurgery or marked abnormalities on CT [19]. Only 3% of the children enrolled had a CT scan performed, however, making the results applicable mainly to countries and centers in which CT scans are used much more sparingly. Although the authors report high sensitivity and specificity for clinically significant injuries, direct patient follow-up was not performed, and the resulting decision rule is complicated, employing 14 variables. The complexity of the rule limits its ease of use in the acute care setting. Our group conducted a study of more than 2,000 children younger than 18 years of age with non-trivial head trauma, in whom CTs were performed at the discretion of the treating physician [11]. Of the 2,043 enrolled patients, 98 had TBIs visualized on CT. Clinical data were recorded before the CT was obtained (if obtained), and 2 physicians evaluated 5% of the patients to establish inter-rater

reliability of the assessment of clinical variables. To address an important limitation of other studies, patients discharged to home had telephone follow-up to assess for missed injuries, and the medical records of admitted patients were reviewed to assess TBI outcomes. In this study, we derived and cross-validated decision rules for two TBI outcomes: TBI visible on CT, and TBI requiring acute intervention (defined by neurosurgery, hospitalization for 2 or more nights for the head injury, use of anti-convulsant medications for more than 7 days, or persistent neurological deficits at discharge). Although separate decision rules were initially created for the two TBI outcomes, the two rules were combined into a single rule with five variables: altered mental status, clinical signs of skull fracture, vomiting, headache, and scalp hematoma (for patients 2 years and younger) [11]. The combined rule demonstrated a negative predictive value of 99.7% and sensitivity of 99% for TBI on CT. All injuries requiring acute intervention were also identified by the rule. The study was limited, however, by its performance at only a single institution, relatively small sample size, and lack of external validation. Fortunately, two prospective multi-center studies with the goal of creating highly accurate and reliable prediction rules for TBI among children with blunt head trauma have recently been conducted by the Pediatric Emergency Research of Canada (PERC) network [28] and the Pediatric Emergency Care Applied Research Network (PECARN) [29]. These studies should result in the generation of more accurate, reliable and validated decision rules in order to limit the use of CT scan to only those children with blunt head trauma at non-negligible risk for TBI. Conclusion Determining the appropriate evaluation of children with blunt head trauma is important, and controversy exists over the use of CT scans. The greatest controversy concerns the use of CT in children with seemingly minor head trauma who have few or no apparent signs and symptoms of TBI. The major benefit of CT scan use is the early identification of TBIs, while a major drawback is the potential risk of radiation-induced malignancies. Current evidence regarding indications for CT use in children after blunt head trauma is limited, and large, multi-center research networks are needed to create definitive, accurate, and validated decision rules that can be easily applied in clinical practice. Two such studies in two multi-center research networks have recently been performed and when published, should provide the foundation of evidence not only to guide CT decisions by clinicians, but also to help parents participate in the decision-making process. References S673 1. National Center for Health Statistics, Centers for Disease Control and Prevention (2000) National Hospital Ambulatory Medical Care Survey, Emergency Department File (2002); CD-ROM Series 13, No. 33 2. National Center for Injury Prevention and Control (2002) Traumatic brain injury in the United States: assessing outcomes in children. Centers for Disease Control and Prevention 3. Blackwell CD, Gorelick M, Holmes JF et al (2007) Pediatric head trauma: changes in use of computed tomography in emergency departments in the United States over time. Ann Emerg Med 49:320 324 4. Aitken ME, Herrerias CT, Davis RL et al (1998) Blunt head injury in children. Arch Pediatr Adolesc Med 152:1176 1180 5. Klassen TP, Reed MH, Stiell IG et al (2000) Variation in utilization of computed tomography scanning for the investigation of minor head trauma in children: a Canadian experience. Acad Emerg Med 7:739 744 6. Dietrich AM, Bowman MJ, Ginn-Pease ME et al (1993) Pediatric head injuries: can clinical factors reliably predict an abnormality on computed tomography? Ann Emerg Med 22:1535 1540 7. Schunk JE, Rodgerson JD, Woodward GA (1996) The utility of head computed tomographic scanning in pediatric patients with normal neurologic examination in the emergency department. Pediatr Emerg Care 12:160 165 8. Quayle KS, Jaffe DM, Kuppermann N et al (1997) Diagnostic testing for acute head injury in children: when are head computed tomography and skull radiographs indicated? Pediatrics 99:e1 e8 9. Greenes DS, Schutzman SA (1999) Clinical indicators of intracranial injury in head-injured infants. Pediatrics 104:861 867 10. Schutzman SA, Barnes P, Duhaime AC et al (2001) Evaluation and management of children younger than two years old with apparently minor head trauma: proposed guidelines. Pediatrics 107:983 993 11. Palchak MJ, Holmes JF, Vance CW et al (2003) Clinical decision rules for identifying children at low risk for intracranial injuries after blunt head trauma. Ann Emerg Med 42:493 506 12. Oman JA, Cooper RJ, Holmes JF et al (2006) Performance of a decision rule to predict need for computed tomography among children with blunt head trauma. Pediatrics 117:e238 e246 13. Brenner DJ (2002) Estimating cancer risks from pediatric CT: going from the qualitative to the quantitative. Pediatr Radiol 32:228 233 14. Hall EJ (2002) Lessons we have learned from our children: cancer risks from diagnostic radiology. Pediatr Radiol 32:700 706 15. Brenner DJ, Hall EJ (2007) Computed tomography an increasing source of radiation exposure. N Engl J Med 357:2277 2284 16. Davis RL, Mullen N, Makela M et al (1994) Cranial computed tomography scans in children after minimal head injury with loss of consciousness. Ann Emerg Med 24:640 645 17. Palchak M, Holmes J, Vance C et al (2004) Does an isolated history of loss of consciousness or amnesia predict brain injuries in children after blunt head trauma? Pediatrics 113:e507 e513 18. Haydel MJ, Shembekar AD (2003) Prediction of intracranial injury in children aged five years and older with loss of consciousness after minor head injury due to nontrivial mechanisms. Ann Emerg Med 42:507 514 19. Dunning J, Daly JP, Lomas JP, for the CHALICE study group et al (2006) Derivation of the children s head injury algorithm for the prediction of important clinical events decision rule for head injury in children. Arch Dis Child 91:885 891 20. Jenny C, Hymel KP, Ritzen A et al (1999) Analysis of missed cases of abusive head trauma. JAMA 281:621 626

S674 21. Bechter K, Stoessel K, Leventhal JM et al (2004) Characteristics that distinguish accidental from abusive head injury in hospitalized young children with head trauma. Pediatrics 114:165 168 22. Duhaime AC, Alario AJ, Lewander WJ et al (1992) Head injury in very young children: mechanisms, injury types, and ophthalmologic findings in 100 hospitalized patients younger than 2 years of age. Pediatrics 90:179 185 23. Hettler J, Greenes D (2003) Can the initial history predict whether a child with a head injury has been abused? Pediatrics 111:602 607 24. Berger RP, Dulani T, Adelson PD et al (2006) Identification of inflicted traumatic brain injury in well-appearing infants using serum and cerebrospinal markers: a possible screening tool. Pediatrics 117:325 332 Pediatr Radiol (2008) 38 (Suppl 4):S670 S674 25. Greenes DS, Schutzman SA (1997) Infants with isolated skull fracture: what are their clinical characteristics, and do they require hospitalization? Ann Emerg Med 30:253 259 26. Greenes DS, Schutzman SA (2001) Clinical significance of scalp abnormalities in asymptomatic head-injured infants. Pediatr Emerg Care 17:88 92 27. Mower WR, Hoffman JR, Herbert M et al (2005) Developing a decision instrument to guide computed tomographic imaging of blunt head injury patients. J Trauma 59:954 959 28. Osmond MH, Klassen TP, Stiell IG et al (2006) The CATCH rule: a clinical decision rule for the use of computed tomography of the head in children with minor head injury. Acad Emerg Med 13:S11 29. Kuppermann N, Holmes JF, Dayan PS, PECARN et al (2007) Blunt head trauma in the Pediatric Emergency Care Applied Research Network (PECARN). Acad Emerg Med 14:S94 S95