Two-dimensional HPLC determination of water-soluble vitamins in a nutritional drink

Similar documents
Two-Dimensional HPLC Determination of Water-Soluble Vitamins in a Nutritional Drink

Determination of Water- and Fat-Soluble Vitamins in Nutritional Supplements by HPLC with UV Detection

Rapid and sensitive UHPLC screening for water soluble vitamins in sports beverages

Rapid and sensitive UHPLC screening of additives in carbonated beverages with a robust organic acid column

Determination of Tigecycline in a Cell Lysate

UPLC/MS Monitoring of Water-Soluble Vitamin Bs in Cell Culture Media in Minutes

Simultaneous determination of water- and fat-soluble vitamins in tablets and energy drinks by using a novel Vanquish Flex Duo system for Dual LC

Rapid determination of phosphate and citrate in carbonated soft drinks using ion chromatography

Doubling the throughput of long chromatographic methods by using a novel Dual LC workflow

Application Note. Agilent Application Solution Analysis of ascorbic acid, citric acid and benzoic acid in orange juice. Author. Abstract.

Impurity Profiling of Carbamazepine by HPLC/UV

ISSN (Print)

Analysis of Amino Acids Derived Online Using an Agilent AdvanceBio AAA Column

A HIGH PERFORMANCE LIQUID CHROMATOGRAPHIC ASSAY FOR LERCANIDIPINE HYDROCHLORIDE

Qualitative and quantitative determination of phenolic antioxidant compounds in red wine and fruit juice with the Agilent 1290 Infinity 2D-LC Solution

Analysis of Counterfeit Antidiabetic Drugs by UHPLC with the Agilent 1220 Infinity Mobile LC

ISSN: ; CODEN ECJHAO E-Journal of Chemistry 2011, 8(3),

Rapid Analysis of Water-Soluble Vitamins in Infant Formula by Standard-Addition

Available online Research Article

Development and Validation for Simultaneous Estimation of Sitagliptin and Metformin in Pharmaceutical Dosage Form using RP-HPLC Method

J Pharm Sci Bioscientific Res (4): ISSN NO

Analysis of Isoflavones with the PerkinElmer Flexar FX-15 UHPLC System Equipped with a PDA Detector

International Journal of Pharma and Bio Sciences DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR THE ESTIMATION OF STRONTIUM RANELATE IN SACHET

F. Al-Rimawi* Faculty of Science and Technology, Al-Quds University, P.O. Box 20002, East Jerusalem. Abstract

IJPAR Vol.3 Issue 4 Oct-Dec-2014 Journal Home page:

Multigenics Chewable

Development and validation of stability indicating RP-LC method for estimation of calcium dobesilate in pharmaceutical formulations

Rapid Gradient and Elevated Temperature UHPLC of Flavonoids in Citrus Fruit

Improved Extraction and Analysis of Hexavalent Chromium from Soil and Water

Pelagia Research Library

DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR ESTIMATION OF LACOSAMIDE IN BULK AND ITS PHARMACEUTICAL FORMULATION

2D-LC as an Automated Desalting Tool for MSD Analysis

Development, Estimation and Validation of Lisinopril in Bulk and its Pharmaceutical Formulation by HPLC Method

Journal of Chemical and Pharmaceutical Research, 2017, 9(9): Research Article

Fig.1. Denatonium benzoate (DB) chemical structure

Pelagia Research Library

Validation of Changes to the USP Assay Method for Ibuprofen Tablets

Development and Validation of a Simultaneous HPLC Method for Quantification of Amlodipine Besylate and Metoprolol Tartrate in Tablets

Analytical Method Development for USP Related Compounds in Paclitaxel Using an Agilent Poroshell 120 PFP

Robust extraction, separation, and quantitation of structural isomer steroids from human plasma by SPE-UHPLC-MS/MS

Determination of Phenolic Compounds in Apple Orchard Soil

Available online at Scholars Research Library

International Journal of Pharma and Bio Sciences

ASSAY AND IMPURITY METHOD FOR DURACOR TABLETS BY HPLC

CHAPTER INTRODUCTION OF DOSAGE FORM AND LITERATURE REVIEW

DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD ESTIMATION OF TOLVAPTAN IN BULK PHARMACEUTICAL FORMULATION

Scholars Research Library. Der Pharmacia Lettre, 2016, 8 (6): (

Scholars Research Library. Der Pharmacia Lettre, 2015, 7 (5):44-49 (

A Robustness Study for the Agilent 6470 LC-MS/MS Mass Spectrometer

Determination of Inorganic Ions and Organic Acids in Non-Alcoholic Carbonated Beverages

A simple validated RP-HPLC method for quantification of sumatriptan succinate in bulk and pharmaceutical dosage form

Determination of Carbohydrates in Kombucha Using HPAE-PAD

CHAPTER INTRODUCTION OF DOSAGE FORM AND LITERATURE REVIEW

CHAPTER 2 SIMULTANEOUS DETRMINATION OF ANASTROZOLE AND TEMOZOLOMIDE TEMOZOLOMIDE CAPSULES 20 MG AND ANASTROZOLE TABLETS 1 MG

RP-HPLC METHOD DEVELOPMENT AND VALIDATION FOR THE ESTIMATION OF BACLOFEN IN BULK AND PHARMACEUTICAL DOSAGE FORMS

REVERSE PHASE HPLC METHOD FOR THE ANALYSIS OF ALFUZOSIN HYDROCHLORIDE IN PHARMACEUTICAL DOSAGE FORMS

This revision also necessitates a change in the table numbering in the test for Organic Impurities.

Analysis of Food Sugars in Various Matrices Using UPLC with Refractive Index (RI) Detection

RP-HPLC Analysis of Temozolomide in Pharmaceutical Dosage Forms

Measuring Phytosterols in Health Supplements by LC/MS. Marcus Miller and William Schnute Thermo Fisher Scientific, San Jose, CA, USA

Determination of Tetracyclines in Chicken by Solid-Phase Extraction and High-Performance Liquid Chromatography

METHOD 8316 ACRYLAMIDE, ACRYLONITRILE AND ACROLEIN BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC)

SIMULTANEOUS ESTIMATION OF VALSARTAN AND HYDROCHLOROTHIAZIDE IN TABLETS BY RP-HPLC METHOD

HPLC to UHPLC Transfer of USP Method for Amlodipine Besylate Using the Agilent 1290 Infinity II LC

ACQUITY UPLC WITH PDA DETECTION: DETERMINING THE SENSITIVITY LIMITS OF OXYBUTYNIN AND RELATED COMPOUNDS

RITONAVIRI COMPRESSI RITONAVIR TABLETS. Final text for addition to The International Pharmacopoeia (July 2012)

Determination of Bisphenol A in Milk Powder using a Chromolith HighResolution RP-18 endcapped column

Research Article Simultaneous Estimation of DL-Methionine and Pyridoxine Hydrochloride in Tablet Dosage Form by RP-HPLC

Journal of Chemical and Pharmaceutical Research

Effective use of Pharmacopeia guidelines to reduce cost of chromatographic analysis for Fluticasone propionate

Detection and Quantification of Inorganic Arsenic in Fruit Juices by Capillary Ion Chromatography with Suppressed Conductivity Detection

The Nitrofurantoin Capsules Revision Bulletin supersedes the currently official monograph.

RP-HPLC Method Development and Validation of Abacavir Sulphate in Bulk and Tablet Dosage Form

Asian Journal of Pharmaceutical Analysis and Medicinal Chemistry Journal home page:

Increasing resolution using longer columns while maintaining analysis time Advantages of the wide power range of the Agilent 1290 Infinity LC System

Airo International Research Journal ISSN : Volume : 7 October 2015

Converting a CHP Method for Insulin to Agilent Poroshell 120 Columns

Application Note. Agilent Application Solution Analysis of fat-soluble vitamins from food matrix for nutrition labeling. Abstract.

Pankti M. Shah et al, Asian Journal of Pharmaceutical Technology & Innovation, 04 (17); 2016; 07-16

Tentu Nageswara Rao et al. / Int. Res J Pharm. App Sci., 2012; 2(4): 35-40

LC-MS/MS Method for the Determination of Tenofovir from Plasma

SIMULTANEOUS DETERMINATION OF ATORVASTATIN AND EZETIMIBE BY RP-HPLC IN PURE AND PHARMACEUTICAL DOSAGE FORM

METHOD DEVELOPMENT AND VALIDATION BY RP-HPLC FOR ESTIMATION OF ZOLPIDEM TARTARATE

Analysis of Common Sweeteners and Additives in Beverages with the PerkinElmer Flexar FX-15 System Equipped with a PDA Detector

Development and validation of related substances method for Varenicline and its impurities

Ultrafast analysis of synthetic antioxidants in vegetable oils using the Agilent 1290 Infinity LC system

EASI-EXTRACT BIOTIN Product Code: P82 / P82B

Rebaudioside a From Multiple Gene Donors Expressed in Yarrowia Lipolytica

Product Information:

TENOFOVIR TABLETS: Final text for addition to The International Pharmacopoeia (June 2010)

Food Nutrient Workshop. Medical Education Director

New RP - HPLC Method for the Determination of Valproic acid in Human Plasma

Reverse Phase HPLC Analysis of Atomoxetine in Pharmaceutical Dosage Forms

Development and validation of RP-HPLC method for simultaneous estimation of gliclazide and metformin in pure and tablet dosage form

Simultaneous Estimation of Gemcitabine Hydrochloride and Capecitabine Hydrochloride in Combined Tablet Dosage Form by RP-HPLC Method

Pharmacopeial Forum 818 INTERIM REVISION ANNOUNCEMENT Vol. 35(4) [July Aug. 2009] ERRATA

USP purity analysis of pravastatin sodium using the Agilent 1120 Compact LC

Comparison of conventional HPLC with UPLC method for determination of albuterol sulfate and it s impurities in pharmaceutical formulation

Sanjog Ramdharane 1, Dr. Vinay Gaitonde 2

Transcription:

PPLICTION NOTE 0 Two-dimensional HPLC determination of water-soluble vitamins in a nutritional drink uthors Dai Zhenyu, Chen Jing, Xu Qun, and Jeffrey Rohrer, Thermo Fisher Scientific, Shanghai, People s Republic of China; Keywords Food nalysis, Food Quality, Two-Dimensional HPLC, cclaim Polardvantage Column, cclaim 0 C Column, Hypersil GOLD Phenyl Column Goal To develop an efficient high-performance liquid chromatography (HPLC) method for simple and sensitive determination of water-soluble vitamins in a complex multivitamin/mineral drink. Target analytes are group vitamins, including thiamine (V ), riboflavin (V ), nicotinamide (V ), pantothenic acid (V ), pyridoxine (V ), biotin (V ), and cyanocobalamin (V ), and ascorbic acid (V C ). Introduction Vitamins are a well-known group of compounds that are essential for human health. They can be classified into two main groups: water- and fatsoluble. With the exception of V and V, water-soluble vitamins are not stored in the body. Thus, if one s dietary vitamin intake is insufficient, a vitamin supplement should be added to the diet. The vitamin supplement can be in tablet form, a clear vitamin-enhanced functional drink, vitamin-enhanced milk, or a nontransparent multivitamin/ mineral nutritional drink with additions of other substances (e.g., fruit extracts) that make it more complex than clear products. To ensure that these products contain the labeled amounts of vitamins, a number of reliable quality control assays are available., For a vitamin tablet or a clear functional drink, the analysis is relatively simple and a routine HPLC method (e.g., a C column with UV detection) is satisfactory for quantifying the vitamins.

Some samples, however, have too many additional components to allow a routine HPLC vitaminquantification method. Vitamin-enhanced milk and a nontransparent multivitamin/mineral nutritional drink referred to as a multivitamin nutritional drink throughout the rest of this study are two such samples. In addition to vitamins, these samples may also supply amino acids, minerals, coenzyme Q0, the compounds contained in grape extracts, and more. These additional compounds interfere with the separation of vitamins, making quantification difficult. Therefore, a simple and sensitive two-dimensional HPLC (D-HPLC) method is needed to quantify vitamins in these complex samples. Equipment and Software The Thermo Scientific UltiMate TM 000 Dual- Gradient Rapid Separation (RS) LC system was used, which includes: Thermo Scientific UltiMate TM 000 Series SRD- 00 Integrated Solvent and Degasser Rack (P/N 0.90) Thermo Scientific UltiMate TM 000 DPG-00RS Dual-Gradient RS Pump (P/N 00.00) Thermo Scientific UltiMate TM 000 WPS-000TRS Thermostatted Split-Loop utosampler (P/N 0.000) Thermo Scientific UltiMate TM 000 TCC-000RS Rapid Separation Thermostatted Column Compartment (P/N 0.000) with p-p valves Thermo Scientific UltiMate TM 000 DD-000RS Diode rray Detector (P/N 0.000), equipped with analytical flow cell, µl, SST (P/N 0.000) Mixer for 00 μl Mixing Volume (P/N 00.0) Thermo Scientific Chromeleon Chromatography Data System (CDS) software version. or higher Thermo Scientific Orion -Star ph enchtop Meter Reagents and Standards Deionized (DI) water,. MΩ.cm resistivity cetonitrile (CH CN) for HPLC (Fisher Scientific P/N C00000) Potassium Phosphate Monobasic (KH PO ) (Fisher Scientific P/N P-) o-phosphoric cid (H PO ), %, (Fisher Scientific P/N 0-00) Products from the National Institute for the Control of Pharmaceutical and iological Products, eijing, China: V, V, V, V, V, V, V, V C Preparation of Standard Solutions To prepare water-soluble vitamin standards of V, V, V, V, V, V, and V C, weigh 0 mg of the vitamin powder and add DI water to 0 ml in a volumetric flask to make stock solutions of.0 mg/ml for each vitamin. Make a fresh preparation of V C daily, due to its limited stability. lso, because of the limited solubility of V in water, decrease the concentration of the V stock solution to 0.0 mg/ml. Weigh mg of V into 00 ml DI water to address the solubility issue. If a 0 ml volumetric flask was used, 0. mg of V would have to be weighed, but that would exceed the precision range of the balance. dd 00 μl of V stock solution, 00 μl each of V and V stock solutions, and 0 μl each of V, V, V, V, and V C stock solutions to a ml sample vial. ring the final volume to ml by adding 0 μl of DI water to make the mixed stock standard solution. In this mixed stock standard solution, the concentration of V will be μg/ml, the concentrations of V and V will be 00 μg/ml, and the concentration of the other vitamins will be 0 μg/ml. Table. Preparation of mixed working standard solutions of water-soluble vitamins. Mixed Working Standard Solution Volume of Mixed Stock Standard Solution for a 0 ml Preparation (ml) 0.0 0. 0..0.0 0 V 0.0 0. 0...0 Concentration of Each Vitamin (mg/l) V, V 0..0.0 0 0 00 V, V, V, V, V C 0. 0..0.0 0 0

Table. Labeled values of the multivitamin nutritional drink. Ingredient mount Per mount Per Ingredient Serving* Serving Total Carbohydrate 9 g Zinc (as gluconate) mg Vitamin 0000 IU** Selenium (as L-selenium methione) 00 mcg Vitamin C 000 mg Copper (as gluconate) mg Vitamin D 00 IU Manganese (as gluconate) mg Vitamin E 00 IU Chromium (as amino acid chelate) 00 mcg Vitamin K 00 mcg Potassium (as citrate) 00 mg Vitamin 0 mg Choline (as bitartrate) 0 mg Vitamin 0 mg Inositol 0 mg Vitamin 0 mg oron (as amino acid chelate) mg Vitamin 0 mg mino cid Complex (proprietary formula) mg Vitamin 0 mg Grape Seed Extract mg Vitamin 00 mcg Coenzyme Q-0 mg Vitamin 00 mcg Dimethyl Glycine mg Folate 00 mcg Paba 0 mg Calcium 00 mg Citrus ioflavonoids mg Phosphorus 0 mg Glucolactone 0 mg Iron (as gluconate) mg Plant-Derived Minerals 00 mg Magnesium (as citrate, gluconate) 00 mg * Serving size:. ml **International units (IU), mass depending on substance potency For the preparation of mixed working standard solutions for calibration, add the appropriate volume of the mixed stock standard solution into 0 ml glass vials and bring to 0 ml with DI water. See Table for details. Sample Preparation multivitamin nutritional drink supplemented with V, V, V, V, V, V, V, and V C was provided by a customer. The drink also contained some fat-soluble vitamins, minerals, amino acid complex, grape seed extract, coenzyme Q0, and other ingredients added to meet daily nutritional needs. Table lists the sample components. Dilute the drink sample with DI water if necessary and filter through a 0. µm filter. To determine if the sample needs to be diluted, compare the labeled values to the calibration ranges in this study. Store the sample in a brown bottle at C before analysis. Conditions First Dimension Columns: For water-soluble vitamins except for V, Thermo Scientific cclaim Polardvantage (P), μm nalytical,. 0 mm (P/N 0) For V, Thermo Scientific Hypersil GOLD Phenyl nalytical HPLC, μm,. 0 mm (P/N 90-0) Mobile Phase:. mm phosphate buffer (dissolve ~. g KH PO in L water and adjust the ph to.0 with H PO ). CH CN Gradient: See Table Flow Rate: 0. ml/min Inj. Volume: 0 μl Temperature: C Detection: UV, absorbance at 0 and nm Second Dimension Column: cclaim 0 C, μm nalytical,. 0 mm (P/N 09) Mobile Phase: Same as used in the First Dimension Flow Rate: 0. ml/min Temperature: C Detection: UV absorbance at 0,,, and 9 nm These conditions apply to Figures through.

Table. Gradient program and valve switching. Time (min) First Dimension (Right Pump) Valve Switching Second Dimension (Left Pump) Flow Rate (ml/ min) % ( mm Phosphate uffer, ph.0) % (CH CN) Time (min) Right Valve Position Left Valve Position Time (min) Flow Rate (ml/ min) % ( mm Phosphate uffer, ph.0) % (CH CN) 0 0. 00 0 0 0 0. 00 0 0. 00 0.9 0. 00 0. 0..0.0.. 0. 0 0.0 0. 0.0 0.0. 0. 00 0.0 0. 0.0 0.0.9 0 0. 00 0. 0. 00 0. 0 0. 00 0.......0.9.. Results and Discussion Conventional HPLC Method for the Determination of Vitamins Currently, there is no U.S. Pharmacopeia (USP) method for the separation of a mixture containing all eight watersoluble vitamins. USP method for individual vitamins is complicated (i.e., sodium perchlorate, phosphoric acid, dimethyl sulfoxide, acetonitrile, and water are needed for biotin determination) and involves an ion-pairing agent to retain hydrophilic vitamins. Due to the irreversible impact of the ion-pairing agent on column performance, extensive research was conducted to search for methods without ion-pairing agents and with the use of a simpler mobile phase. Column: cclaim P, µm nalytical,. 0 mm Mobile Phase:. mm phosphate buffer (dissolve ~. g KH PO in L water and adjust ph to.0 with H PO ). CH CN Gradient: CH CN, 0 min, 0%;. min, %; min, 0%;. 0 min, 0% Flow Rate: 0. ml/min Inj. Volume: 0 µl Temperature: C Detection: UV absorbance at 0 nm Samples:. Standard mixture. Multivitamin nutritional drink Peaks:. V 0 mg/l. V 00 mg/l. V C 0 mg/l. V 0 mg/l. V 0 mg/l. V mg/l. V 0 mg/l. V 00 mg/l 00 Recently, acidic or neutral phosphate buffer/organic solvent mobile phases have been used to separate vitamins in an extract of a multivitamin tablet and in vitamin-enhanced functional drinks that are less complex than the one investigated here. For complex samples, such as certain multivitamin nutritional drinks, the additional supplements can interfere with vitamin separation and, ultimately, their detection by UV absorbance. Figure shows that the use of a typical HPLC method for a multi-vitamin nutritional drink results in the water-soluble vitamin peaks being hard or even impossible to quantify due to the large number of 0 0 0 0 0 Figure. standard mixture () and a multivitamin nutritional drink sample () using a conventional HPLC method.

UV-absorbing interfering peaks. Obviously, Peaks cannot be quantified. Peaks can be detected in the sample, but due to all the additional peaks, the vitamin peaks cannot be precisely quantified. Comparison of the UV spectra of the standard and the sample confirmed that Peaks were not pure enough for quantification. The D-HPLC Method Two-dimensional HPLC has been used to achieve efficient separation of complex samples. Not only do two columns with different chemistries provide additional separation power, but the use of heart-cutting technology in on-line D-HPLC also simplifies the separation in the second dimension. The work shown here uses D chromatography to determine watersoluble vitamins in a complex sample. Figure shows the configuration of the D-HPLC system used for this study. fter simple sample preparation (filter the sample, then dilute with DI water if necessary), inject the sample into the first dimension and partially separate it using an cclaim P column. The in-line UV detector determines where the water-soluble vitamins elute. n injection of the mixed standard determines the start and end times for each vitamin peak. Use these values to switch the valves. Waste Dual-gradient pump Left pump Left 0 µl mixer UV Detector Right pump Column utosampler Figure. Configuration of the D-HPLC system. Right Column Switch the right valve to the _ position to individually transfer the vitamin peaks to the flow path of the second column. For early eluting vitamin peaks, switch the left valve to the _ position so that these vitamin fractions are directly transferred to the second column. For late eluting vitamin peaks, switch the left valve to the _ position to put the 0 μl mixer in line. In this UV Detector Waste configuration, the water mobile phase in the second dimension will dilute the acetonitrile from the firstdimension mobile phase. This enables the seconddimension column to trap the vitamin peaks. Note: When the right valve is switched to the _ position, UV Detector will be connected between the two columns. However, the backpressure of the second-dimension column may exceed the pressure limit of the UV Detector flow cell. Thus, choose the proper particle size and length of the second-dimension column to keep the backpressure below the pressure limit of the flow cell. The pressure limit command in the instrument method can also be set to stop the flow in any situation when backpressure may become too high. Development of the D-HPLC Method Valve switching To achieve optimal resolution and peak shape in D-HPLC applications, the critical part of method development is the transfer of first-dimension peaks to the second-dimension column. Ideally, the firstdimension mobile phase being cut and transferred with target peaks to the second dimension will be same as the second-dimension mobile phase at the time of transfer. ut in reality, the two mobile phases usually will have different concentrations of acetonitrile or other organic solvent. Figure, Chromatogram shows that Peaks,, and disappear when they are directly transferred to the second dimension. Obviously, the late eluting peaks from the first column are contained in too high a concentration of acetonitrile to be retained on the second column. The traditional approach to this problem is to provide water to dilute the acetonitrile in the transferred fraction with a tertiary pump so the fraction can be retained on the trap column ahead of the second column. However, the need for an additional pump limits this application. Thermo Scientific pplication Note (N) 0 demonstrated an alternative way to solve this problem. riefly, a 0 μl mixer was configured in line before the eluted fraction was transferred to the second dimension. Then the peak mobile phase was mixed extensively with the second-dimension starting mobile phase (water phase) before the second-dimension separation. In this study, the authors initially applied the N 0 approach for all target peaks. It worked well for late eluting peaks, which had high concentrations of acetonitrile, but the early eluting peaks broadened (Figure, Chromatogram ). fter conducting additional experiments, the authors discovered that early

eluting vitamin peaks broadened due to their physiochemical characteristics. These peaks cannot be trapped at the head of the second column, even with a 00% water mobile phase. Thus, the configuration was modified so that early eluting peaks are directly transferred to the second column, whereas late eluting peaks are transferred into the 0 μl mixer before the second column. Figure, Chromatogram C shows that the final configuration works well for all eight watersoluble vitamins. Detection: UV absorbance at nm Valve Position: See Table Samples:. Standard mixture. Multivitamin nutritional drink Peaks:. V 0 mg/l. V 0 mg/l. V. V 0 0 mg/l. V C 0 mg/l. V 0 mg/l. V. V mg/l 00 Detection: UV absorbance at 0 nm Valve Position: See Table Configurations:. 0 µl mixer always off-line. 0 µl mixer always in-line C. 0 µl mixer off-line for Peaks, in-line for Peaks Peaks:. V 0 mg/l. V 00 mg/l. V C 0 mg/l. V 0 mg/l. V 0 mg/l. V mg/l. V 0 mg/l. V 00 mg/l 00 0 0 0 0 0 Figure. standard mixture () and a multivitamin nutritional drink sample () using an cclaim P column in the first dimension. Detection: UV absorbance at nm Valve Position: See Table Samples:. V standard mixture (0 mg/l). Multivitamin nutritional drink sample Peak: 0. V 0 00 0 0 C 0 0 0 0 0 Figure. Second-dimension analysis of the standard mixture with three different configurations. 0 Figure. V standard () and a multivitamin nutritional drink sample () using a Hypersil GOLD Phenyl column in the first dimension.

Choice of wavelength for the UV detector Vitamins,,, and C were detected at,, 9, and nm, respectively, which are the wavelengths of maximum UV absorbance for each. Vitamin was detected at nm, which is close to its maximum UV absorbance. The maximum UV absorbance wavelengths of V and V are below 00 nm; to minimize noise, both were detected at 0 nm. Vitamin was detected with the nm channel. If desired, a fifth channel of nm can be configured to detect V at its absorbance maximum. Column choice and its impact on separation Several combinations of columns were tested. Previous work suggested that good choices for most watersoluble vitamins are an cclaim P column used as the first-dimension column and an cclaim 0 C column used as the second-dimension column. Most watersoluble vitamins can be separated with good resolution using this column combination, but V coelutes with an Table. Reproducibility of retention time and peak area for water-soluble vitamins. Water-Soluble Vitamin Retention Time RSD Peak rea RSD V 0.0%.0 V 0.0% 0. V 0.% 0. V 0.0% 0. V 0.0% 0. V 0.0% 0. V 0.0% 0. V C 0.%. impurity in the drink sample, making quantification of V impossible. The authors searched for another column to use for the first dimension. The Hypersil GOLD Phenyl column worked well for this purpose. Figure shows that V was not detected at nm when an cclaim P 00 Detection: UV absorbance at 0 nm Valve Position: See Table Samples: _H, consecutive injections H G F E D C Peaks:. V 0 mg/l. V 000 mg/l. V C 00 mg/l. V 00 mg/l. V 00 mg/l. V 0 mg/l. V 0 0 mg/l. V 00 0 mg/l 0 0 0 0 0 0 0 Figure. Chromatogram overlays of eight consecutive injections of a mixture of water-soluble vitamin standards. Table. Calibration data and MDLs for the water-soluble vitamins. Water-Soluble Vitamin Detection Wavelength (nm) Range Regression Equation r MDL V 0. 0 =0.c-0.00 0.99 0.0 V 0. 0 =0.c+0.0 0.9999 0. V 9 0. 0 =0.9c+0. 0.9999 0. V 0.0 00 =0.0c+0.0 0.9999 0. V 0. 0 =0.0c+0.0 0.9999 0.0 V 0. =0.9c-0.0 0.999 0.0 V 0.0 00 =0.00c 0.999. V C Due to working standard instability, Vitamin C calibration and quantification were not provided.

column was used in the first dimension. However, when the Hypersil GOLD Phenyl column was used in the first dimension, V was detected (Figure ). The authenticity of the V peak was confirmed by its UV spectrum. Reproducibility, Linearity, and Detection Limits Prior to sample analysis, reproducibility was estimated by making eight replicate injections of water-soluble vitamins. The RSDs for retention time and peak area are shown in Table. n overlay of the eight injections is shown in Figure. 0 Detection: UV absorbance at nm Valve Position: See Table Sample: Multivitamin nutritional drink sample Peaks:. V. V. Unknown. V C. V. V 0 0 0 0 Figure. Second dimension of multivitamin nutritional drink sample (00-fold dilution). 0 Calibration linearity for the water-soluble vitamins was investigated by making three replicate injections of a mixed standard prepared at five or six different concentrations. The external standard method was used to calculate the calibration curve and quantify these compounds in samples. Table reports the data from the calibration as calculated by Chromeleon CDS software. The authors found linear calibration curves for each vitamin over the ranges evaluated. The singlesided Student s t test method was used for estimating method detection limits (MDL) for a 99% confidence level. These data are reported in Table. Sample nalysis Vitamins and were not detected in the multivitamin nutritional drink, possibly due to their low concentration in the sample. Vitamin was surprisingly not detected. Vitamin was fully recovered when spiked into the sample at its labeled value; therefore, the method is capable of determining V. The other water-soluble vitamins were detected close to their labeled values. lthough V C in the working standard solutions is quite unstable, its presence in the multivitamin nutritional drink appeared to be relatively stable. s shown in Figure, V C is a major peak in the sample chromatogram. Good recoveries of water-soluble vitamins in the spiked sample (Table ) provided Table. nalysis results of water-soluble vitamins in the multivitamin nutritional drink sample. nalyte Labeled (mg/ml)* Detected dded Found Recovery (%) V.0.9 9 V ND 0.9 9 V.. 0 V..0 V 0.0 ND 0. V.0 0.. 0 V 0.0 ND.0 V C Detected *The sample is diluted 000 times before analysis; thus, mg/ml will be detected as µg/ml. Due to working standard instability, Vitamin C was not quantified. ND = not detected.

another positive indicator of method accuracy. This D-HPLC method greatly simplifies the seconddimension chromatogram, as shown in Figure. Conclusion Two-dimensional HPLC simplifies the determination of the vitamin content of a multivitamin nutritional drink, a complex sample. nalysis of this complex sample requires only off-line filtration because the remainder of the sample preparation is automated by the UltiMate 000 Dual-Gradient HPLC system and Chromeleon CDS software. The application was successful for determination of the group vitamins in the presence of other nutritional additives. The method was not able to quantify Vitamin C, although detected. References. Moreno, P.; Salvado, V. Determination of Eight Water- and Fat-Soluble Vitamins in Multivitamin Pharmaceutical Formulations by High-Performance Liquid Chromatography. J. Chromatogr., 000, 0, 0.. Perveen, S.; Yasmin, ; Khan, K.M. Quantitative Simultaneous Estimation of Water Soluble Vitamins, Riboflavin, Pyridoxine, Cyanocobalamin and Folic cid in Nutraceutical Products by HPLC. The Open nalytical Chemistry Journal 009,,.. Thermo Fisher Scientific pplication Note : HPLC ssay of Water-Soluble Vitamins, Fat-Soluble Vitamins, and a Preservative in Dry Syrup Multivitamin Formulation. Vitamins/Dietary Supplements, The U.S. Pharmacopeia, NF 0, Washington, DC, 00, pp 9 0.. Thermo Fisher Scientific pplication Note : Two-Dimensional HPLC Combined with On-Line SPE for Determination of Sudan Dyes I IV in Chili Oil. Sunnyvale, C, 0. [Online] https://tools.thermofisher.com/content/sfs/brochures/-n-hplc- Sudan-Dyes-Chili-Oil-Sept0-LPN99.pdf. Thermo Fisher Scientific pplication Note N9: Determination of Sudan Dyes I IV in Curry Paste. Sunnyvale, C, 0.. Thermo Fisher Scientific Technical Note : Determination of Water- and Fat-Soluble Vitamins by HPLC. Sunnyvale, C, 00. Find out more at thermofisher.com/ultimate000 0 Thermo Fisher Scientific Inc. ll rights reserved. ll trademarks are the property of Thermo Fisher Scientific and its subsidiaries. This information is presented as an example of the capabilities of Thermo Fisher Scientific products. It is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representatives for details. N0-EN S