Safety and immunologic benefits of conversion to sirolimus in kidney transplant recipients with long-term exposure to calcineurin inhibitors

Similar documents
Intruduction PSI MODE OF ACTION AND PHARMACOKINETICS

Risk factors in the progression of BK virus-associated nephropathy in renal transplant recipients

Proteinuria and Mammalian Target of Rapamycin Inhibitors in Renal Transplantation

Long-term prognosis of BK virus-associated nephropathy in kidney transplant recipients

SELECTED ABSTRACTS. All (n) % 3-year GS 88% 82% 86% 85% 88% 80% % 3-year DC-GS 95% 87% 94% 89% 96% 80%

Case Report Beneficial Effect of Conversion to Belatacept in Kidney-Transplant Patients with a Low Glomerular-Filtration Rate

Considering the early proactive switch from a CNI to an mtor-inhibitor (Case: Male, age 34) Josep M. Campistol

Literature Review: Transplantation July 2010-June 2011

Literature Review Transplantation

OUT OF DATE. Choice of calcineurin inhibitors in adult renal transplantation: Effects on transplant outcomes

2017 CST-Astellas Canadian Transplant Fellows Symposium. Management of Renal Dysfunction in Extra Renal Transplants

Effects of pretransplant plasmapheresis and rituximab on recurrence of focal segmental glomerulosclerosis in adult renal transplant recipients

OBJECTIVES. Phases of Transplantation and Immunosuppression

Sirolimus versus Calcineurin Inhibitor-based Immunosuppressive Therapy in Kidney Transplantation A 4-year Follow-up

Early Conversion from a Calcineurin Inhibitor-Based Regimen to Everolimus-Based Immunosuppression after Kidney Transplantation

Why Do We Need New Immunosuppressive Agents

BK virus infection in renal transplant recipients: single centre experience. Dr Wong Lok Yan Ivy

Practical considerations for the use of mtor inhibitors

Increased Early Rejection Rate after Conversion from Tacrolimus in Kidney and Pancreas Transplantation

Recognition and Treatment of Chronic Allograft Dysfunction

Controversies in Renal Transplantation. The Controversial Questions. Patrick M. Klem, PharmD, BCPS University of Colorado Hospital

Chronic Kidney Disease (CKD) Stages. CHRONIC KIDNEY DISEASE Treatment Options. Incident counts & adjusted rates, by primary diagnosis Figure 2.

American Journal of Transplantation 2009; 9 (Suppl 3): S1 S157 Wiley Periodicals Inc.

How to improve long term outcome after liver transplantation?

Pleiotropic effects of mtor inhibitors : cardiovascular and cancer. Dr Paolo Malvezzi Clinique de Néphrologie CHU Grenoble

Original Article. Introduction

Liver Transplant Immunosuppression

Immunosuppressants. Assistant Prof. Dr. Najlaa Saadi PhD Pharmacology Faculty of Pharmacy University of Philadelphia

Overview of New Approaches to Immunosuppression in Renal Transplantation

Recurrent Idiopathic Membranous Glomerulonephritis After Kidney Transplantation and Successful Treatment With Rituximab

Analysis of regulatory T cell subsets in the peripheral blood of immunoglobulin A nephropathy (IgAN) patients

Emerging Drug List EVEROLIMUS

Fluorochrome Panel 1 Panel 2 Panel 3 Panel 4 Panel 5 CTLA-4 CTLA-4 CD15 CD3 FITC. Bio) PD-1 (MIH4, BD) ICOS (C398.4A, Biolegend) PD-L1 (MIH1, BD)

Efficacy and Safety of Thymoglobulin and Basiliximab in Kidney Transplant Patients at High Risk for Acute Rejection and Delayed Graft Function

Immunopathology of T cell mediated rejection

Serum samples from recipients were obtained within 48 hours before transplantation. Pre-transplant

REACH Risk Evaluation to Achieve Cardiovascular Health

Belatacept: An Update of Ongoing Clinical Trials

THE KIDNEY AND SLE LUPUS NEPHRITIS

HLA and Non-HLA Antibodies in Transplantation and their Management

James E. Cooper, M.D. Assistant Professor, University of Colorado at Denver Division of Renal Disease and Hypertension, Kidney and PancreasTransplant

Belatacept: An Opportunity to Personalize Immunosuppression? Andrew Adams MD/PhD Emory Transplant Center

CURRICULUM VITAE July 5, Name Chang-Kwon Oh. Date of Birth August 15, 1961

European Risk Management Plan. Measures impairment. Retreatment after Discontinuation

Supplemental Table I.

Organ rejection is one of the serious

Cover Page. The handle holds various files of this Leiden University dissertation.

Induction of donor-specific hyporesponsiveness after renal. transplantation. Long term follow-up

Combination of a Calcineurin Inhibitor and a Mammalian Target of Rapamycin Inhibitor: Not So Nephrotoxic As We Thought?

Summary of Results for Laypersons

Current Trends in Kidney Transplantation: The Role of Nonadherence

PREVENTION AND TREATMENT OF BKV NEPHROPATHY Petra Reinke, Berlin, Germany. Chair: Daniel Abramowicz, Brussels, Belgium Rosanna Coppo, Turin, Italy

New-onset diabetes after transplantation. Christophe Legendre Université Paris Descartes & Hôpital Necker, Paris.

Post-Transplant Monitoring for the Development of Anti-Donor HLA Antibodies

Post Transplant Immunosuppression: Consideration for Primary Care. Sameh Abul-Ezz, M.D., Dr.P.H.

For Immediate Release Contacts: Jenny Keeney Astellas US LLC (847)

Kidney transplantation: into the future with belatacept

Solid Organ Transplantation 1. Chapter 55. Solid Organ Transplant, Self-Assessment Questions

Kidney transplantation 2016: current status and potential challenges

It s just not that into you:

Long term liver transplant management

This study is currently recruiting participants.

Immunosuppression is now manageable in the

2017 BANFF-SCT Joint Scientific Meeting. Personalized Medicine in Liver Transplantation

Date: 23 June Context and policy issues:

Effector T Cells and

Kidneytransplant pathologyrelatedto immunosuppressiveagents

NAPRTCS Annual Transplant Report

Better than Google- Click on Immunosuppression Renal Transplant. David Landsberg Oct

NAPRTCS Annual Transplant Report

Chapter 6: Transplantation

Dr. Yi-chi M. Kong August 8, 2001 Benjamini. Ch. 19, Pgs Page 1 of 10 TRANSPLANTATION

The CARI Guidelines Caring for Australasians with Renal Impairment. Idiopathic membranous nephropathy: use of other therapies GUIDELINES

BK Viral Infection and Malignancy in Renal Transplantation ~A Case History~

Conversion from calcineurin inhibitors to sirolimus in renal transplant patients

Assessment of Deceased Donor Kidneys Using a Donor Scoring System

mtor inhibitors lights and shadows Giuseppe Grandaliano, Foggia, Italy Chairs: Turgay Arinsoy, Ankara, Turkey Josep M. Grinyo, Barcelona, Spain

ABO-incompatible kidney transplantation in elderly patients over 60 years of age

Donor-Specific HLA Antibodies in a Cohort Comparing Everolimus With Cyclosporine After Kidney Transplantation

Reduced graft function (with or without dialysis) vs immediate graft function a comparison of long-term renal allograft survival

Review Article The Role of mtor Inhibitors in Liver Transplantation: Reviewing the Evidence

Case Presentation Turki Al-Hussain, MD

CKD in Other Organ Transplants

tients with insufficient TOR inhibitor therapy that are at risk for rejection.

Lymphangioleiomyomatosis Patients:

Tolerance Induction in Transplantation

Effect of long-term steroid withdrawal in renal transplant recipients: a retrospective cohort study

As outlined under External contributions (see appendix 7.1), the group of Prof. Gröne at the

How do the KDIGO Clinical Practice Guidelines on the Care of Kidney Transplant Recipients apply to the UK?

Chronic Kidney Disease & Transplantation. Paediatrics : 2004 FRACP

BK Virus (BKV) Management Guideline: July 2017

Innovation In Transplantation:

Donor-Specific HLA Class I and CREG Antibodies in Complement-Dependent Cytotoxicity-Negative Renal Transplants

A Single-Center Experience of Overseas Kidney Transplant for Immunologically High-Risk Patients

Prevalence of anemia and cardiovascular diseases in chronic kidney disease patients: a single tertiary care centre study

Nephrotic syndrome minimal change disease vs. IgA nephropathy. Hadar Meringer Internal medicine B Sheba

SDC (Supplemental Digital Content) Figure S1. Percentages of Granzyme B expressing CD8 + T lymphocytes

EPS meeting. Post-transplant EPS. Naarden, The Netherlands February 4 th 2010

Copyright information:

Transcription:

ORIGINAL ARTICLE Korean J Intern Med 216;31:552-559 http://dx.doi.org/1.394/kjim.214.366 Safety and immunologic benefits of conversion to sirolimus in kidney transplant recipients with long-term exposure to calcineurin inhibitors Ji Hyun Yu 1,*, Kyoung Woon Kim 2,*, Bo-Mi Kim 2, Byung Ha Chung 1,2,3, Mi-La Cho 2, Bum Soon Choi 1,3, Cheol Whee Park 1,3, Yong-Soo Kim 1,3, and Chul Woo Yang 1,2,3 1 Division of Nephrology, Department of Internal Medicine, 2 Convergent Research Consortium for Immunologic Disease, 3 Transplant Research Center, College of Medicine, Seoul St. Mary s Hospital, The Catholic University of Korea, Seoul, Korea Received : November 3, 214 Revised : February 24, 215 Accepted : March 1, 215 Correspondence to Chul Woo Yang, M.D. Department of Internal Medicine, College of Medicine, Seoul St. Mary s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 6591, Korea Tel: +82-2-2258-637 Fax: +82-2-536-323 E-mail: yangch@catholic.ac.kr *These authors contributed equally to this work. Background/Aims: Sirolimus (SRL) is a promising immunosuppressant replacing calcineurin inhibitors (CNIs). This study was performed to evaluate the safety and immunologic benefits of conversion to SRL in stable kidney transplant (KT) recipients exposed to CNIs for long periods. Methods: Fourteen CNI-treated KT recipients with stable renal function for more than 1 years were included. Either 2 or 3 mg per day of SRL was administered while CNIs were reduced by half starting on day 1, and then stopped 2 weeks after SRL introduction. The safety of SRL conversion was assessed considering the graft function, acute rejection, and graft loss. Immunologic alterations were measured via serial changes of T cell and B cell subsets after SRL conversion. Adverse effects of SRL conversion were also evaluated. Results: Conversion to SRL was successful in nine patients (64.2%). Conversion to SRL preserved graft function as compared to the baseline value (p =.115). No acute rejection or allograft loss was observed during the follow-up period. Immune monitoring of T and B cells revealed a regulatory T cells increase after SRL conversion (p =.28). Most adverse events developed within 6 weeks after SRL conversion, and oral mucositis was the main cause of SRL withdrawal. Conclusions: Conversion to SRL can be safe and has immunologic benefits in KT recipients with long-term CNI exposure. Close monitoring of mucocutaneous adverse events is, however, required in the early period after SRL conversion. Keywords: Sirolimus; Calcineurin inhibitors; Kidney transplantation INTRODUCTION Calcineurin inhibitors (CNIs) are indispensable immunosuppressive agents in kidney transplantation (KT). However, CNI-associated adverse events such as nephrotoxicity, increase of diabetes mellitus, and secondary malignancy limit the use of these drugs [1-3]. To overcome such limitations, CNI minimization with non-nephrotoxic immunosuppressant is recommended in clinical practice. Sirolimus (SRL), a type of mammalian target of rapamycin inhibitor, was introduced in the late 199s and regarded as a promising immunosuppressant for replacing CNIs in KT patients. Compared to CNI, SRL causes less nephrotoxicity and has anticancer effects [4]. In addition, SRL provides an immunologic advantage by increasing regulatory T cells (T reg ) [5,6] and may prevent the development of chronic allograft nephropathy Copyright 216 The Korean Association of Internal Medicine This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/ by-nc/3./) which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited. pissn 1226-333 eissn 25-6648 http://www.kjim.org

Yu JH, et al. Sirolimus conversion in long-term KTR by suppressing the proliferation of smooth muscle cells and fibroblasts [7]. All these findings suggest that SRL may be beneficial for long-term CNI-exposed KT patients. However, most studies on CNI-to-SRL conversion have investigated the early post-transplant period [8-11], and there is little information on SRL conversion in patients with long follow-up periods. Therefore, we evaluated the safety and immunologic advantages of SRL conversion in longterm CNI-exposed KT recipients with stable graft function. METHODS Patients Inclusion criteria included patients who had been followed-up for more than 1 years after KT; no history of rejection; estimated glomerular filtration rate (GFR) more than 5 ml/min/1.73 m 2 via modification of diet in renal disease (MDRD) with renal function change within 1% of baseline value in the past year; no immunosuppressive agent change during the past year; and proteinuria less than.3 protein (g)/creatinine (g) in spot urine. This study was approved by the Institutional Review Board (KC11OIS917) of the Seoul St. Mary s Hospital, and all the patients provided written informed consent. All clinical investigations were conducted according to the principles expressed in the Declaration of Helsinki. The study is registered at www.clinicaltrials.gov (Identifier: NCT1592253). SRL conversion protocol We started patients on 2 or 3 mg/day of SRL and reduced CNI dose to 5% of the baseline value at the same time. After 2 weeks, we stopped CNIs entirely and titrated the SRL dose to maintain the blood levels between 3 and 8 ng/ml. We discontinued other immunosuppressive agents such as enteric-coated mycophenolate sodium, azathioprine, or mizoribine till 3 months after conversion, but maintained low-dose steroids [12]. Safety of SRL conversion We evaluated the safety of SRL conversion using allograft function (estimated GFR via MDRD) at 2, 6, 12, and 24 weeks after conversion. Acute rejection was suspected if serum creatinine increased to more than 3% of the baseline value after SRL conversion. Rejection was confirmed via biopsy. Graft loss was defined as declining graft function that required dialysis, retransplantation, or death with functioning graft. We measured trough level of CNIs at baseline and 2 weeks after conversion. We checked SRL levels and performed laboratory tests including complete blood count, blood chemistry, urinalysis, and urine chemistry at 2, 6, 12, and 24 weeks after conversion. Changes of immune profile after SRL conversion We sampled peripheral blood before and 6 months after conversion to SRL. Peripheral blood mononuclear cells (PBMCs) were isolated, and cell cultures were performed as described previously [13]. Flow cytometric study of PBMCs was performed to analyze human intracellular cytokine production. The PBMCs were stimulated with phorbol myristate acetate and ionomycin in the presence of GolgiStop (BD Biosciences, San Diego, CA, USA) for 4 hours. For surface staining, cells were stained with combinations of the following monoclonal antibodies: CD4-PE/Cy7 (BioLegend, San Diego, CA, USA); CD45RA- FITC (BD Pharmingen, San Diego, CA, USA); CD8-APC (Pharmingen), and CD25-APC (Pharmingen). Staining for chemokine receptor CCR7 was performed using monoclonal antibodies to it. Cells were washed, fixed, permeabilized, and stained to detect intracellular cytokines with monoclonal antibodies specific to interferon γ (IFN-γ, ebioscience); interleukin 4 (IL-4, ebioscience); IL-17 (FITC, ebio64dec17, IgG1, κ; ebioscience); Foxp3 (FITC, PCH11, IgG2a, κ; ebioscience); IFN-γ (PE, B27, IgG1, κ; Pharmingen), and IL-1-APC (JES3-19F1, IgG2a, κ; Pharmingen). Appropriate isotype controls were used for gate setting for measuring cytokine expression. Cells were analyzed on a FACS Calibur flow cytometry system (BD Biosciences). Adverse events of SRL conversion During each outpatient clinic visit, we examined adverse events that developed after SRL conversion. These included mucositis, folliculitis, dermatitis, or any signs of infection. We monitored the following: development of proteinuria as spot urine protein-to-creatinine ratio (PCR), diabetes mellitus via fasting glucose level, dyslipidemia via fasting lipid level or lipid lowering agents, http://dx.doi.org/1.394/kjim.214.366 www.kjim.org 553

The Korean Journal of Internal Medicine Vol. 31, No. 3, May 216 leukopenia, anemia, thrombocytopenia, increasing aspartate or alanine aminotransferase, and requirement of antihypertensive medication. We defined the patient s situation as tolerable when the patient had successfully received SRL for 6 months without any serious adverse events. Statistical analysis Statistical analysis was performed using SPSS version 18. (SPSS Inc., Chicago, IL, USA). The comparison of numerical variables at baseline, 2, 6, 12, and 24 weeks from conversion was performed using the Friedman test. The comparison of numerical variables before and 24 weeks after conversion was performed using the Wilcoxon signed-rank test. The results are presented as mean ± standard deviation or standard error, counts and percentages, or median with ranges depending on the data type. The p values <.5 were considered significant. RESULTS Patients A total of 45 KT patients met the inclusion criteria in Seoul St. Mary s hospital. Among them, 14 patients (31%) agreed to participate in this study, and they were ultimately enrolled. The mean duration from KT to initiation of the study was 14.7 ± 2.9 years (median, 13.5; range, 12 to 19.5). The mean MDRD-GFR was 72.2 ± 2.2 ml/ min/1.73 m 2. Only one patient was highly sensitized (her flow cytometric crossmatch was positive for B cells), so she had taken plasmapheresis three times before KT. Other baseline patient characteristics are presented in Table 1. Of the 14 patients, eight (57%) were receiving cyclosporine (CsA) with a median dosage of 15 mg (range, 75 to 175); the mean blood trough level was 95.8 ± 58.4 ng/ ml. The remaining patients (n = 6, 43%) were receiving tacrolimus (TAC) with a median dosage of 2 mg (range, 2 to 4); the mean blood trough level was 4.2 ± 2.1 ng/ml. The patients immunosuppressive regimens are also shown in Table 1. Safety of SRL conversion The 6-month conversion success rate was 64.2% (n = 9), while 35.8% of patients (n = 5) ceased receiving SRL. Table 1. Baseline characteristics of patients Variable Value Male sex 2 (14.3) Age, yr 54.3 ± 1.5 Retransplantation 2 (14.3) Time from transplant to conversion, yr 14.7 ± 2.9 Type of donor Deceased 6 (42.9) Living 8 (57.1) egfr by MDRD, ml/min/1.73 m 2 72.2 ± 2.2 Urine protein-to-creatinine ratio.8 ±.8 Mismatched no. of HLA antigen 2.6 ± 2.1 Causes of end stage renal disease Chronic glomerulonephritis 8 (57.1) Hypertensive nephropathy 1 (7.1) Unknown 5 (35.7) Comorbid disease New onset diabetes after transplantation 1 (7.1) Hypertension 7 (5) Immunosuppressant regimen Cyclosporin 1 (7.1) Cyclosporin + steroid 3 (21.4) Cyclosporin + enteric-coated mycophenolic acid 3 (21.4) Cyclosporin + azathioprine + steroid 1 (7.1) Tacrolimus + steroid 1 (7.1) Tacrolimus + enteric-coated mycophenolic acid 2 (14.3) Tacrolimus + mizoribine 2 (14.3) Tacrolimus + azathioprine 1 (7.1) Values are presented as number (%) or mean ± SD. egfr, estimated glomerular filtration rate; MDRD, modification of diet in renal disease; HLA, human leukocyte antigen. Renal allograft function at baseline and 2, 6, 12, and 24 weeks after SRL conversion was not significantly different (71.2 ± 17.6, 71. ± 17.1, 72. ± 16.7, 71.2 ± 17.6, and 67.7 ± 14.6 ml/min/1.73 m 2 via MDRD-GFR respectively), indicating good graft function preservation after SRL conversion (p =.115) (Fig. 1). There was no acute rejection or graft loss after SRL conversion. Fig. 2 shows trough levels of TAC and CsA before and 2 weeks after SRL conversion and SRL trough levels at 2, 6, 12, and 24 weeks after SRL conversion. The 5% dosage reduction of CsA 554 www.kjim.org http://dx.doi.org/1.394/kjim.214.366

Yu JH, et al. Sirolimus conversion in long-term KTR MDRD-GFR (ml/min/1.73 m 2 ) 1 8 6 4 2 2 6 12 24 Weeks after SRL conversion Figure 1. Renal allograft function during 24 weeks after sirolimus conversion (n = 9, p =.115). Note no significant change of graft function after sirolimus (SRL) conversion. Black dots indicate means; error bars indicate standard errors. MDRD, modification of diet in renal disease; GFR, glomerular filtration rate. or TAC caused the trough level to decrease by 48.7% and 27.2%, respectively (Fig. 2A and 2B). Levels of SRL were variable in the early period of conversion but gradually stabilized and reached the target level (3 to 8 ng/ml) by 12 weeks post-conversion (mean trough level, 7.4 ng/ ml). The levels were not different statistically (p =.919), but showed decreasing pattern throughout the study periods (Fig. 2C). Immunologic benefits of SRL conversion Figs. 3 and 4 show the immunologic changes in six of the nine successfully converted patients. Three of them had received CsA, while the remaining three had received TAC before SRL conversion. The percentage of CD4 + T reg increased at 24 weeks after SRL conversion (6.3% ± 3.2% vs. 8.6% ± 5.4%, p =.28) 6 (Fig. 3A). There were no differences in the percentages of Th1 (23.4% ± 9.8% vs. 24.1% ± 1.4%, p =.917), Th2 (3.5% ± 4.2% vs. 1.3% ± 1.2%, p =.6), or Th17 (1.3% ±.6% vs. 2.1% ± 1.1%, p =.249) (Fig. 3B-3D). The percentage of CD8 + T naïve (44.% ± 13.8% vs. 39.8% ± 9.%, p =.462), CD8 + central memory T cells (TCM) (27.1% ± 1.5% vs. 3.6% ± 12.7%, p =.753) or CD8 + effector memory T cells (T EM ) (13.% ± 9.3% vs. 15.3% ± 4.2%, p =.6) also did not alter after SRL conversion (Fig. 4A-4C). The percentage of IFN-γ producing CD8 + T naïve (59.7% ± 26.1% vs. 5.2% ± 41.8%, p =.6) and T CM (57.4% ± 15.1% vs. 38.1% ± 24.7%, p =.75) did not change (Fig. 4D and 4E), but the percentage of IFN-γ producing CD8 + T EM reduced after conversion (58.5% ± 18.9% vs. 37.9% ± 25.4%, p =.46) (Fig. 4F). No significant difference was seen between B cell subsets. The percentage of memory B cells (22.6% ± 11.5% vs. 3.9% ± 11.1%, p =.345), mature B cells (39.1% ± 9.8% vs. 35.1% ± 11.3%, p =.293), and immature B cells (5.1% ± 3.6% vs. 9.7% ± 9.3%, p =.345) did not change 24 weeks after SRL conversion. Adverse events of SRL conversion Total cholesterol, low-density lipoprotein, and triglyceride levels increased after SRL conversion (178 ± 22 mg/dl vs. 223 ± 58 mg/dl, p <.1; 97 ± 28 mg/dl vs. 149 ± 45 mg/dl, p <.1; and 94 ± 38 mg/dl vs. 114 ± 57 mg/dl, p =.18; respectively). Urine PCR also increased after conversion (.8 ±.8 vs..39 ±.4, p =.26). Of the 14 patients, 11 (79.6%) experienced mucocutaneous adverse events. Oral mucositis (n = 7), dermatitis (n = 4), facial and leg edema (n = 3), folliculitis (n = 1), acne (n = 1), and diarrhea (n = 1) were all recorded. Most events occurred within 6 weeks after conversion and led to 1 Trough level of TAC (ng/ml) 4 2 Trough level of CsA (ng/ml) 15 1 5 Trough level of SRL (ng/ml) 8 6 4 2 2 Weeks after SRL conversion 2 Weeks after SRL conversion A B C 2 6 12 24 Weeks after SRL conversion Figure 2. Trough level of (A) tacrolimus (TAC), and (B) cyclosporin (CsA) before and 2 weeks after sirolimus (SRL) conversion, (C) trough level of sirolimus at 2, 6, 12, and 24 weeks after SRL conversion. Black dots indicate means; error bars indicate standard errors. http://dx.doi.org/1.394/kjim.214.366 www.kjim.org 555

The Korean Journal of Internal Medicine Vol. 31, No. 3, May 216 15 3 6 CD25 + Fox3 + /CD4 + T (%) 1 5 a IFN - γ /CD4 + T (%) 2 1 IL-4 + /CD4 + T (%) 4 2 A B C 6 6 6 Figure 3. Effect of conversion from calcineurin inhibitors to sirolimus on CD4 + T lymphocyte subpopulations within the peripheral blood mononuclear cell population isolated from kidney transplant recipients (n = 6). The percentage of (A) regulatory T cells (T reg ), (B) Th1, (C) Th2, and (D) Th17 cells before and after 6 months sirolimus (SRL) conversion were compared. Note significant increase of CD25 + Foxp3 + /CD4 + T cells (T reg ) after SRL conversion (6.3% ± 3.2% vs. 8.6% ± 5.4%). IFN-γ, interferon γ; IL-4, interleukin 4. a p.28, Wilcoxon signed-rank test. 6 4 2 CD8 + T naïve (%) 4 2 CD8 + T CM (%) 3 2 1 CD8 + T EM (%) 15 1 5 8 6 6 A B C 8 8 6 CD8 + T naïve IFN-γ + (%) 6 4 2 CD8 + T CM IFN-γ + (%) 6 4 2 CD8 + T EM IFN-γ + (%) 6 4 2 a 6 6 D E F 6 Figure 4. Effect of conversion from calcineurin inhibitors to sirolimus (SRL) on CD8 + T lymphocyte subpopulations within the peripheral blood mononuclear cell population isolated from kidney transplant recipients (n = 6). The percentage of (A) CD8 + T naïve, (B) CD8 + T CM, (C) CD8 + T EM, and those of interferon γ (IFN-γ) producing cells (D, E, F) before and after 6 months SRL conversion were compared. Note significant decrease of IFN-γ producing CD8 + TCM cells after SRL conversion (58.5% ± 18.9% vs. 37.9% ± 25.4%). T CM, central memory T cells; T EM, effector memory T cells. a p.46, Wilcoxon signed-rank test. withdrawal. The main cause of discontinuation was intolerable oral mucositis (n = 3). Other causes were facial dermatitis (n = 1) and diarrhea (n = 1). Development of leukopenia, anemia, thrombocytopenia, abnormality of liver function tests, increase of fasting glucose, or infections was not observed. DISCUSSION The results of our study clearly demonstrated that SRL conversion is safe in long-term (mean, 14.7 years) CNI-exposed KT recipients with stable graft function. Conversion to SRL did not affect graft function, and 556 www.kjim.org http://dx.doi.org/1.394/kjim.214.366

Yu JH, et al. Sirolimus conversion in long-term KTR there were no episodes of acute rejection or graft loss. Furthermore, conversion to SRL provided immunologic benefits by increasing T reg. These findings suggest that conversion to SRL is recommendable in long-term CNI-exposed KT patients with stable graft function. First, we evaluated whether conversion to SRL is actually safe in long-term CNI-exposed KT patients. Although graft function was stable and no acute rejection episodes were noted after SRL conversion, we did not observe further improvement of graft function after SRL, as observed in other studies of early SRL conversion [14,15]. This may be related to the minimal dose of CNIs received by patients in our study, which infers minimal toxicity before SRL conversion. The lack of acute rejection episodes in this study seems to be related to the conversion timing. Our patients were also immunologically stable before conversion; therefore, conversion to SRL may not have affected the overall immune status. Taken together, our study suggests that SRL conversion is safe without leading to deteriorating graft function, development of acute rejection, or graft loss. Treatment with CNIs induces the production of proinflammatory cells, such as Th17, and reduces that of anti-inflammatory phenotypes, such as T reg, by blocking the transcription of the gene encoding IL-2 [16,17]. We reported previously that SRL treatment decreased Th17 and increased T reg in vitro and in vivo [18]. Therefore, we expected that SRL conversion would provide immunologic advantages by reciprocal regulation of the Th17/T reg axis. In our study, SRL conversion increased the proportion of T reg but did not change the proportion of Th17. Additionally, IFN-γ producing CD8 + TEM decreased, which was associated with late allograft dysfunction in our previous study [19]. Based on these immunologic findings, SRL may have higher favorable effects by regulating the Th17/T reg axis and by decreasing IFN-γ producing CD8 + T EM in KT recipients when compared to current CNI therapy. In B cell subpopulations, however, SRL conversion did not induce any change. This may be because of our patients stable immune status before conversion. The SRL conversion was successful in nine of 14 patients (64.2%). However, the five patients (35.8%) who withdrew did so primarily owing to mucocutaneous inflammation, mostly within 6 weeks after conversion. The conversion rate and adverse events were similar to previous studies [9,1,15,2], but serious adverse events such as pneumonitis did not occur in our study. The leading cause of SRL discontinuation was oral mucositis, experienced by half of the enrolled patients. It was thought that trough level of SRL was relatively high in early period (2 weeks vs. 6 months, 7.9 ng/ml vs. 7.3 ng/ ml, respectively). A previous report suggested that 3 to 7 days of topical clobetasol application was an effective treatment for SRL-induced aphthous ulcers [21]. Close monitoring of mucocutaneous complications and treatment with topical steroid ointment might be helpful, but as these patients were unable to tolerate these adverse events, we decided to withdraw these patients during the early period of SRL conversion. In addition, SRL caused hyperlipidemia and proteinuria, but the degree of proteinuria in our study was not clinically significant (PCR,.39 ±.4). Our study had some limitations. First, the number of enrolled patients was small (31% participation rate) in spite of a detailed explanation of the advantages of SRL. Eligible patients were required to have received CNIs for more than 1 years. Therefore, it was difficult for clinicians to introduce new immunosuppressant to stable KT recipients who were also reluctant to change it. Second, there was no control group for comparing the change of renal function and adverse events after conversion. Third, the follow-up duration (6 months) was too short to observe any potential anticancer effect of SRL. A larger number of patients and long-term follow-up are needed in further studies. In summary, SRL conversion in long-term CNI-exposed KT recipients with stable graft function is a safe and immunologically beneficial switch in terms of graft function, acute rejection and changes of T cell subsets. Drawbacks included intolerably severe mucocutaneous adverse events, ultimately resulting in study withdrawal. Close monitoring and effective treatment of mucocutaneous adverse events is required in the early period after SRL conversion to ensure success. KEY MESSAGE 1. Sirolimus (SRL) conversion in long-term stable kidney transplantation recipients is safe. 2. SRL conversion has immunologic advantage via increasing regulatory T cell (T reg ). http://dx.doi.org/1.394/kjim.214.366 www.kjim.org 557

The Korean Journal of Internal Medicine Vol. 31, No. 3, May 216 3. Mucocutaneous complications are the most common side effect of SRL occurred in early period of SRL conversion. Conflict of interest No potential conflict of interest relevant to this article was reported. Acknowledgments This study was supported by a grant from the Korean Health Technology R&D Project, Ministry for Health and Welfare, Republic of Korea (HI9C1555). REFERENCES 1. Li C, Yang CW. The pathogenesis and treatment of chronic allograft nephropathy. Nat Rev Nephrol 29;5:513-519. 2. Kasiske BL, Snyder JJ, Gilbertson DT, Wang C. Cancer after kidney transplantation in the United States. Am J Transplant 24;4:95-913. 3. Vincenti F, Friman S, Scheuermann E, et al. Results of an international, randomized trial comparing glucose metabolism disorders and outcome with cyclosporine versus tacrolimus. Am J Transplant 27;7:156-1514. 4. Stallone G, Schena A, Infante B, et al. Sirolimus for Kaposi s sarcoma in renal-transplant recipients. N Engl J Med 25;352:1317-1323. 5. Saemann MD, Haidinger M, Hecking M, Horl WH, Weichhart T. The multifunctional role of mtor in innate immunity: implications for transplant immunity. Am J Transplant 29;9:2655-2661. 6. Zhao T, Yang C, Qiu Y, et al. Comparison of regulatory T cells and FoxP3-positive T-cell subsets in the peripheral blood of renal transplant recipients with sirolimus versus cyclosporine: a preliminary study. Transplant Proc 213;45:148-152. 7. Stallone G, Infante B, Schena A, et al. Rapamycin for treatment of chronic allograft nephropathy in renal transplant patients. J Am Soc Nephrol 25;16:3755-3762. 8. Schena FP, Pascoe MD, Alberu J, et al. Conversion from calcineurin inhibitors to sirolimus maintenance therapy in renal allograft recipients: 24-month efficacy and safety results from the CONVERT trial. Transplantation 29;87:233-242. 9. Weir MR, Mulgaonkar S, Chan L, et al. Mycophenolate mofetil-based immunosuppression with sirolimus in renal transplantation: a randomized, controlled Spare-the- Nephron trial. Kidney Int 211;79:897-97. 1. Guba M, Pratschke J, Hugo C, et al. Early conversion to a sirolimus-based, calcineurin-inhibitor-free immunosuppression in the SMART trial: observational results at 24 and 36months after transplantation. Transpl Int 212;25:416-423. 11. Soleimani AR, Kamkar I, Nikoueinejad H, Moraweji AR. Comparison of cyclosporine and sirolimus effects on serum creatinine level over five years after kidney transplantation. Transplant Proc 213;45:1644-1647. 12. Diekmann F, Campistol JM. Conversion from calcineurin inhibitors to sirolimus in chronic allograft nephropathy: benefits and risks. Nephrol Dial Transplant 26;21:562-568. 13. Alvarez-Lara MA, Carracedo J, Ramirez R, et al. The imbalance in the ratio of Th1 and Th2 helper lymphocytes in uraemia is mediated by an increased apoptosis of Th1 subset. Nephrol Dial Transplant 24;19:384-39. 14. Lebranchu Y, Thierry A, Toupance O, et al. Efficacy on renal function of early conversion from cyclosporine to sirolimus 3 months after renal transplantation: concept study. Am J Transplant 29;9:1115-1123. 15. Guba M, Pratschke J, Hugo C, et al. Renal function, efficacy, and safety of sirolimus and mycophenolate mofetil after short-term calcineurin inhibitor-based quadruple therapy in de novo renal transplant patients: one-year analysis of a randomized multicenter trial. Transplantation 21;9:175-183. 16. Li Y, Shi Y, Huang Z, et al. CNI induced Th17/Treg imbalance and susceptibility to renal dysfunction in renal transplantation. Int Immunopharmacol 211;11:233-238. 17. Chung BH, Kim KW, Kim BM, et al. Dysregulation of Th17 cells during the early post-transplant period in patients under calcineurin inhibitor based immunosuppression. PLoS One 212;7:e4211. 18. Kim KW, Chung BH, Kim BM, Cho ML, Yang CW. The effect of mammalian target of rapamycin inhibition on T helper type 17 and regulatory T cell differentiation in vitro and in vivo in kidney transplant recipients. Immunology 215;144:68-78. 19. Yap M, Boeffard F, Clave E, et al. Expansion of highly differentiated cytotoxic terminally differentiated effector memory CD8+ T cells in a subset of clinically stable kid- 558 www.kjim.org http://dx.doi.org/1.394/kjim.214.366

Yu JH, et al. Sirolimus conversion in long-term KTR ney transplant recipients: a potential marker for late graft dysfunction. J Am Soc Nephrol 214;25:1856-1868. 2. Pallet N, Legendre C. Adverse events associated with mtor inhibitors. Expert Opin Drug Saf 213;12:177-186. 21. Chuang P, Langone AJ. Clobetasol ameliorates aphthous ulceration in renal transplant patients on sirolimus. Am J Transplant 27;7:714-717. http://dx.doi.org/1.394/kjim.214.366 www.kjim.org 559