NALP12, a gene responsible for periodic fever syndromes. Isabelle Jéru INSERM U.654, Paris, FRANCE

Similar documents
Proceedings of the World Small Animal Veterinary Association Sydney, Australia 2007

hereditary periodic fever periodic fever syndrome recurrent fever familial Mediterranean FMF autoinflammatory syndrome T 1 Tsutomu Oh-ishi

Differentiation-induced Changes of Mediterranean Fever Gene (MEFV) Expression in HL-60 Cell

Amino Acids. Amino Acids. Fundamentals. While their name implies that amino acids are compounds that contain an NH. 3 and CO NH 3

Umbrella study design in patients with Hereditary Periodic Fevers, an orphan autoimmune disease. Karine Lheritier 15 June 2016 PSI Immunology meeting

RISK OF FMF DEVELOPMENT AMONG HETEROZYGOUS PATIENTS IN ARMENIAN POPULATION

Cryopyrin Associated Periodic Syndromes (CAPS) (CINCA/Muckle Wells/FCAS)

TRANSLATION: 3 Stages to translation, can you guess what they are?

BIOCHEMISTRY REVIEW. Overview of Biomolecules. Chapter 4 Protein Sequence

CAPS for Ophthalmologists. Prof. Michaël Hofer Unité d immuno-allergologie et rhumatologie Unité Romande de rhumatologie pédiatrique CHUV, Lausanne

Pathogenesis of familial periodic fever syndromes or hereditary autoinflammatory syndromes

Supplementary Table S1 CAPS systematic literature review search strategy

Supplementary Figure-1. SDS PAGE analysis of purified designed carbonic anhydrase enzymes. M1-M4 shown in lanes 1-4, respectively, with molecular

Transgenic Mice and Genetargeting

Supplementary Appendix

Lessons learned from CAPS: Genes, pathways and clinical care

SYSTEMIC AA-TYPE amyloidosis is a common

MEDICAL GENOMICS LABORATORY. Next-Gen Sequencing and Deletion/Duplication Analysis of NF1 Only (NF1-NG)

Biology. Lectures winter term st year of Pharmacy study

3rd International Conference on Neurology & Therapeutics.

Cryopyrin and pyrin activate caspase-1, but not NF-jB, via ASC oligomerization

Proteins are sometimes only produced in one cell type or cell compartment (brain has 15,000 expressed proteins, gut has 2,000).

Rilonacept for cryopyrin associated periodic syndromes

Insulin Resistance. Biol 405 Molecular Medicine

NGS panels in clinical diagnostics: Utrecht experience. Van Gijn ME PhD Genome Diagnostics UMCUtrecht

Familial Cold Autoinflammatory Syndrome

Beta Thalassemia Case Study Introduction to Bioinformatics

BIOCHEMICAL AND MOLECULAR HETEROGENEITY IN CARNITINE PALMITOYLTRANSFERASE II DEFICIENCY

Genetic information flows from mrna to protein through the process of translation

This exam consists of two parts. Part I is multiple choice. Each of these 25 questions is worth 2 points.

The Basics: A general review of molecular biology:

1. Describe the relationship of dietary protein and the health of major body systems.

Protein Synthesis and Mutation Review

Atypical Natural Killer T-cell receptor recognition of CD1d-lipid antigens supplementary Information.

recurrent febrile syndromes what a rheumatologist needs to know

Phenylketonuria (PKU) Structure of Phenylalanine Hydroxylase. Biol 405 Molecular Medicine

MUTATIONS, MUTAGENESIS, AND CARCINOGENESIS. (Start your clickers)

Autoinflammatory Diseases Periodic Fever Syndromes Athens, April 30th 2010 Tim Niehues MD

Finding protein sites where resistance has evolved

Integration Solutions

Fibromyalgia and MEFV

2. Which of the following amino acids is most likely to be found on the outer surface of a properly folded protein?

Infiammazione. Proteine di fase acuta negative: albumina; transferrina.

Pedido de acesso a dados do Registo Nacional de Doentes Reumáticos (Reuma.pt) da Sociedade Portuguesa de Reumatologia

Cigna Drug and Biologic Coverage Policy

Properties of amino acids in proteins

What causes cancer? Physical factors (radiation, ionization) Chemical factors (carcinogens) Biological factors (virus, bacteria, parasite)

The composition of macromolecular cellular composition of mouse cell lines can be found

CS612 - Algorithms in Bioinformatics

Autoimmunity and autoinflammation

CHAPTER 21: Amino Acids, Proteins, & Enzymes. General, Organic, & Biological Chemistry Janice Gorzynski Smith

Objective: You will be able to explain how the subcomponents of

Case Report A Case of Hyperimmunoglobulinemia D Syndrome Successfully Treated with Canakinumab

Autoinflammatory diseases and the inflammasome: mechanisms of IL-1β activation leading to neutrophil-rich skin disorders

Long term management of patients with cryopyrin-associated periodic syndromes (CAPS): focus on rilonacept (IL-1 Trap)

Amino Acids. Review I: Protein Structure. Amino Acids: Structures. Amino Acids (contd.) Rajan Munshi

What we know about Li-Fraumeni syndrome

Autoinflammatory Syndromes: An Overview

oncogenes-and- tumour-suppressor-genes)

Evidence of digenic inheritance in autoinflammation-associated genes

Neonatal-onset multisystem inflammatory disorder (NOMID) is a rare congenital disorder

Differences in structural elements of Bcr-Abl oncoprotein isoforms in Chronic Myelogenous Leukemia

NIH Public Access Author Manuscript Annu Rev Immunol. Author manuscript; available in PMC 2010 December 2.

LAB#23: Biochemical Evidence of Evolution Name: Period Date :

Biological systems interact, and these systems and their interactions possess complex properties. STOP at enduring understanding 4A

Beta Thalassemia Sami Khuri Department of Computer Science San José State University Spring 2015

YES NO UNKNOWN. Stage I: Rule-Out Dashboard Secondary Findings in Adults ACTIONABILITY PENETRANCE SIGNIFICANCE/BURDEN OF DISEASE NEXT STEPS

Four melanocyte-stimulating hormones have the following amino acid sequences:

Quantitative LC-MS/MS Analysis of Glucagon. Veniamin Lapko, Ph.D June 21, 2011

Role of Innate Immunity in Control of Adaptive Immunity

New Mutations of CIAS1 That Are Responsible for Muckle-Wells Syndrome and Familial Cold Urticaria: A Novel Mutation Underlies Both Syndromes

Department of Dermatology, Allergology and Venereology and Department of Medicine University of Helsinki Helsinki, Finland

Methionine (Met or M)

Introduction. Keywords: AA amyloidosis; TNFRSF1A; MEFV; NALP3; periodic fever

Supplementary Information

Bio 111 Study Guide Chapter 17 From Gene to Protein

Reading from the NCBI

Steps at which eukaryotic gene expression can be controlled. Cell 7.5

Policy Number: PHA044 Effective Date: March 1, 2019

Nagahama Institute of Bio-Science and Technology

Policy Number: CS2019D0066C Effective Date: March 1, 2019

Page 8/6: The cell. Where to start: Proteins (control a cell) (start/end products)

T-cell activation T cells migrate to secondary lymphoid tissues where they interact with antigen, antigen-presenting cells, and other lymphocytes:

T-cell activation T cells migrate to secondary lymphoid tissues where they interact with antigen, antigen-presenting cells, and other lymphocytes:

AA s are the building blocks of proteins

Chemical Mechanism of Enzymes

Cahn - Ingold - Prelog system. Proteins: Evolution, and Analysis Lecture 7 9/15/2009. The Fischer Convention (1) G (2) (3)

NIH Public Access Author Manuscript Nat Rev Rheumatol. Author manuscript; available in PMC 2012 July 11.

Dr. Ayman Mohsen Mashi, MBBS Consultant Hematology & Blood Transfusion Department Head, Laboratory & Blood Bank King Fahad Central Hospital, Gazan,

Dario Balestra University of Ferrara

Autoinflammation: translating mechanism to therapy

Algal Biofuels Research: Using basic science to maximize fuel output. Jacob Dums, PhD candidate, Heike Sederoff Lab March 9, 2015

Practice Problems 3. a. What is the name of the bond formed between two amino acids? Are these bonds free to rotate?

9/6/2011. Amino Acids. C α. Nonpolar, aliphatic R groups

Supplementary Figure 1 Preparation, crystallization and structure determination of EpEX. (a), Purified EpEX and EpEX analyzed on homogenous 12.

MEDICAL POLICY I. POLICY POLICY TITLE POLICY NUMBER CANAKINUMAB (ILARIS ) MP-2.147

Background 11/8/2011. Disclosure. Hereditary Periodic Fever Syndromes Mutations in Idiopathic Acute Recurrent Pericarditis.

The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation

Introduction to Protein Structure Collection

Transcription:

NALP12, a gene responsible for periodic fever syndromes Isabelle Jéru INSERM U.654, Paris, FRANCE

Hereditary periodic fever syndromes (HPFs) Phenotype 6 clinical entities Fever episodes Abdominal pain Arthralgia Cutaneous signs Systemic inflammation Complication: renal amyloidosis FMF TRAPS HIDS FCAS MWS CINCA / NOMID

Hereditary periodic fever syndromes (HPFs) Phenotype 6 clinical entities 4 genes ID date Protein Fever episodes Abdominal pain Arthralgia Cutaneous signs Systemic inflammation Complication: renal amyloidosis FMF TRAPS HIDS FCAS MWS CINCA / NOMID MEFV TNFRSF1A MVK CIAS1 / NLRP3 1997 1999 1999 2001 pyrin TNFRSF1A mevalonate kinase cryopyrin / NALP3 Limits of molecular diagnosis Missense mutation functional test? Many unexplained cases genetic heterogeneity TNFRSF1A pyrin PYD B30.2.. DD NALP3 cryopyrin PYD NBS LRR MVK GHMP kinase GHMP kinase

Choice of a candidate gene Srategy Sporadic cases + Clinical heterogeneity Candidate-gene approach

Choice of a candidate gene Srategy Sporadic cases + Clinical heterogeneity Candidate-gene approach Patients and candidate gene Attacks triggered by cold NALP family FCAS CIAS1 PYD *** * NBS * * * * cryopyrin / NALP3 LRR Myelo-monocytic expression Regulation of inflammatory signalling pathways Sequence homologies NALP12

Analysis of NALP12 I Family 1 II Ile283 Arg284/X Val285 Ile283 Arg284/X Val285 Nonsense Mutation (heterozygous) c.850c>t

Analysis of NALP12 Family 1 Family 2 I I II II Ile283 Arg284/X Val285 Ile283 Arg284/X Val285 exon 3 intron 3 Gln690 C A G C T g t w a r k Nonsense Mutation (heterozygous) c.850c>t Splice mutation (heterozygous) c.2072+3inst

Analysis of NALP12 Family 1 Family 2 I I Ile283 Arg284/X Val285 exon 3 intron 3 Gln690 C A G C T g t w a r k II II Ile283 Arg284/X Val285 Ile283 Arg284/X Val285 exon 3 intron 3 Gln690 C A G C T g t w a r k Nonsense Mutation (heterozygous) c.850c>t Splice mutation (heterozygous) c.2072+3inst

Analysis of NALP12 Family 1 Family 2 I I Ile283 Arg284/X Val285 Ile283 Arg284 Val285 exon 3 intron 3 exon 3 intron 3 A T C C G A G T T Gln690 Gln690 C A G C T g t a a g t C A G C T g t w a r k II II Ile283 Arg284/X Val285 Ile283 Arg284/X Val285 exon 3 intron 3 exon 3 intron 3 Gln690 Gln690 C A G C T g t a a g t C A G C T g t w a r k Nonsense Mutation (heterozygous) c.850c>t Splice mutation (heterozygous) c.2072+3inst

Effect of the c.2072+3inst mutation on splicing Study of NALP12 transcripts from minigenes Ex.3 Ex.4 T T C C A G G T G A T C Ex.3 G C A G C T Ex.4 A C C A G A bp 650 500 L WT c.2072+3inst no RNA L NALP12 WT Ex.3 Ex.4 T C A C T T C C A G A C C A G A G A G G 650 500 β-actin c.2072+3inst

Effect of the c.2072+3inst mutation on splicing Study of NALP12 transcripts from minigenes Ex.3 Ex.4 T T C C A G G T G A T C Ex.3 G C A G C T Ex.4 A C C A G A bp 650 500 L WT c.2072+3inst no RNA L NALP12 WT Ex.3 Ex.4 T C A C T T C C A G A C C A G A G A G G 650 500 β-actin c.2072+3inst Consequences on transcripts Expected consequences at the protein level Ex.3 170 bp 5 TTCCAG GTGATC......GCAGCT Ex.4 gttaag... aagcag ACCAGA 3 635 646 1061 Val Ile Val Val Ser Asn Ile Ala Ser Lys Met Glu // X TTCCAG ACCAGA Thr Arg Glu Asp Arg Ser Ala Gly Arg Leu Gln X Activation of a cryptic splice site Frameshift / Premature termination codon

Location of NALP12 mutations Arg284X * Val635ThrfsX12 Human NALP12 124 DPQETYRDYVRRKFRLMEDRNARLGECVNLSHRYTRLLLVKEHSNPMQVQQQLLDTGRGH Chimp NALP12 124 DPQETYRDYVRRKFRLMEDRNARLGECVNLSHRYTRLLLVKEHSNPMQAQQQLLDTGRGH Mouse NALP12 124 DLQTTYKDYVRRKFQLMEDRNARLGECVNLSNRYTRLLLVKEHSNPIWTQQKFVDVEWER Rat NALP12 124 DPQITYKDYVRRKFRLMEDRNARLGECVNLSHRYTRLLLVKEHSNPIWAQQKLLETGWEH Dog NALP12 62 DPRETYRDYVRRKFRLMEDRNARLGECVNLSHRYTRLLLVKEHSNPMWAQQKLLDTGWGQ Human NALP3 135 DYRKKYRKYVRSRFQCIEDRNARLGESVSLNKRYTRLRLIKEHRSQQEREQELLAIG--K 424 LRQTSRTTTAVYMLYLLSLMQPKPGAPRLQPPPNQRGLCSLAADGLWNQKILFEEQDLRK 424 LRQTSRTTTAVYMLYLLSLMQPKPGAPRLQPPPNQRGLCSLAADGIWNQKILFEEQDLRK 424 LRQTPRTTTAVYMFYLLSLMQPKPGTPTFKVPANQRGLVSLAAEGLWNQKILFDEQDLGK 424 LRQTSRTTTAVYMFYLLSLMQPKPGTPTFKVPANQRGLVSLAAEGLWNQKILFEEEDLGK 362 LRQTSRTTTAVYMLYLLSLMQPKPGSPILQSPPNQRGLCSLAADGLWNQKILFEEQDLRK 432 LAQTSKTTTAVYVFFLSSLLQPRGGSQEHGLCAHLWGLCSLAADGIWNQKILFEESDLRN Human NALP12 184 ARTVGHQASPIKIETLFEPDEERPEPPRTVVMQGAAGIGKSMLAHKVMLDWADGKLFQGR Chimp NALP12 184 ARTVGHQASPIKIETLFEPDEERPEPPRTVVMQGAAGIGKSMLAHKVMLDWADGKLFQGR Mouse NALP12 184 SRTRRHQTSPIQMETLFEPDEERPEPPHTVVLQGAAGMGKSMLAHKVMLDWADGRLFQGR Rat NALP12 184 SRTRGHQASPIQMETLFEPDEERPEPPRTVVLQGAAGMGKSMLTHKVMLDWADGRLFQDQ Dog NALP12 122 ARTVGHQASFIQMETLFEPDEERPEPPRTVVLQGAAGMGKSMLAHKVMLDWADGRLFQDR Human NALP3 193 TKTCESPVSPIKMELLFDPDDEHSEPVHTVVFQGAAGIGKTILARKMMLDWASGTLYQDR Human NALP12 244 FDYLFYINCREMNQSATECSMQDLIFSCWPEPSAPLQELIRVPERLLFIIDGFDELKPSF Chimp NALP12 244 FDYLFYINCREMNQSATECSMQDLISGCWPEPSAPLQELIRVPERLLFIIDGFDELKPSF Mouse NALP12 244 FDYVFYISCRELNRSHTQCSVQDLISSCWPERGISLEDLMQAPDRLLFIIDGFDKLHPSF Rat NALP12 244 FDYVFYISCRELNRSHTQCSVHDLLSSCWPEHGAPLEDLIRAPDRLLFIIDGFHELHPSF Dog NALP12 182 FDYLFYINCRKMNQSTAEQSAQDLISSCWPEPSVPLQELVRVPERLLFIIDGFHELKPSF Human NALP3 253 FDYLFYIHCRS-LVTQRSLGDLIMSCCPDPNPPIHKIVRKPSRILFLMDGFDELQGAF * 484 HGLDGEDVSAFLNMNIFQKDINCERYYSFIHLSFQEFFAAMYYILDEGEGGAG------- 484 HGLDGEDVSAFLNMNIFQKDMNCERYYSFIHLSFQEFFAAMYYILDEGERGAG------- 484 HGLDGADVSTFLNVNIFQKGIKCEKFYSFIHLSFQEFFAAMYCALNGRE----------- 484 HGLDGASTFLNVNIFQKGIKCEKFYSFIHLSFQEFFTAMYCALHGRE----------- 422 HGLDGADVSSFLNMNIFQKDINCEKFYSFIHLSFQEFFAAMYYILDPGESRSS------- 492 HGLQKADVSAFLRMNLFQKDCEKFYSFIHMTFQEFFAAMYYLLEEEKEGRTNVPGSRL 537 --PDQDVTRLLTEYAFSERSFLALTSRFLFGLLNEETRSHLEKSLCWKVSPHIKMDLLQW 537 --PDQDVTRLLTEYAFSERSFLALTSRFLFGLLNEETRSHLEKSLCWKVSPHIKMDLLQW 533 -----AVRRALAEYGFSERNFLALTVHFLFGLLNEEMRCYLERNLGWSISPQVKELAW 533 -----AVRRALAEYGFSERNFLAHTVRFLFGLLNEEMRCYLERNLGWTISPQVKEEALAW 475 --PEHNVTRLLAEYEFSERSFLALTVRFLFGLLNEETRSYLEKSLCWKVSPHVKVELLEW 552 KLPSRDVTVLLENYGKFEKGYLIFVVRFLFGLVNQERTSYLEKKLSCKISQQIRLELLKW Human NALP12 304 HDPQGPWCLCWEEKRPTELLLNSLIRKKLLPELSLLITTRPTALEKLHRLLEHPRHVEIL Chimp NALP12 304 HDAQGPWCLCWEEKRPTELLLNSLIRKKLLPELSLLITTRPTALEKLHRLLEHPRHVEIL Mouse NALP12 304 HDAQGPWCLCWEEKQPTLLGSLIRRLLLPQVSLLITTRPCALEKLHGLLEHPRHVEIL Rat NALP12 304 HDVQGPWCHCWEEKRPTELLLGSLIRRLLLPQLSLLITTRPCALEKLHGLLEHPRHVEIL Dog NALP12 242 HDPQGPWCLCWEEKRPTELLLSSLIRKKLLPELSVLITIRPTALEKLHRLLEHPRHVEIL Human NALP3 312 DEHIGPLCTDWQKAERGDILLSSLIRKKLLPEASLLITTRPVALEKLQHLLDHPRHVEIL 595 IQSKAQSDGSTLQQGSLEFFSCLYEIQEEEFIQQALSHFQVIVVSNIASKMEHMVSSFCL 595 IQSKAQSDGSTLQQGSLEFFSCLYEIQK-EFTQQALSHFQVIVVSNIASKMEHMVSSFCL 588 IQNKAGSEGSTLQHGSLELLSCLYQEEDFIQQALSHFQVVVVRSISTKMEHMVCSFCA 588 IQNKARSEGSTLQHGSLELLSCLYEIQEEDFIQQALSHFQVVVVRNLSTKMEHVVCSFCA 533 IQRKAQSEGSTLQQGSLELFSCLYEIQEEDFIQQALSPFQVVVVNNIATKMEHMISSFCV 612 IKAKAKKLQIQPSQLELFYCLYEMQEEDFVQRAMDYFPKIEIN-LSTRMDHMVSSFCI Human NALP12 364 GFSEAERKEYFYKYFHNAEQAGQVFNYVRDNEPLFTMCFVPLVCWVVCTCLQQQLEGGGL Chimp NALP12 364 GFSEAERKEYFYKYFHNAEQAGQVFNYVRDNEPLFTMCFVPLVCWVVCTCLQQQLEGGGL Mouse NALP12 364 GFSEEARKEYFYRYFHNTGQASRVLSFLMDYEPLFTMCFVPMVSWVVCTCLKQQLESGEL Rat NALP12 364 GFSEAEREEYFYRYFHNTGQASQVFSFMRDYEPLFTMCFVPMVSWVVCTCLKQQLESGEL Dog NALP12 302 GFSEAERKEYFYKYFHNAEQAGQVFNFIRDNEPLFTLCFVPMVCWVVCTCLKQQLEDGGL Human NALP3 372 GFSEAKRKEYFFKYFSDEAQARAAFSLIQENLFTMCFIPLVCWIVCTGLKQQMESGKS 655 KRCRSAQVLHLYGATYSADGEDRARCSAGAHTLLVQL 654 KHCRSAQVLHLYGATYSADGEDRARCSAGTHTLLVQL 648 RYCRSTLHLHGSAYSTGMEDDPPEPSGVQTQSTYL 648 RYCRGTLHLYGSAYSTGAEDGPPEPPGAQTQSTHS 593 KNCRSALVLHLHGAAYSPDEDDGGRWASGPQMLPTQI 671 ENCHRVESLSLG-FLHNMPKEEEEEEKEG-------- Mutations Deletion of highly conserved regions

NALP functions ligands PYD NBS LRR NALP TIR CC TLR

NALP functions ligands p65? PYD PYD NBS LRR CARD ASC CARD p20 p10 NALP pro-caspase1 TIR CC TLR p20 p10 caspase-1 p65 pro - IL-1β IL-1β IL-1β NF-κB signalling inhibition Activation of IL-1b secretion

Functional consequences NF-κB signalling pathway HEK293 transfected cells NF-κB activation (fold) 600 400 200 0 NALP12-WT NALP12-Arg284X NALP12-Val635ThrfsX12 + p65 kda 98 WT Arg284X Val635ThrfsX12 64 NALP12 50 64 α-tubulin 50 + p65 WT: inhibition of NF-κB Mutants: loss of inhibition

Functional consequences NF-κB signalling pathway HEK293 transfected cells NF-κB activation (fold) 600 400 200 0 NALP12-WT IL-1β secretion NALP12-Arg284X NALP12-Val635ThrfsX12 + p65 kda 98 WT Arg284X Val635ThrfsX12 64 NALP12 50 64 α-tubulin 50 + p65 Culture of patients monocytes (family 1) WT: inhibition of NF-κB Mutants: loss of inhibition IL-1β secretion (pg/ml) 10000 1000 100 10 1 father mother x 50 x 100 child II.1 child II.2 Patients: IL-1β secretion anti-il-1 treatment

HRFs and autoinflammatory disorders Inflammatory / immune disorders Transmission Gene HPFs Hydatidiform mole Vitiligo-associated autoimmune disorders Crohn s disease Blau syndrome Bare lymphocyte syndrome Multiple sclerosis Biological and clinical continuum autoinflammatory / autoimmune disorders AD AR - multifactorial AD AR multifactorial NALP3 NALP12 NALP7 NALP1 NOD2 CIITA NALP3 / NALP12 PYD NBS LRR NALP1 / NALP7 PYD NBS LRR NOD2 CARD CARD NBS LRR CIITA CARD AD NBS LRR

Conclusions New HPF gene PYD NBS LRR NALP12 Improvement of disease management (genetic counselling, treatment) No functional redundancy NALP12 / NALP3 In vitro and in vivo demonstration of NALP12 function Mutational spectrum? Role of NALP12 in other autoinflammatory ou autoimmune disorders, Mendelian or multifactorial?

Acknowledgments INSERM U.654 E. Cochet P. Duquesnoy S. Amselem Clinicians G. Grateau (Hôpital Tenon, Paris) E. Grimprel (Hôpital Trousseau, Paris) V. Hentgen (Hôpital Le Chesnay, Versailles) M. Lackmy-Port-Lis (CHU Pointe-à-Pitre) J. Landman-Parker (Hôpital Trousseau, Paris) S. Marlin (Hôpital Trousseau, Paris) T. Sarkisian (Center of Medical Genetics, Armenia) Research departments L. Cuisset, C. Dodé, M. Delpech (Hôpital Cochin, Paris) T. and E. Alnemri, JW. Yu (TJU, Philadelphia, USA) J.C. Lecron (CHU Poitiers, Paris) K. McElreavey (Institut Pasteur, Paris)