Sitting Time and Body Mass Index, in a Portuguese Sample of Men: Results from the Azorean Physical Activity and Health Study (APAHS)

Similar documents
Obesity and Control. Body Mass Index (BMI) and Sedentary Time in Adults

Validity of Two Self-Report Measures of Sitting Time

The Effects of a Lifestyle Modification Program on a Leisure Physical Activity and Sedentary Behavior in a Brazilian Low Socioeconomic Community

Validity of two self-report measures of sitting time

The Science Behind The Ten Top Tips

Epidemiology of sedentary behaviour in office workers

Prevalence and correlates of sedentary behaviour in an Atlantic Canadian populationbased. Cindy Forbes

Meeting Physical Activity Recommendations for Colon Cancer Prevention Among Japanese Adults: Prevalence and Sociodemographic Correlates

Too Much Sitting and Metabolic Risk Has Modern Technology Caught Up with Us?

ASSOCIATIONS BETWEEN ACTIVE COMMUTING AND BODY ADIPOSITY AMONG ATLANTIC CANADIANS. Zhijie Michael Yu and Cynthia Forbes

Sedentary behaviour and adult health. Ashley Cooper

Lifestyle and Workstyle: Physical Activity and Work Related Cancer Risk Associate Professor David Dunstan

Amruth M, Sagorika Mullick, Balakrishna AG, Prabhudeva MC

Article Association of Motorcycle Use with Risk of Overweight in Taiwanese Urban Adults

Nobutaka Hirooka 1*, Teiichi Takedai 2 and Frank D Amico 3

Physical Activity Counseling: Assessment of Physical Activity By Questionnaire

The Detrimental Effects of Sedentary Behavior

Treadmill Workstations: A Worksite Physical Activity Intervention

Assessment of Sedentary Behavior With the International Physical Activity Questionnaire

Energy Expenditure and Enjoyment of Active Television Viewing

Trine Moholdt, 1,2 Ulrik Wisløff, 1 Stian Lydersen, 3 Javaid Nauman 1. Original article

Television Viewing and Long-Term Weight Maintenance: Results from the National Weight Control Registry

Sedentary behaviour and health: association or causation? Prof Jason Gill Institute of Cardiovascular and Medical Sciences University of Glasgow

Screen-Based Entertainment Time, All-Cause Mortality, and Cardiovascular Events

Physical Activity & Sedentary Behaviour in Relation to Type 2 Diabetes New Insights and Current Perspectives

Sitting too much is not the same as exercising too little. Travis Saunders, CSEP-CEP, PhD (c)

Patterns of Sedentary Behaviour in Female Office Workers

Leisure Time Spent Sitting in Relation to Total Mortality in a Prospective Cohort of US Adults

Sedentary Behaviors and Health Outcomes Among Adults. A Systematic Review of Prospective Studies

Sedentary behaviour and life expectancy in the USA: a cause-deleted life table analysis

Sedentary behaviour and life expectancy in the USA: a cause-deleted life table analysis

ORIGINAL INVESTIGATION. Sitting Time and All-Cause Mortality Risk in Australian Adults

Behavioral Aspects of Physical Inactivity and Sedentary Behavior Vs Physical Activity

2/5/2015 OVERVIEW. Peter T. Katzmarzyk, PhD, FACSM, FAHA Financial Disclosures

a) Vitality Compass Life Expectancy

Recommended Levels of Physical Activity and Health- Related Quality of Life Among Overweight and Obese Adults in the United States, 2005

Sitting and chronic disease: where do we go from here? MRC Epidemiology Unit, University of Cambridge, Cambridge, UK

Association between Times Spent on the Internet and Weight Status in Korean Adolescents

meeting the American College of Sports Medicine s physical activity guidelines (Table 1).

Setting: Ministry of Health primary care Health Centers in Bahrain. Subjects: 153 Ministry of Health Primary care physicians.

Costing the burden of ill health related to physical inactivity for Scotland

Overweight and Obesity Factors Contributing to Obesity

Exercise and the Metabolic Syndrome. Learning ObjecNves. Exercise Versus Physical AcNvity. Rocky Mountain Metabolic Syndrome Symposium May 10, 2014

Sedentary Behaviours and Body Weight: Should we be Preoccupied? Jean-Philippe Chaput, PhD

In Europe, overweight and obesity are increasing rapidly in most. countries, and health economic consequences are now appearing.

Physical activity, sedentary behavior and metabolic syndrome. Dr. Tineke Scheers

RELATIVE EXERCISE INTENSITY, HEART RATE, OXYGEN CONSUMPTION, AND CALORIC EXPENDITURE WHEN EXERCISING ON VARIOUS NON-IMPACT CARDIO TRAINERS

Prevalence and comparison of select health behaviours among urban and rural residents: an Atlantic PATH cohort brief report

8/10/2012. Education level and diabetes risk: The EPIC-InterAct study AIM. Background. Case-cohort design. Int J Epidemiol 2012 (in press)

Too Little Exercise and Too Much Sitting: Inactivity Physiology and the Need for New Recommendations on Sedentary Behavior

Impact of Physical Activity on Metabolic Change in Type 2 Diabetes Mellitus Patients

Early adulthood television viewing and cardiometabolic risk profiles in early middle age: results from a population, prospective cohort study

Exploring the Relationship Between Physical Activity Knowledge, Health Outcomes Expectancies, and Behavior

Assessment of physical activity level in office employees groups in Albania

International Journal of Health Sciences and Research ISSN:

Physical inactivity interventions at office workplaces. current scientific findings

2008 Physical Activity Guidelines for Americans

NIH Public Access Author Manuscript JAMA. Author manuscript; available in PMC 2015 February 11.

Patterns of leisure time physical activity and its determinants among a sample of adults from Kielce region, Poland the PONS study

Diabetes Research Unit, Department of Clinical Medicine Faculty of Medicine, University of Colombo, Colombo, Sri Lanka. 2

DESIGN AND HEALTH PROMOTION COMBATING SEDENTARY BEHAVIOR

Title: Studying the Complex Relationships Between Physical Activity and Infertility

Canadian Society for Exercise Physiology

ISSN X (Print) Research Article. *Corresponding author P. Raghu Ramulu

To view an archived recording of this presentation please click the following link:

Scientific Mapping the Intellectual Structure of Leisure and Health

DOI: /PHN

EFFECT OF SMOKING ON BODY MASS INDEX: A COMMUNITY-BASED STUDY

The Effect of Physical Activity on Body Weight

Relationship between physical activity, BMI and waist hip ratio among middle aged women in a multiethnic population: A descriptive study

How much might achievement of diabetes prevention behaviour goals reduce the incidence of diabetes if implemented at the population level?

ORIGINAL INVESTIGATION. Sitting Time and All-Cause Mortality Risk in Australian Adults. active lifestyle are established, 1,2 with physical

An ecological momentary assessment of the physical activity and sedentary behaviour patterns of university students

Workstation Wellness. Objectives. Purpose of the Project 6/3/2015. Sip Stand Stretch. At the end of the presentation, the participant will be able to

Office workers' objectively measured sedentary behavior and physical activity during and outside working hours

A Balanced Approach to Weight Management

Interventions Targeting Sedentary Behaviour. Ryan Wight, R.Kin, CSEP-CEP

Promotion of Physical Activity Using Point-of-Decision Prompts in Berlin Underground Stations

9/2/2016. Faculty. Physical Activity and Obesity: How to Get Your Patients Moving. Learning Objectives. Disclosures. Identify the Target

Health Indicators and Status in the European Union

Comparison of coronary heart disease stratification using the Jakarta cardiovascular score between main office and site office workers

Overweight and physical inactivity are

Is Your Desk Dangerous?

Empowering Sedentary Adults to Reduce Sedentary Behavior and Increase Physical Activity Levels and Energy Expenditure: A Pilot Study

Total amount and patterns of sedentary behaviour & glucose metabolism status

University Journal of Medicine and Medical Specialities

Physical activity, physical fitness and body composition of Canadian shift workers

Applied Physiology, Nutrition, and Metabolism

Television Viewing and Risk of Type 2 Diabetes, Cardiovascular Disease, and All-Cause Mortality

Physical activity, sedentary behavior and total wellness changes among sedentary adults: a 4-week randomized controlled trial

Driving to work and overweight and obesity: findings from the 2003 New South Wales Health Survey, Australia

Nutrition and Cancer Prevention. Elisa V. Bandera, MD, PhD

Energy expenditure of deskwork when sitting, standing or alternating positions

Television- and Screen-Based Activity and Mental Well-Being in Adults. Mark Hamer, PhD, Emmanuel Stamatakis, PhD, Gita D.

Why Do We Treat Obesity? Epidemiology

Prevalence of overweight among urban and rural areas of Punjab

Television Viewing Time in Hong Kong Adult Population: Associations with Body Mass Index and Obesity

Dietary Energy Density Predicts the Risk of Incident Type 2 Diabetes

Transcription:

Int. J. Environ. Res. Public Health 2010, 7, 1500-1507; doi:10.3390/ijerph7041500 Article OPEN ACCESS International Journal of Environmental Research and Public Health ISSN 1660-4601 www.mdpi.com/journal/ijerph Sitting Time and Body Mass Index, in a Portuguese Sample of Men: Results from the Azorean Physical Activity and Health Study (APAHS) Rute Santos, Luísa Soares-Miranda, Susana Vale, Carla Moreira, Ana I. Marques and Jorge Mota * Research Centre in Physical Activity, Health and Leisure, Faculty of Sports, University of Porto, Portugal; E-Mails: rutemarinasantos@hotmail.com (R.S.); luisasoaresmiranda@hotmail.com (L.S-M.); susanavale@hotmail.com (S.V.); carla_m_moreira@sapo.pt (C.M.); anavalente@netvisao.pt (A.I.M) * Author to whom correspondence should be addressed; E-Mail: jmota@fade.up.pt; Tel.: +351 22 5074 700; Fax: +351 22 5500 689. Received: 2 February 2010; in revised form: 13 March 2010 / Accepted: 21 March 2010 / Published: 31 March 2010 Abstract: The aim of this study was to verify the relation between body mass index (BMI) and sitting time in a sample of 4,091 Azorean men. BMI was calculated from self-reported weight and height. Total physical activity (PA) time and total sitting time were assessed with the IPAQ (short version). Linear Regression analysis showed that total sitting time (hours/day) was positively associated with BMI (B = 0.078; p < 0.001) after adjustments for age, meal frequency, alcohol and tobacco consumptions, island of residence, education level and total PA time. Although the cross sectional design precludes us from establishing causality, our findings emphasize the importance of reducing sedentary behavior to decrease the risk of obesity. Keywords: sitting; body mass index; obesity; sedentary behavior

Int. J. Environ. Res. Public Health 2010, 7 1501 1. Introduction Obesity has become a significant epidemic in both developed and developing countries due to its association with increased morbidity and mortality [1]. Overweight and obesity have also reached epidemic proportions in Portugal [2,3]. The consequences of obesity include physical, psychological and social aspects, which impact one s quality of life. Although genetics is a strong component of obesity [4], lifestyle and environmental changes typical of industrialized societies are more likely to explain the recent obesity epidemic [5]. Indeed, obesity occurs when energy intake exceeds energy expenditure over time. Physical inactivity has been viewed as one of the most important risk factors for coronary heart disease and other chronic diseases [6,7]. For instance, physical activity (PA) levels, as well as sedentary behavior appear to play an important role in long-term weight regulation [8]. Thus, the need to increase PA is a public health priority [9]. Current public health campaigns to reduce obesity and type 2 diabetes have largely focused on increasing PA and/or exercise, but have paid little attention to the reduction of sedentary behaviors [10]. Moreover, some studies have shown that non-exercise activity thermogenesis (NEAT) plays a key role in differences of energy expenditure in special populations such as the obese [11]. In fact, altering one s postural allocation from a seated to standing position or engaging in light ambulation has been shown to significantly increase energy expenditure [11]. Conversely, it has been shown that workers performing their job functions in their usual fashion (seated) might expend more than 200 extra calories daily using a walking workstation [12]. Therefore, sitting is strongly and inversely associated with caloric expenditure that is likely an important cause of the obesity epidemic. Indeed, in our daily contemporary life, sitting is a predominant behavior for many hours per day [13]. Several studies have shown positive associations between BMI and different measures of sedentary behavior, such as TV viewing [14-16] motorized transportation [17,18] occupational sitting time [19] or sedentary behaviors during leisure time [20,21]. However, these studies fail to address total sedentary behavior and/or adjust the analysis for total PA. In this context, the purpose of this study was to examine cross sectional relationship between body mass index (BMI) and total sitting time (i.e., sitting across all three main domains: transportation, occupational and leisure time), adjusting the analysis for total PA time in Azorean adults. 2. Methods 2.1. Study Design and Sampling Data for the present study are derived from the Azorean Physical Activity and Health Study. The study methods are reported elsewhere [3,22]. Briefly, data were collected in 2004 by mailing questionnaires to the adult residents of all the Azorean Islands and municipalities, a Portuguese archipelago. For the present study, only men who were employed (n = 3,939) or studying (n = 152) full-time and for whom questionnaires contained complete information on the variables of interest (i.e., weight, height, PA, sitting, education level, meal frequency, sleep duration, smoking status and alcohol consumption) were included (n = 4,091, corresponding to 95.8% of the total sample of men). The decision to exclude unemployed or retired men was based on a previous study with this sample that

Int. J. Environ. Res. Public Health 2010, 7 1502 showed that these groups of men were less likely to achieve higher levels of PA [23] and showed significantly higher total sitting time compared with men employed or studying full time (data not shown). 2.2. Measures BMI [weight (kg) / height (m) 2 ] was calculated from self-reported weight and height. PA and sitting were assessed with the International Physical Activity Questionnaire (short last week version) and data was handled according to the IPAQ scoring protocol [24]. Total PA time was computed by multiplying the reported minutes of moderate and vigorous PA by the number of PA days of each type of PA. Subjects were categorized according to the ACSM/AHA PA guidelines: insufficiently active (participants who reported fewer than 150 min/week of at least moderate-intensity PA or less than 20 min/week of vigorous-intensity PA) and sufficiently active (participants who reported 150 min/week or more of at least moderate-intensity PA or 20 min/week or more of vigorous-intensity) [7]. The time spent sitting in an ordinary week day was considered a proxy measure of sedentary behavior. Subjects were categorized as having low or high total sitting time based on the median value for total sitting time found in this sample (180 min/day) [24]. Participants were also categorized into the following four groups: low total sitting time/sufficient PA time; low total sitting time/insufficient PA time; high total sitting time/sufficient PA time and high total sitting time/insufficient PA time. Other variables included in this analysis were: (i) Education level: four years of education; 5 9 years of education; 10 12 of years education and higher education. (ii) Smoking: non smokers, former smokers, occasional smokers and current smokers. (iii) Alcohol consumption: non drinkers, former-drinkers, occasional drinkers, regular drinkers and heavy drinkers. (iv) Sleep duration: number of sleeping hours per day. (v) Meal frequency: daily meal frequency was assessed by the question: How many meals per day do you consume? The main meals represented meals that were conventionally served on a plate. 2.3. Statistical Analysis Statistical analyses were performed using the Statistical Package SPSS 17.0. Data are presented as mean ± standard deviation unless stated otherwise. Analysis of the variance with Bonferroni post-hoc tests, was used to assess BMI differences between sitting/pa groups. Linear Regression analysis was performed to assess unstandardized regression coefficients and standard errors predicting BMI. Variables entered in the models were significantly correlated with BMI (in the bivariated analysis data not shown). Model 1 was adjusted for age, education level; smoking, alcohol consumption, sleep duration, meal frequency, island of residence; model 2 was further adjusted for total PA time. Statistical significance was set at p < 0.05.

Int. J. Environ. Res. Public Health 2010, 7 1503 3. Results Of the 4,091 men included in this study, 96.3% were employed full-time. Of those, 73.4% of men had a low level of education ( 9 school years) and 71% were manual workers. Participants had an average BMI of 26.3 ± 3.7 kg/m 2 and spent on an average 25.5 ± 17.5 % of their waking hours sitting (about 250 min/day). Descriptive characteristics are presented in Table 1. As depicted in Table 2, men with high sitting time and insufficient PA presented a highest mean of BMI 26.8 ± 3.8 kg/m 2 (p < 0.05 for all). Linear regression analysis showed that after adjustments for potential confounders total sitting time was positively associated with BMI (B = 0.078; p < 0.001 model 2). Table 1. Descriptive characteristics of the participants (mean ± SD). Men (n = 4,091) Age 38.7 ± 9.3 BMI 26.3 ± 3.7 Total PA time (mean min/day) 77.2 ± 51.2 Total Sitting Time (min/day) 250.3 ± 172.8 % of sitting waking hours 25.5 ± 17.5 BMI = Body Mass Index; PA = Physical Activity. Table 2. Mean (±SD) body mass index (kg/m 2 ) by combined categories of total sitting time and total physical activity time. Men (n = 4,091) Low total sitting time/sufficient PA time 26.1 ± 3.8 * Low total sitting time/insufficient PA time 26.2 ± 3.7 * High total sitting time/sufficient PA time 26.3 ± 3.7 * High total sitting time/insufficient PA time 26.8 ± 3.8 Differences between combined categories of total sitting time and total physical activity time assessed with ANOVA (Bonferroni post-hoc). * p < 0.05 different from High total sitting time/insufficient PA time; PA = Physical Activity. Table 3. Linear regression analysis (Unstandardized Coefficients and Std. Error) predicting Body Mass Index. Men (n = 4,091) Body Mass Index Model 1 ª Model 2 b Total Sitting Time (hours/day) 0.085 (0.021) * 0.078 (0.021) * * p < 0.001; ªModel 1: Adjusted for age, meal frequency, alcohol and tobacco consumptions, island of residence and education level; b Model 2: Adjusted for age, meal frequency, alcohol and tobacco consumptions, island of residence, education level and total physical activity.

Int. J. Environ. Res. Public Health 2010, 7 1504 4. Discussion To our knowledge, this is the first study to examine cross-sectional associations between BMI and total sitting time in Azorean adults. Our results show that men with high sitting time and insufficient PA presented the highest mean BMI compared to other sitting/pa groups. Linear regression analysis showed that after adjustments for potential confounders, total sitting time was positively associated with BMI. It has been suggested that sedentary behavior should be explicitly measured either for surveillance purposes or research studies instead of being defined by lack of PA [25,26]. In fact, defining a sedentary population based on either low levels or lack of PA might be inaccurate because sedentary and PA are two independent behaviors with different effects on health outcomes [27-29]. Pate et al. (2008) consider that sedentary behavior refers to activities that do not increase energy expenditure substantially above the resting level, such as sitting, lying down or viewing TV among others [26]. It has been shown by Sugiyama et al. (2008) that among Australian adults, sedentary behavior and moderate to vigorous PA can be independent from each other and coexist. In this study, the authors demonstrated that even those meeting public health guidelines for leisure time PA may be at risk for overweight and obesity if they spend a large amount of their leisure time in sedentary activities [30]. Indeed, our data clearly shows that men with high total sitting time and with sufficient PA time presented on average a higher BMI compared with those with low total sitting time and sufficient PA time (p < 0.05). Our results also indicate that total sitting time was positively associated with BMI after adjustments for potential confounders (including total PA time) B = 0.078 (0.021), p < 0.001, in a sample that on average men only spend about 25% of their waking time sitting. These findings are in line with those found by others. Indeed, several studies have shown positive associations between BMI and different measures of sedentary behavior, such as TV viewing [14-16] motorized transportation [17,18] occupational sitting time [19] or sedentary behaviors during leisure time [20,21]. However, these studies fail to address total sedentary behavior and/or adjust the analysis for total PA. Therefore, our data extends previous findings by showing a positive association between total sitting time (considered as a proxy measure of total sedentary behavior) and BMI after adjustments for total PA time and other potential confounders in a large sample of adults. Strengths and Limitations The limitations of this study include the cross-sectional design, which does not allow for causal inferences; self-report measures of weight, height, PA and sitting; dietary intake was not assessed. Nevertheless, our data shows that total sitting time was positively associated with BMI independent of total PA time and other potential confounders, in a large sample of men (although the effect size of the association is small).

Int. J. Environ. Res. Public Health 2010, 7 1505 5. Conclusions In conclusion, our results show that total sitting time was positively associated with BMI after adjustments for potential confounders (including total PA time). Although the cross sectional design precludes us from establishing causality our findings emphasize the importance of reducing sedentary behavior to decrease the risk of obesity. Acknowledgements This study was supported by the Azorean Government. References 1. World Health Organization. Obesity: Preventing and Managing the Global Epidemic; Technical Report Series No 894.; Geneva, Switzerland, 2000. 2. do Carmo, I.; Dos Santos, O.; Camolas, J.; Vieira, J.; Carreira, M.; Medina, L.; Reis, L.; Myatt, J.; Galvao-Teles, A. Overweight and obesity in Portugal: national prevalence in 2003 2005. Obes. Rev. 2008, 9, 11-19. 3. Santos, R.; Aires, L.; Santos, P.; Ribeiro, J. C.; Mota, J. Prevalence of overweight and obesity in a Portuguese sample of adults: results from the Azorean Physical Activity And Health Study. Am. J. Hum. Biol. 2008, 20, 78-85. 4. Rankinen, T.; Zuberi, A.; Chagnon, Y.C.; Weisnagel, S.J.; Argyropoulos, G.; Walts, B.; Perusse, L.; Bouchard, C. The human obesity gene map: the 2005 update. Obesity (Silver Spring) 2006, 14, 529-644. 5. Swinburn, B.; Egger, G. Preventive strategies against weight gain and obesity. Obes. Rev. 2002, 3, 289-301. 6. Physical Activity and Health: A Report of the Surgeon General; U.S. Department of Health and Human Services: Atlanta, GA, USA, 1996. 7. Haskell, W.L.; Lee, I.M.; Pate, R.R.; Powell, K E.; Blair, S.N.; Franklin, B.A.; Macera, C.A.; Heath, G.W.; Thompson, P.D.; Bauman, A. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Circulation 2007, 116, 1081-1093. 8. Nelson, M.C.; Gordon-Larsen, P.; North, K.E.; Adair, L.S. Body mass index gain, fast food, and physical activity: effects of shared environments over time. Obesity (Silver Spring) 2006, 14, 701-709. 9. World Health Organization. Global Strategy on Diet, Physical Activity and Health. Available online: http://www.who.int/gb/ebwha/pdf_files/wha57/a57_r17-en.pdf (accessed March 2010). 10. Hu, F.B.; Li, T.Y.; Colditz, G.A.; Willett, W.C.; Manson, J.E. Television watching and other sedentary behaviors in relation to risk of obesity and type 2 diabetes mellitus in women. JAMA 2003, 289, 1785-1791. 11. Levine, J.A. Nonexercise activity thermogenesis liberating the life-force. J. Intern. Med. 2007, 262, 273-287.

Int. J. Environ. Res. Public Health 2010, 7 1506 12. Thompson, W.G.; Foster, R.C.; Eide, D.S.; Levine, J.A. Feasibility of a walking workstation to increase daily walking. Br. J. Sports Med. 2008, 42, 225-228; discussion 228. 13. Hamilton, M.T.; Hamilton, D.G.; Zderic, T.W. Role of low energy expenditure and sitting in obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease. Diabetes 2007, 56, 2655-2667. 14. Hu, F.B. Sedentary lifestyle and risk of obesity and type 2 diabetes. Lipids 2003, 38, 103-108. 15. Salmon, J.; Bauman, A.; Crawford, D.; Timperio, A.; Owen, N. The association between television viewing and overweight among Australian adults participating in varying levels of leisure-time physical activity. Int. J. Obes. Relat. Metab. Disord. 2000, 24, 600-606. 16. Jakes, R.W.; Day, N.E.; Khaw, K.T.; Luben, R.; Oakes, S.; Welch, A.; Bingham, S.; Wareham, N.J. Television viewing and low participation in vigorous recreation are independently associated with obesity and markers of cardiovascular disease risk: EPIC-Norfolk population-based study. Eur. J. Clin. Nutr. 2003, 57, 1089-1096. 17. Frank, L.D.; Andresen, M.A.; Schmid, T.L. Obesity relationships with community design, physical activity, and time spent in cars. Am. J. Prev. Med. 2004, 27, 87-96. 18. Lopez-Zetina, J.; Lee, H.; Friis, R. The link between obesity and the built environment. Evidence from an ecological analysis of obesity and vehicle miles of travel in California. Health Place 2006, 12, 656-664. 19. Mummery, W.K.; Schofield, G.M.; Steele, R.; Eakin, E.G.; Brown, W.J. Occupational sitting time and overweight and obesity in Australian workers. Am. J. Prev. Med. 2005, 29, 91-97. 20. Stamatakis, E.; Hirani, V.; Rennie, K. Moderate-to-vigorous physical activity and sedentary behaviours in relation to body mass index-defined and waist circumference-defined obesity. Br. J. Nutr. 2009, 101, 765-773. 21. Shields, M.; Tremblay, M.S. Sedentary behaviour and obesity. Health Rep. 2008, 19, 19-30. 22. Santos, R.; Silva, P.; Santos, P.; Ribeiro, J.C.; Mota, J. Physical activity and perceived environmental attributes in a sample of Portuguese adults: Results from the Azorean Physical Activity and Health Study. Prev. Med. 2008, 47, 83-88. 23. Santos, R.; Santos, P.; Ribeiro, J.; Mota, J. Physical Activity and Other Lifestyle Behaviors in a Portuguese Sample of Adults: Results from the Azorean Physical Activity and Health Study. J. Phys. Act Health 2009, 6, 750-759. 24. International Physical Activity Questionnaire. Guidelines for Data Processing and Analysis of the International Physical Activity Questionnaire (IPAQ). Available online: http://www.ipaq.ki.se/ dloads/ipaq%20ls%20scoring%20protocols_nov05.pdf (accessed October 2006). 25. Rosenberg, D.E.; Bull, F.C.; Marshall, A.L.; Sallis, J.F.; Bauman, A.E. Assessment of sedentary behavior with the International Physical Activity Questionnaire. J. Phys. Act. Health 2008, 5, S30-S44. 26. Pate, R.R.; O'Neill, J.R.; Lobelo, F. The evolving definition of "sedentary". Exerc. Sport Sci. Rev. 2008, 36, 173-178. 27. Tudor-Locke, C.E.; Myers, A.M. Challenges and opportunities for measuring physical activity in sedentary adults. Sports Med. 2001, 31, 91-100.

Int. J. Environ. Res. Public Health 2010, 7 1507 28. Biddle, S.J.; Gorely, T.; Marshall, S.J.; Murdey, I.; Cameron, N. Physical activity and sedentary behaviours in youth: issues and controversies. J. R. Soc. Promot Health 2004, 124, 29-33. 29. Pratt, M.; Macera, C.A.; Blanton, C. Levels of physical activity and inactivity in children and adults in the United States: current evidence and research issues. Med. Sci. Sports Exerc. 1999, 31, S526-S533. 30. Sugiyama, T.; Healy, G.N.; Dunstan, D.W.; Salmon, J.; Owen, N. Joint associations of multiple leisure-time sedentary behaviours and physical activity with obesity in Australian adults. Int. J. Behav. Nutr. Phys. Act 2008, 5, 35. 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).