Antimicrobial Activity of Three Baccharis Species Used in the Traditional Medicine of Northern Chile

Similar documents
International Journal of Scientific & Engineering Research, Volume 7, Issue 8, August ISSN

CHAPTER 8 ANTIBACTERIAL ACTIVITY OF THE CRUDE ETHANOLIC EXTRACT AND THE ISOLATED COMPOUNDS FROM THE STEM OF COSTUS IGNEUS

Higher plants produced hundreds to thousands of diverse chemical compounds with different biological activities (Hamburger and Hostettmann, 1991).

Mr. Vipul R. Suryavanshi Department of Pharmaceutical Analysis Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai

In vitro study of antibacterial activity of Carissa carandas leaf extracts

Antimicrobial activity of some medicinal plants against multidrug resistant skin pathogens

COMPARATIVE ANTI MICROBIAL STUDY OF SHUDDHA KASISA AND KASISA BHASMA

Bioprospecting of Neem for Antimicrobial Activity against Soil Microbes

Antimicrobial activity of Terminalia chebula

Octa Journal of Biosciences

Research Journal of Pharmaceutical, Biological and Chemical Sciences

New York Science Journal, Volume 1, Issue 1, January 1, 2008, ISSN Amides as antimicrobial agents.

Evaluation of Antibacterial Effect of Odor Eliminating Compounds

ANTIBACTERIAL ACTIVITY OF GYMNEMA SYLVESTRE HYDROALCOHOLIC LEAF EXTRACT.

Antibacterial activities of extracts and their fractions of leaves of Tridax procumbens Linn

Antifungal activity of some plant extracts against Clinical Pathogens

STUDY ON THE ANTIMICROBIAL ACTIVITY OF THE CRUDE EXTRACT OBTAINED FROM THE ROOTS OF PLUMBAGO ZEYLANICA AND EVALUATION OF ITS MICROSPHERES

Roula M. Abdel-Massih Dept. of Biology, University of Balamand, Lebanon

Chapter 4. Anti-bacterial studies of PUFA extracts from Sardinella longiceps and Sardinella fimbriata. 4.1 Introduction

Asian Journal of Pharmaceutical Analysis and Medicinal Chemistry Journal home page:

Antibacterial Activities of Ginkgo biloba L. Leaf Extracts

Effect of various solvents on bacterial growth in context of determining MIC of various antimicrobials

Antibacterial Activity of Francoeuria crispa, Pulicaria undulata, Ziziphus spina-christi and Cucurbita pepo Against Seven Standard Pathogenic Bacteria

Prof. Dr. K. Aruna Lakshmi (DEAN Academic Affairs) Dept. of Microbiology GITAM University Visakhapatnam. Under the Guidance of.

The textile material is goods carrier of various types

Effect of various solvents on bacterial growth in context of determining MIC of various antimicrobials

Determination of MIC & MBC

Evaluation of Antibacterial and Antifungal Activities of Leaf and Seed Extracts of Croton Tiglium Plant against Skin Disease Causing Microbes

Antimicrobial Activity of Black Fruit Variant of Solanum nigrum L.

ANTIMICROBIAL ACTIVITY OF NON EDIBLE SEEDS AGAINST IMPORTANT PATHOGENIC MICROORGANISMS PROJECT REFERENCE NO.: 38S _B_MSC_010

ANTIMICROBIAL AND PHYTOCHEMICAL SCREENING OF TRAGIA INVOLUCRATA L. USING UV-VIS AND FTIR

IN VITRO ANTIMICROBIAL ACTIVITY OF VARIOUS EXTRACTS OF MIRABILIS JALAPA LEAVES

Effect of different sampling locations on the antibacterial property of Centella asiatica leaves

*MIAN SHAHZADA ZIA AHMAD & ZAHEER-UD-DIN KHAN. Department of Botany, GC University, Lahore. ABSTRACT INTRODUCTION

SUPPORTING INFORMATION. Studies on antimicrobial evaluation of some 1-((1-(1H-benzo[d]imidazol-2-

Screening of Chinese Medicinal Herbs for the Inhibition of Brucella melitensis

[PHAR06] Anti Helicobacter pylori from extracts of ten species of Phyllanthus sp. with special emphasis on chloroform extracts of Phyllanthus pulcher

In vitro Evaluation of Antibacterial Activity of Bark and Flower Extracts of Pimenta officinalis Lindl.

Chandan Prasad.et.al. Int. Journal of Engineering Research and Application ISSN : , Vol. 7, Issue 9, ( Part -6) September 2017, pp.

Antimicrobial Potential of Whole Plant and Callus Extract of Aristolochia bracteolata Lam

Department of Employment, Economic Development and Innovation

Minimum Inhibitory Concentration (MIC) of antimicrobial activity in various dried extracts of Gnaphalium polycaulon, Indian folkloric medicinal plant

International Journal of Pharma and Bio Sciences EFFICACY OF CLERODENDRUM INERME L. (GARDEN QUININE) AGAINST SOME HUMAN PATHOGENIC STRAINS

EVALUATION OF ANTIMICROBIAL ACTIVITY AND PHYTOCHEMICAL ANALYSIS OF Zingiber officinale (GINGER) RHIZOME EXTRACT

Antimicrobial activity of Trinpanchmool drugs

ISSN Vol.02,Issue.19, December-2013, Pages:

In vitro antimicrobial activity of leaves and bark extracts of Ficus religiosa (Linn.)

Laboratorios CONDA, S.A. Distributed by Separations

Antimicrobial Activity of Sphaeranthus indicus L.

Evaluation of Antibacterial Activity of Disulfiram.

Imidazolium Ionic Liquids Containing Selenium: Synthesis and Antimicrobial Activity

Enhanced antibacterial potential of ethanolic extracts of neem leaf (Azadiracta indica A. Juss.) upon combination with bacteriocin

Mohammed Al-janabi and ZainabYaseen

International Journal of Research in Pharmaceutical and Nano Sciences Journal homepage:

Screening of Antimicrobials of some Medicinal Plants by TLC Bioautography

International Journal of Food Nutrition and Safety, 2012, 1(2): International Journal of Food Nutrition and Safety

Screening for Antimicrobial Activity in Acanthus ilicifolius

Jigna Parekh, Nehal Karathia and Sumitra Chanda*

Research Article. Phytochemical and antibacterial efficacy of Hevea brasiliensis

Antimicrobial Activity of Emilia sonchifolia DC., Tridax procumbens L. and Vernonia cinerea L. of Asteracea Family: Potential as Food Preservatives

Antimicrobial Activity of Ruellia tuberosa L. (Whole Plant)

CHAPTER 6 EVALUATION OF SELECTED PLANT EXTRACTS FOR EVALUATION OF SELECTED PLANT EXTRACTS FOR ANTI-ACNE ACTIVITY

THE ATRACTYLODES LANCEA EXTRACT FOR BACTERIAL RESISTANT IN TEXTILES

Research Article. Study on antibacterial activity of some medicinally important plants

ANTIBACTERIAL ACTIVITIES OF SELECTED THAI MEDICINAL PLANTS BEARING QUINONOIDS. Sciences, Chulalongkorn University, Bangkok 10330, Thailand

Cytotoxicity and antimicrobial activity of Salvia officinalis L. flowers. Mona A. M. Abd-Elmageed 1 and B. A. Hussein 2

THE EFFECT OF ALKALOIDS AND FLAVONOIDS EXTRACTS OF VITEX DONIANA SEED ON SOME MICROORGANISMS

Influence of Different Prebiotics and Probiotics on Selective Intestinal Pathogens

ANTIMICROBIAL ACTIVITY AND PHYTOCHEMICAL SCREENING OF SERIAL EXTRACTS FROM LEAVES OF AEGLE MARMELOS (LINN.)

International Journal of Ayurvedic and Herbal Medicine 1:1 (2011) 1 7

Bioactivity of Cassia auriculata Methanol Extract against Human Pathogenic Bacteria and Fungi

CHAPTER 2 MATERIALS AND MATHODS

Studies on the Antibacterial Activity of Quercus Infectoria Galls

Antibacterial Activity of Boerhaavia diffusa L. (Punarnava) On certain Bacteria

ANTIBACTERIAL ACTIVITY OF LEAF AND SEED EXTRACTS OF DELONIX REGIA AND ACHYRANTHUS ASPERA AGAINST SELECTED BACTERIAL STRAINS

Evaluation of phytochemical compounds and antimicrobial activity of leaves and fruits Tribulus terrestris

Preservative A15 Safe antimicrobial for cosmetics and pharmaceuticals

PIDSP Journal 2011 Vol 12 No.1 Copyright 2011

Phytochemical screening and antibacterial properties of Garcinia kola

Isolation of Herbal Plants: Antifungal and Antibacterial Activities

SCREENING THE BIOACTIVE POTENTIAL OF PROTEIN ISOLATED FROM CYPRINUS CARPIO. Iyyanuchamy, S.K and A. Periyanayagasamy*

ANTIBACTERIAL EFFECTS OF CRUDE EXTRACT OF Azadirachta indica AGAINST Escherichia coli and Staphylococcus aureus

International Journal of Pharma and Bio Sciences A COMPARITIVE STUDY OF ANTIMICROBIAL ACTIVITY OF SOME HERBS AND THEIR SYNERGISTIC EFFECT ABSTRACT

International Journal of Pharma and Bio Sciences

INTERNATIONAL JOURNAL OF INSTITUTIONAL PHARMACY AND LIFE SCIENCES

In vitro Antimicrobial Activity of Extracts from Careya arborea Roxb Leaves

Antibacterial Effect of Pulsatilla chinensis towards Staphylococcus aureus, Shigella dysenteriae, and Salmonella typhi

Evaluation of antifungal activity of Zingiber officinale against Fusarium oxysporum f.sp. lycopersici

Evaluation of Biological Activity (In-Vitro) of Some 2-Phenyl Oxazoline Derivatives

Antimicrobial and brine shrimp activity of Acanthus pubescens root extracts

Antimicrobial activity of Origanum heracleoticum L. essential oil from Serbia

Jl. Perintis Kemerdekaan KM.5 Makassar 90231, South Sulawesi Indonesia.

Available online at

In vitro screening of five local medicinal plants for antibacterial activity using disc diffusion method

Dian Riana Ningsih, Zusfahair, Dwi Kartika. Chemistry Department Basic Science Faculty Jenderal Soedirman University. ABSTRACT

Citrullus Colocynthis a Prospective Antimicrobial and Antifungal Agent

Evaluation of antimicrobial activity and Bidens biternata ehrenb Leaves

INFLUENCE OF ASSOCIATING NONSTEROIDAL ANTI-INFLAMMATORY DRUGS WITH ANTIFUNGAL COMPOUNDS ON VIABILITY OF SOME CANDIDA STRAINS

Research Article. Antibacterial activity of Sivanar Vembu (Indigofera aspalathoides) against some human pathogenic bacteria

CHAPTER 3 PHYTOCHEMICAL SCREENING AND ANTI-MICROBIAL ACTIVITY OF THE EXTRACTS OF SELECTED MEDICINAL PLANTS

Transcription:

Molecules 2008, 13, 790-794 molecules ISSN 1420-3049 2008 by MDPI www.mdpi.org/molecules Communication Antimicrobial Activity of Three Baccharis Species Used in the Traditional Medicine of Northern Chile Glauco Morales*, Adrián Paredes, Patricia Sierra and Luis A. Loyola Laboratorio de Productos Naturales, Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta, Chile * Author to whom correspondence should be addressed; E-mail: gmorales@uantof.cl; Tel: 56-55- 637812; Fax: 56-55-637457 Received: 31 January 2008; in revised form: 31 March 2008 / Accepted: 31 March 2008 / Published: 6 April 2008 Abstract: The antimicrobial activities of aqueous ethanol and chloroform extracts of three Baccharis species currently used in Northern Chile folk medicine for the treatment of several infectious and inflammatory disorders were tested against Gram-positive and negative bacteria and fungal spp. using the agar-disc diffusion assay. The results indicated that the activity was more pronounced against Gram-positive than against Gram-negative bacteria and yeast. No significant differences on the antibacterial activity were observed in the aqueous ethanol versus chloroform extracts. None of the plant extracts evaluated exhibited any activity against ten fungi tested. Keywords: Antimicrobial activity; Baccharis microphylla; Baccharis petiolata; Baccharis santelicis. Introduction In Northern Chile, as well as in other developing countries, medicinal plants still represent the main therapeutic tool in traditional medicine [1]. The genus Baccharis, one of the most important genera of Asteraceae, is widespread throughout South America and is represented in Chile by 48

Molecules 2008, 13 791 species [2]. Several of these are used in traditional medicine. The species selected for the present study Baccharis microphylla, Baccharis petiolata and Baccharis santelicis are popularly known as chilca and they are commonly used to protect stomach and liver, restore blood circulation, reduce inflammatory processes and cure ulcers, burns and skin wounds [ 3-8]. The Baccharis species under study grow at 3,200-3,800 meters above sea level in the Puna de Atacama, which is characterized by areas of arid climate, low atmospheric pressure, high solar radiation and extremely broad seasonal and diurnal temperature ranges. No chemical studies on B. microphylla have been carried out. B. petiolata [9] and B. santelicis [10] were previously reported to contain labdane and clerodane diterpenoids and flavonoids (flavones and flavanones); other terpenoids (C-15 and C-30) and mixed biogenesis metabolites have also been isolated from these species [10]. The main objective of this study was to identify Northern Chilean medicinal plants with antimicrobial activity which might serve as good candidates for the development of new antimicrobial agents and/or standardized phytomedicines. Results and Discussion The results of the antibacterial and antifungal screening of aqueous ethanol and chloroform extracts from the three studied Baccharis species against seven bacterial species and ten fungal strains are summarized in Table 1 (inhibition zones in the agar disc diffusion assay at 25 mg extract /disc) and Table 2 (MIC values). The following tested microorganisms are omitted from Tables 1 and 2 because no extract inhibited their growth: E. coli, P. aeruginosa, C. albicans, C. tropicalis, C. neoformans, S. cerevisae, A. fumigatus, A. flavus, A. niger, M. gypseum, T. tubrum and T. mentagrophytes. The extracts exhibited a broad spectrum of activity. Gram-positive bacteria are more sensitive to the extracts than Gram-negative ones [11]. None of the plant extracts evaluated inhibited the growth of the Gram-negative E. coli and P. aeruginosa, nor did they exhibit any activity against the ten fungi tested, including C. albicans. The most susceptible bacterium was B. subtilis. Table 1. Antimicrobial activity of aqueous ethanol and chloroform extracts from three Baccharis species from Northern Chile (diamater of inhibition zone in mm) * Plant species B. microphylla B. petiolata B. santelicis Microorganism aq. ethanol chloroform aq. ethanol chloroform aq-ethanol chloroform Staphylococcus aureus 8.2 ± 1 13.8 ± 2 15.8 ± 2 3.8 ± 2 23.5 ± 3 8.3 ± 0.9 Enterococcus faecalis 13.2 ± 2 24.5 ± 4 5.5 ± 0.9 4.6 ± 1 7.5 ± 3 26.4 ± 0.8 Bacillus subtilis >30 28.2 ± 3 15.8 ± 2 23.5 ± 3 28.4 ± 3 23.5 ± 2 Acinetobacter baumanni 5.8 ± 1 4.6 ± 1 5.1 ± 0.8 6.3 ± 1 8.3 ± 0.9 Salmonella typhi 8.4 ± 0.9 13.8 ± 2 * The values are the mean of three experiments ± S.E. of the mean. No inhibition zone. If extracts displayed an MIC less than 100 μg/ml, the antimicrobial activity was considered as good; from 100 μg/ml to 500 μg/ml the antimicrobial activity was moderate; from 500 μg/ml to 1000 μg/ml the antimicrobial activity was weak; over 1000 μg/ml the extract was considered inactive. Aqueous ethanol and chloroform extracts of B. microphylla, B. petiolata and B. santelicis presented a good activity against Bacillus subtilis, with MIC values of 7.8, 15.6, 62.5, 31.2, 15.6 and

Molecules 2008, 13 792 31.2 μg/ml, respectively. The aqueous ethanol extract of B. santelicis showed good activity against S. aureus (31.2 μg/ml), but was inactive against E. faecalis (> 1000 μg/ml), while the chloroform extract of this plant that displayed good activity against E. faecalis (15.6 μg/ml) and was inactive against S. aureus (> 1000 μg/ml). Table 2. Minimum Inhibitory Concentration (MIC, μg/ml) values of aqueous ethanol and chloroform extracts from three Baccharis species from Northern Chile * Plant species B. microphylla B. petiolata B. santelicis Microorganism aq. ethanol chloroform aq. ethanol chloroform aq-ethanol chloroform Staphylococcus aureus >1000 500 500 >1000 31.2 >1000 Enterococcus faecalis 500 125 >1000 >1000 >1000 15.6 Bacillus subtilis 7.8 15.6 62.5 31.2 15.6 31.2 Acinetobacter baumanni >1000 >1000 >1000 >1000 NA >1000 Salmonella typhi >1000 500 NA NA NA NA * The values are the mean of three experiments. NA: no activity Conclusions Although this study investigated the in vitro antimicrobial activity, the results showed that the extracts from Baccharis microphylla, Baccharis petiolata and Baccharis santelicis possessed good antibacterial activity, confirming the great potential of these plants used in Northern Chilean ethnomedicine for the production of bioactive compounds and are useful for rationalizing the use of these medicinal plants in primary health care. In vivo data may be helpful in determining the real potential usefulness of these plants for the treatment of infectious diseases. Experimental Plant materials Aerial parts of Baccharis microphylla, Baccharis petiolata and Baccharis santelicis were collected near Socaire, in Northern Chile (23º 36 40 S; 67º 50 33 W) at 3,500 m above sea level. The plant's classifications were confirmed by Professor Clodomiro Marticorena, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Chile. A sample of each plant was deposited at the Herbario de la Universidad de Concepción. Preparation of extracts and dry residues The aqueous ethanol extract were prepared by adding EtOH-H 2 O (1:1, 50 ml) to ir-dried and coarsely powdered plant (5.0 g), and heating the mixture at reflux condenser for 10 min with continuous magnetic stirring. Afterwards, the extract was covered with a watch glass, left standng for 30 min to cool, centrifuged and filtered through sterilized cellulose nitrate. The dry residue from the extracts was obtained by vacuum-evaporation followed by lyophilization at 5 mm Hg pressure and

Molecules 2008, 13 793-50ºC in a Freezone lyophilizer (Labconco). For chloroform extraction, samples (5.0 g) were ground to a fine power in a mill and mixed with chloroform (50 ml). The obtained extracts were filtered and the solvent evaporated in a rotary evaporator at 50ºC to afford the corresponding dry extracts. Extracts were tested at a concentration of 100 mg/ml in water-dmso (9:1). Microorganisms tested The following bacteria strains were employed in the screening: Gram-positive: S. aureus (ATCC 25923), E. faecalis (ATCC 29212) and B. subtilis (ATCC 6633). Gram-negative: A. baumanni (ATCC 19606), S. typhi (ATCC 3492), E. coli (ATCC 25922) and P. aeruginosa (ATCC 27853). In the antifungal screening the following fungi were tested: C. albicans (ATCC 90028), C. tropicalis, C. neoformans (ATCC 32264), S. cerevisae (ATCC 9763), A. fumigatus (ATCC 26934), A. flavus (ATCC 9170), A. niger (ATCC 9092), M. gypseum (C115), T. tubrum (C113) and T. mentagrophytes (ATCC 9972). Antibacterial testing Antimicrobial activities of the aqueous ethanol and chloroform extracts were determined using the agar-disc diffusion method [12]. The media used were Mueller-Hinton agar for the bacteria and Sabouraud dextrose agar for the fungi. After 24 h, the culture of selected bacteria/yeast was mixed with physiological saline solution and the turbidity was corrected by adding sterile physiological saline to a MacFarland turbidity standard of 0.5 (10 8 CFU/mL). Afterwards, a top layer of Mueller-Hinton agar inoculated with 0.2% microbial suspension was poured over the Petri dishes. Sterile filter discs 6 mm in diameter were impregnated with 250 μl of solution of extract (100 mg/ ml, equivalent to 25 mg of extract) per disc and then placed onto the inoculated plates. The plates were then incubated at 37 ± 0.1ºC for 24 h. The test was carried out in triplicate. Antimicrobial activity was measured as the diameter (mm) of clear zone of growth inhibition. Ampicillin (10 μg/disc), streptomycin (25μg/disc) and chloramfenicol (30 μg/disc) were used as positive control antibiotics in all plates and their inhibition zones against E. coli were 17, 9 and 18 mm, respectively. Nystatin (100 μg/disc) and Amphoterecin B(200 μg/disc) were used as positive control for the fungi in all plates and their inhibition zones against C. albicans were 26 and 17 mm, respectively. DMSO, ethanol and methanol were included in every experiment as negative controls. The Minimum Inhibitory Concentration (MIC) values of extract from Baccharis were determined in triplicate by using the microdilution broth method in 96-well microplates [13]. The extracts were dissolved in DMSO (1 mg/ml), and then diluted in tryptone soya broth to achieve concentrations ranging from 1000 to 7.8 μg/ml. The final concentration of DMSO was 10% (v/v). The inoculum was adjusted to each microorganism to yield a cell concentration of 10 8 CFU/mL. Standard antibiotics were used as positive controls and their concentrations ranged from 5.9 to 0.01 μg/ml. The microplates were incubated at 37ºC for 24 h (bacteria) or at 30ºC for 48 h (yeast), and aqueous 2,3,5-triphenyltetrazolium chloride solution (0.5%, 20 μl) was added to indicate the viability of bacteria and yeast. MIC values were determined as the lowest concentration of the extract capable of inhibiting visible microorganism growth.

Molecules 2008, 13 794 Acknowledgements We are grateful to Prof. Clodomiro Marticorena, University de Concepción (Chile), for the botanical classification of the plant materials and to the Grupo de Microbiologia del Instituto del Desierto de la Universidad de Antofagasta (Chile) for technical facilities. This work was supported by Fondecyt (grant Nº 1040294). References 1. Rojas, R.; Bustamante, B.; Bauer, J.; Fernandez, I.; Albán, J.; Lock, O. Antimicrobial activity of selected Peruvian medicinal plants. J. Ethnopharmacol. 2003, 88, 199 204. 2. Marticorena, C. Catálogo de la flora vascular de Chile. Gayana Bot. 1985, 42 103. 3. Castro, V. Botánica de pueblos andinos. Actas 2º Congreso de Plantas Medicinales, Santiago de Chile, 1995; p. 49. 4. Gómez, D.; Ahumada, J.; Necul. E. Medicina Tradicional Atacameña. Ministerio de Educación: Santiago de Chile, 1997; p. 81. 5. Mellado, V.; Medina, E.; San Martín, C. Herbolaria Médica de Chile. Ministerio de Salud: Santiago de Chile, 1996; p. 166. 6. Monterrey, N. Hierbas Medicinales Andinas de la 2º Región. Ministerio de Educación: Antofagasta, Chile 1996, p. 34. 7. Villagrán, C.; Castro, V. Biodiversidad. Ciencia Indígena de los Andes del Norte de Chile. Ed. Universitaria: Santiago de Chile, 2000, pp. 179 181. 8. Wickens, G.E. Vegetation and ethnobotany of the Atacama Desert and adjacent Andes in northern Chile. Opera Bot. 1993, 121, 291 307. 9. Gianello, J.C.; Pestchanker, M. J.; Tonn, C. E.; Guo, M.; Giordano, S.O. 2α,3α-dihydroxycativic acid, a diterpenoid from Baccharis petiolata. Phytochemistry 1990, 29, 656 659. 10. Zdero, C.; Bohlmann, F.; Niemeyer, H. M. An inusual dimeric sesquiterpene and other constituents from Chilean Baccharis species. Phytochemistry 1991, 30, 1597 1601. 11. Srinivasan, D.; Nathan, S.; Suresh, T.; Lakshmana Perumalsamy, P. Antimicrobial activity of certain Indian medicinal plants used in folkloric medicine. J. Ethnopharmacol. 2001, 74, 217 220. 12. Karaman, I.; Sahin, F.; Gulluce, M.; Ogutcu, H.; Sengul, M.; Adiguzel, A..Antimicrobial activity of aqueous and methanol extracts of Juniperus oxycedrus L. J. Ethnopharmacol. 2003, 85, 231 235 13. Ferreira de Oliveira, G.; Furtado, N. A. J. C.; Filho, A. A. da S., Martins, C. H. G.; Bastos J. K.; Cunha, W. R.; Andrade e Silva, M. L. Antimicrobial activity of Syzygium cumini (Myrtaceae) leaves extract. Braz. J. Microbiol. 2007, 38, 381 384. Sample Availability: Available from the corresponding author. 2008 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.