Oxidative Stress Unify the Pathophysiological Mechanism of Experimental Hypertension and Diabetes of Spontaneously Hypertensive Stroke-Prone Rats

Similar documents
SUPPLEMENTATION OF ALPHA-TOCOPHEROL IS ABLE TO MODULATE HEART AND KIDNEY HISTOPATHOLOGICAL FEATURES OF SHRSP RATS

Effects of beraprost sodium on renal function and inflammatory factors of rats with diabetic nephropathy

Diabetic Nephropathy in Spontaneously Diabetic Torii (SDT) Rats

Dr. Hayam Gad Associate Professor of Physiology College of Medicine King Saud University

Chapter 2. Standardization of rat model for diabetic nephropathy

RENAL HISTOPATHOLOGY

SODIUM TUNGSTATE; EFFECT OF SODIUM TUNGSTATE ON KIDNEY OF STREPTOZOTOCIN INDUCED DIABETIC RABBIT.

Surgical Pathology Report

Supplementary Appendix

Dr.Nahid Osman Ahmed 1

Mouse Models of Diabetic Nephropathy. Mount Sinai / Jefferson / Einstein / Minnesota Erwin Böttinger, PI Kumar Sharma, Co-PI

Discovery and development of regenerative medicine products comprised of autologous cells and biomaterials. ISCT September 28, 2010 San Francisco, CA

Interrelationship between Angiotensin Catecholamines. Tatsuo SATO, M.D., Masaru MAEBASHI, M.D., Koji GOTO, M.D., and Kaoru YOSHINAGA, M.D.

Cardiac Output in Conscious One-clip, Two-kidney Renovascular Hypertensive Rats*)

Morphological and functional state of immune organs in rats with experimental type 1 diabetes mellitus (DM-1)

Lab Values Explained. working at full strength. Other possible causes of an elevated BUN include dehydration and heart failure.

Steroid Resistant Nephrotic Syndrome. Sanjeev Gulati, Debashish Sengupta, Raj K. Sharma, Ajay Sharma, Ramesh K. Gupta*, Uttam Singh** and Amit Gupta

AT1 RECEPTOR BLOCKADE ATTENUATES INSULIN RESISTANCE AND MYOCARDIAL REMODELING IN RATS WITH DIET-INDUCED OBESITY

Ebrahim Abbasi Oshaghi 1,2

Supplementary Figure S1. Effect of Glucose on Energy Balance in WT and KHK A/C KO

The CARI Guidelines Caring for Australasians with Renal Impairment. Membranous nephropathy role of steroids GUIDELINES

1. Staging of CKD based on blood creatinine concentration

SUPPLEMENTAL DATA. Lumen area ( m 2 )

Spontaneously Diabetic Torii Lepr fa (SDT Fatty) Rat: A Novel Model of Obese Type 2 Diabetes

Diabetes in Renal Patients. Contents. Understanding Diabetic Nephropathy

NATURAL HISTORY AND SURVIVAL OF PATIENTS WITH ASCITES. PATIENTS WHO DO NOT DEVELOP COMPLICATIONS HAVE MARKEDLY BETTER SURVIVAL THAN THOSE WHO DEVELOP

Obese Type 2 Diabetic Model. Rat Model with Early Onset of Diabetic Complications. SDT fatty rats. SDT fatty rats

Title a novel obese diabetic model( Disse. /doctor.r12

Assessment of glomerular filtration rate in healthy subjects and normoalbuminuric diabetic patients: validity of a new (MDRD) prediction equation

Ordering Physician. Collected REVISED REPORT. Performed. IgG IF, Renal MCR. Lambda IF, Renal MCR. C1q IF, Renal. MCR Albumin IF, Renal MCR

Case Rep Dermatol 2009;1:66 70 DOI: / Key Words Coma Blister Barbiturate Overdose Meningoencephalitis

The CARI Guidelines Caring for Australasians with Renal Impairment. Specific management of IgA nephropathy: role of steroid therapy GUIDELINES

WJEC. Kidney. Question

Urinary system. Lab-7

Keywords: Blood urea nitrogen; Creatinine clearance; ICR-derived glomerulonephritis mice; Urinary F concentrations. INTRODUCTION

7. NOOTROPIC AND ANTIOXIDANT ACTIVITY. 7.1 Introduction

The Use of Sea Buckthorn (Hippophae rhamnoides) and Milk Thistle (Silybum marianum) in Alloxan Induced Diabetes Mellitus in Rats

BIOL 2402 Renal Function

Diabetes and Hypertension

Estimation of Serum Urea. BCH472 [Practical] 1

The evaluation of pathomorphological changes of intact by neoplastic process kidney parenchyma in patients with renal cell cancer

Pharmacologyonline 3: (2009) I VESTIGATIO OF A TIHYPERGLYCEMIC EFFECT OF MORUS IGRA O BLOOD GLUCOSE LEVEL I STREPTOZOTOCI DIABETIC RATS

Kidney Physiology. Mechanisms of Urine Formation TUBULAR SECRETION Eunise A. Foster Shalonda Reed

The Urinary System. BIOLOGY OF HUMANS Concepts, Applications, and Issues. Judith Goodenough Betty McGuire

Diabetic Nephropathy

BCH 447. Estimation of Serum Urea

Agenda. Management of Accelerated Hypertension (Updated in 2017) Salwa Roshdy Prof. of Cardiology Assiut University CardioEgypt 23/2/2017 2/27/2017

QUICK REFERENCE FOR HEALTHCARE PROVIDERS

Relationship between renal injury and the antagonistic roles of angiotensin-converting enzyme (ACE) and ACE2

Dr. Mehmet Kanbay Department of Medicine Division of Nephrology Istanbul Medeniyet University School of Medicine Istanbul, Turkey.

Significance of Anti-C1q Antibodies in Patients with Systemic Lupus Erythematosus as A Marker of Disease Activity and Lupus Nephritis

RENAL FAILURE IN CHILDREN Dr. Mai Mohamed Elhassan Assistant Professor Jazan University

Trial to Reduce. Aranesp* Therapy. Cardiovascular Events with

Glomerular diseases mostly presenting with Nephritic syndrome

EXCRETION QUESTIONS. Use the following information to answer the next two questions.

New Hypertension Guideline Recommendations for Adults July 7, :45-9:30am

Impact of Renal Dysfunction on the Outcome of Acute Myocardial Infarction

Introduction to Clinical Diagnosis Nephrology

Session 21: Heart Health

Salt Sensitivity in Blacks

Glomerular pathology in systemic disease

RENAL SYSTEM 2 TRANSPORT PROPERTIES OF NEPHRON SEGMENTS Emma Jakoi, Ph.D.

Nephron Function and Urine Formation. Ms. Kula December 1, 2014 Biology 30S

Glomerular pathology-2 Nephritic syndrome. Dr. Nisreen Abu Shahin

HYDRATION & EXERCISE : IMPLICATIONS FOR KIDNEY HEALTH

Intravenous Vitamin C. Severe Sepsis Acute Lung Injury

INTERNATIONAL JOURNAL OF PHARMACEUTICAL AND CHEMICAL SCIENCES

Kidneys and Homeostasis

RESEARCH ARTICLE. Received on: 08/02/2017 Published on:27/03/2017

8. OXIDATIVE STRESS IN DIABETICS

Introduction. Acute sodium overload produces renal tubulointerstitial inflammation in normal rats

PARTS OF THE URINARY SYSTEM

Routine Clinic Lab Studies

Arteriosclerosis & Atherosclerosis

Citation Acta Medica Nagasakiensia. 1987, 32

Contrast Induced Nephropathy

changes that occur in kidney with aging is THE MOST DRAMATIC ANY ORGAN SYSTEM.

Renal Damage. Captopri 1 Ena 1 apr i 1 Kinins

ROS as targets for therapeutic intervention of diabetic nephropathy

Nephron Structure inside Kidney:

Human Physiology - Problem Drill 17: The Kidneys and Nephronal Physiology

KEY COMPONENTS. Metabolic Risk Cardiovascular Risk Vascular Inflammation Markers

INVESTIGATION OF NEPFROPROTECTIVE EFFECT OF SILYMARIN AGAINST METHOTREXATE AND IFOSFAMIDE INDUCED TOXICITY IN RATS.

CRAIOVA UNIVERSITY OF MEDICINE AND PHARMACY FACULTY OF MEDICINE ABSTRACT DOCTORAL THESIS

HIV AND CHRONIC KIDNEY DISEASE. Understanding GFR

A&P 2 CANALE T H E U R I N A R Y S Y S T E M

BASELINE CHARACTERISTICS OF THE STUDY POPULATION

Effect of alphatocopherol on diameter of proximal convoluted tubules of kidney in diabetic mice

Glomerular filtration rate (GFR)

Serum Creatinine and Blood Urea Nitrogen Levels in Patients with Coronary Artery Disease

THE EFFECT OF ASCORBIC ACID ON RENAL FUNCTION IN DOGS WITH ISCHEMIA REPERFUSION INJURY

SHORT THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (PHD) Arterial stiffness investigations in kidney transplanted patients. by Dávid Ágoston Kovács

Histopathology: Hypertension and diabetes in the kidney These presentations are to help you identify basic histopathological features.

Urea cycle: Urea cycle is discovered by Krebs andhanseleit(1932).

Understanding. Your Kidneys. Laurie Biel, RN,BSN, CNN The MGH Center For Renal Education March 28, 2016

International Journal of Science, Environment and Technology, Vol. 6, No 3, 2017,

VOLUME-WEIGHTED MEAN GLOMERULAR VOLUME IN SPONTANEOUSLY HYPERTENSIVE RATS TREATED WITH DIFFERENT DOSES OF SPIRONOLACTONE

The functions of the kidney:

The Urinary System. Copyright 2003 Pearson Education, Inc. publishing as Benjamin Cummings

Transcription:

Oxidative Stress Unify the Pathophysiological Mechanism of Experimental Hypertension and Diabetes of Spontaneously Hypertensive Stroke-Prone Rats Stenio Fiorelli¹, Camille F França¹, Carlos Alberto Basílio de Oliveira¹, Marco Orsini¹, Rossano Fiorelli¹, Lucia Marques Vianna¹ and Victor Hugo Bastos 2* 1 Laboratory of Investigation in Nutrition and Chronic Degenerative Diseases, Graduate Programs in Neurology and Medicine, Federal University of the state of Rio de Janeiro, UNIRIO, Brazil 2 LAMCEF/UFPI, Biomedical Sciences and Biotechnology UFPI-CMRV, Brain Mapping and sensorimotor integration - IPUB / UFRJ, Brazil Research Article Received date: 02/05/2017 Accepted date: 14/06/2017 Published date: 26/06/2017 *For Correspondence Victor Hugo Bastos, LAMCEF/UFPI Professor of Master's and PhD in Biomedical Sciences and Biotechnology UFPI-CMRV, Collaborating professor in the master's and doctoral program of Brain Mapping and sensorimotor integration - IPUB / UFRJ, Brazil, Tel: 55 86 3323 5412. E-mail: victorhugobastos@ufpi.edu.br Keywords: Hypertension, Diabetes, Oxidative stress, Blood ABSTRACT This study has as an attempt to identify both: oxidative stress and a possible kidney injury among rats with severe hypertension and diabetes. Twenty-four, 20 wk age, kept in baseline for ten days, were subdivided in four groups of six animals each: SHRSP, SHRSPDb, WKY, WKYDb. Systolic pressure was measured by plethysmography. Blood glucose by Accu- Check glucometer (Roche), Blood Urea Nitrogen, serum creatinine, and 24hours urinary albumin followed the routine laboratory methodology. Blood homocysteine was determined by HPLC. The data was statistically analyzed by ANOVA and P<0.05 was considered significant. Afterwards, the rats under deep coma were sacrificed and the kidney removed for histophatological analysis. Those hypertensive rats presented the highest levels of blood urea nitrogen levels: SHRSP (40 ± 3 mg/dl) and SHRSPDb (57± 5 mg/dl) versus WKY (17 ± 2 mg/dl) and WKYDb (22 ± 3.5 mg/dl). At the same way, the serum creatinine levels were significantly increased in hypertensive rats: SHRSP (1.20 ± 0.02 mg/dl), SHRSP (1.27± 0.04 mg/dl) versus WKY (0.53 ± 0.02 mg/dl) and WKYDb (0.49 ± 0.01 mg/ dl). The 24 hours urinary albumin was also markedly increased in SHRSP strain: SHRSP (128 ± 1.2 mg/24 h) and SHRSPDb (125 ± 0.6 mg/24 h) versus WKY (15 ± 0.02 mg/24 h) and WKYDb (14.8 ± 0.01 mg/24 h).the Blood Homocysteine levels were significantly increased in the SHRSP strain: SHRSP (6.51 ± 0.40 µmol/l) and SHRSPDb (7.32 ± 0.61 µmol/l) as compared to those normotensive ones: WKY(3.80 ± 0.39 µmol/l) and WKYDb (5.20 ± 0.21 µmol/l). The histophatological assay confirmed a significant association between hypertension and renal damage, since the number of hyalinized glomeruli and vessel were higher in those hypertensive rats. However, the presence of an increased blood homocysteine levels in both strains suggests that an oxidative stress was common feature to the hypertension and diabetes. INTRODUCTION Hypertension is present in more than 80% of patients with chronic kidney disease and contributes to progression of Kidney disease toward end stage renal disease (ESDR) as well as to cardiovascular events and stroke [1]. There is a peculiar relationship between the Kidney and arterial blood pressure while renal dysfunction causes an increase in arterial blood pressure and this accelerates the loss of renal function [2]. In fact, the progression of hypertension and the presence of kidney injury become worse when in presence of diabetes. In fact, the advanced glycation end products in diabetes might be responsible for the nerve damage [3]. The coexistence of these diseases is clearly involved in the morbidity and mortality. 3

Therefore, the present study has as main goal to identify while kidney function is compromised in spontaneously hypertensive stroke-prone rats (SHRSP), a known animal model for study severe hypertension and stroke, and to explore a possible common mechanism involved in the pathogenesis of hypertension and diabetes as well. Animals and Groups METHODS After an adaptation period of two weeks, twenty-four adult (20 WK age)male rats were divided into four groups with six animals each :Group I- Spontaneously Hypertensive Stroke-Prone Rats (SHRSP),Group II- SRHSP Diabetes-induced (SHRSPDb), Group III- Wistar-Kyoto normotensive rats (WKY) and Group IV- Wistar-Kyoto normotensive Diabetes-induced (WKYDb). The animals were maintained in metabolic cages in bioterium with controlled temperature (21 ± 2 C), humidity-controlled (60 ± 10%), and 12 dark/light cycle (artificial lights, 7 a.m-7 p.m), air exhaustion cycle (15 min/h) receiving water and pellets food (Nuvilab, Nuvital, Brazil) ad libitum. All the procedures were carried out in accordance with the Principles of Laboratory Animal Care (NIH publication no 85-23, revised 1996) and were approved by the Ethics Committee for Animal Use(CEUA) of Federal University of State of Rio de Janeiro,N 2016.2. Diabetes Model Diabetes was induced by streptozotocin (S-0130 Sigma, St.Louis, MO), dissolved in citrate buffer 0.1 M, ph 4.4, at single dose of 40 mg/kg of body weight, intraperitoneally. The blood glucose was measured on animals in fasting using the glucosimeter Accu-Check Advantage (Roche) at 72 hours after STZ and once a week. The Diabetes model was considered done when the rats reached the minimum blood glucose levels of 300 mg/dl, which occurred at 28 days after STZ. Systolic Blood Pressure The systolic blood pressure was verified in the morning, twice a week, using the noninvasive method of tail-cuff plethysmography in conscious rats (Letica LE 5100, Panlab). Biochemical Assay All groups were submitted to blood collection in order to determine: blood urea nitrogen (BUN) and serum creatinine and to 24 urine output to determine the urinary albumin, using routine laboratory methodology. Blood homocysteine was determined by HPLC. Histopathological Analysis After the experiment period, rats of all groups were in deep coma induced by administration of barbiturates (thiopental sodium) intraperitoneally at dose 60 mg/kg body weight. The kidneys were removed and stored in formaldehyde solution 10%, thereafter the slices were prepared for microscopic analysis, being carried cut 5 µm thick, the Gung RM 2025 microtome (Leica, Nussloch, Germany). The specimens were stained with hematoxylin-eosin. Morphometric analysis was performed using an optical light microscope (Zeiss Axioplan, Zeiss, Germany) under 10X, 40X, 60X. The number of hyalinization of glomeruli and vessels were observed in cross section samples from 50 fields per slide at high magnification/400x. Statistical Analysis The data were presented as mean ± standard error, and applied the ANOVA test for comparison of the four groups. P<0.05 was considered statistically significant. RESULTS The determination of systolic blood pressure confirmed the higher levels in SHRSP strain which presented as mean values of 225 ± 2.5 mmhg versus 140 ± 3.7 mmhg presented by WKY strain. There were a significant increased BUN and serum creatinine levels in SHRSP rats, twice as those found in WKY rats (Figures 1 and 2). Figure 1. The data represent mean ± SE of Blood Urea Nitrogen level from six animals per group. P<0.05 was considered significant between 4

Figure 2. The data represent mean ± SE of Serum Creatinine level from six animals per group. P<0.05 was considered significant between At the same way, the urinary albumin was markedly elevated at SHRSP strain in comparison to normotensive Wistar-Kyoto rats (Figure 3). Figure 3. The data represent mean ± SE of Urinary Albumin level from six animals per group. P<0.05 was considered significant between There was also a significant increase of homocysteine blood levels at SHRSP rats which was more accentuated in those diabetes SHRSP rats. At the same way, an elevated levels of blood homocysteine was found in those WKYDb rats (Figure 4). Figure 4. The data represent mean±se of blood Homocysteine levels of six animals per group. The significance was considered as P<0.05 Regarding to kidney histophatological assays, there were a significant decrease of hyalinization of the glomeruli and renal vessels of normotensive strain compared to hypertensive groups independent of diabetes (Figures 5 and 6). 5

Figure 5. The data represent mean ± SE of Hyalinized Glomeruli of six animals per group. P<0.05 was considered significant and it was found between SHRSP versus WKY and between SHRSPDb versus WKYDb rats. Figure 6. The data represent mean ± SE of Hyalinized Renal Vessels of six animals per group. The significance level of P<0.05 was found between SHRSP versus WKY and between SHRSPDb rats versus WKYDb rats. DISCUSSION Although novel biomarkers are in practical use, serum creatinine an indicator of glomerular filtration rate still the most frequently used biomarker of renal function, despite its known limitations. Here, together with BUN measurement, and the histophatological findings, it was possible to confirm the kidney injury as consequence of severe hypertension. Hyperhomocysteinemia was also observed in all hypertensive rats which is an agreement with previous studies from our group, that demonstrated the high levels of homocysteine and others markers of oxidative stress, such as malondialdehyde in SHRSP rats [4]. Although diabetes normotensive rats presented an increased homocysteine blood levels than those controls rats, the kidney injury, was not observed in those normotensive diabetes rats in comparison to hypertensive ones. On the other hand, in the presence of longer experiment such differences might be more evident. According to Hong JH et al. a persistent and chronic hyperglycemia, could deplete the activity of the antioxidant defense system promoting the generation of free radicals and more pronounced organ damage could be observed [5]. The renal histopathology revealed an important tissue damage in samples of all SHRSP rats including those diabetes. In fact, mesangial cell proliferation and glomerular sclerosis has been demonstrated in different experimental models of hypertension [6]. In addition, hyperhomocysteinemia induces to DNA hypermethylation, leading to an abnormal metabolism in the kidney and damage of glomerulo tissue [7]. CONCLUSION In sum, this study confirms the importance of SHRSP rats as model for study of both: severe hypertension and kidney injury, besides those features linked to the neurological disturbances. At the same time, the blood homocysteine, an important known biochemical marker of an oxidative stress was closely linked to both hypertension and diabetes in the present study, suggesting a unique pathophysiological mechanism. 6

REFERENCES 1. Toto RD. Hypertension. Semin Nephrol. 2005;25:435-439. 2. Adamcza M, et al. Kidney and hypertension. Kidney International Supplements. 2002;5:62-67. 3. Yageshashi. Glucotoxic mechanisms and related therapeutic approaches. Int Rev Neurobiol. 2016;127:121-149. 4. Franca CF and Vianna LM. Effectiveness of B vitamins on the control of hypertension and stroke events of SHRSP rats. J Diet Suppl. 2010;7:71-77. 5. Hong JH, et al. Effects of vitamin E on oxidative stress and membrane fluidity in brain of strptozotocin-induced diabetic rats. Clin Chim Acta. 2004;340:107-115. 6. Kutlubay YR, et al. Histological and ultrastructural evidence for protective effects on aluminium-induced Kidney damage by intraperitoneal administration of alpha-tocopherol. Int J Toxicol. 2007;26:95-101. 7. Pushpakumar S, et al. DNA hypermethylation contributes to abnormal extracellular matriz metabolism in Kdney. FASEB J. 2015;29:4713-4725. 7