Effect of endurance training program based on anaerobic threshold (AT) for lower limb amputees

Similar documents
Knee Joint Moments of Transtibial Amputees While Cycling. Laura Jones April 16, 2008

Effect of Exercise at the AT Point for Children with Cerebral Palsy

Exercise Stress Testing: Cardiovascular or Respiratory Limitation?

AEROBIC METABOLISM DURING EXERCISE SYNOPSIS

Metabolic Calculations

Training Lab Procedures

INTERNET BASED SYSTEM FOR ADJUSTING CYCLE ERGOMETER WORKLOAD TO MODERATE EXERCISE

RELATIVE EXERCISE INTENSITY, HEART RATE, OXYGEN CONSUMPTION, AND CALORIC EXPENDITURE WHEN EXERCISING ON VARIOUS NON-IMPACT CARDIO TRAINERS

Exercise Prescription Certificate Course

"Acute cardiovascular responses to different types of exercise and in different populations"

EFFECTS OF WALKING HABIT ON AEROBIC WORK CAPACITY AND VITAL AGE IN MIDDLE-AGED AND ELDERLY WALKERS

HEART RATE PREDICTIONS OF EXERCISE INTENSITY DURING ARM, LEG AND COMBINED ARM/LEG EXERCISE

Estimated Maximal Oxygen Consumption of Transfemoral Amputees Utilizing the Ebbeling Treadmill Test

Hands on Sports Therapy KNOWLEDGE REVIEW QUESTIONS 2004 Thomson Learning It can help to shape a basic fitness training programme

FOLLOW-UP MEDICAL CARE OF SERVICE MEMBERS AND VETERANS CARDIOPULMONARY EXERCISE TESTING

The Work Rate Corresponding to Ventilatory Threshold During Steady-State and Ramp Exercise

Relation between cigarette smoking and ventilatory threshold in the Japanese

Peak and submaximal physiologic responses following electrical stimulation leg cycle ergometer training

UTILITY OF THE POWERBALL IN THE INVIGORATION OF THE MUSCULATURE OF THE FOREARM

Cardiac rehabilitation: a beneficial effect in CHD?

Role of Aerobic Exercise in Post-polio Syndrome. Dr. Jülide Öncü,MD İstanbul Sisli Etfal Teaching Hospital

DIFFERENCE IN MAXIMAL OXYGEN UPTAKE (VO 2 max) DETERMINED BY INCREMENTAL AND RAMP TESTS

Blood Lactate Changes during Isocapnic Buffering in Sprinters and Long Distance Runners

Physiological Responses and Mechanical Efficiency during Different Types of Ergometric Exercise

Six-Minute Walk Test in Persons With Transtibial Amputation. 4 arm-leg ergometry, 5 and treadmill exercise. 5 During rehabilitation,

Steven S. Saliterman, MD, FACP

William C Miller, PhD, FCAOT Professor Occupational Science & Occupational Therapy University of British Columbia Vancouver, BC, Canada

Oxygen uptake and ventilation during rowing and running in females and males

Physical Education Studies Year 11 ATAR. CHAPTER 5: Exercise Physiology NEXT

GEORGE MASON UNIVERSITY School of Recreation, Health, and Tourism. KINE 350-C01: Exercise Prescription and Programming (3) Summer 2015

This is the author s version of a work that was submitted/accepted for publication in the following source:

Paula Radcliffe is an English marathon runner

Pathophysiology Department

Gender Differences in Aerobic and Anaerobic Exercise. Samaria K. Cooper. Ball State University

INDIVIDUALS WHO HAVE SUFFERED from poliomyelitis. Dynamic Water Exercise in Individuals With Late Poliomyelitis

Title. Author(s)YANO, T.; OGATA, H.; MATSUURA, R.; ARIMITSU, T.; YUN. CitationPhysiological Research, 56: Issue Date Doc URL.

ACYCLE ERGOMETER, AS WELL AS a treadmill, are

Upper Body Exercise Capacity in Youth With Spina Bifida

Computing Intensity Increments For Incremental Exercise Protocols

Title: The effect of individualising training intensities with. respect to the anaerobic threshold in the elderly.

The Double-Product-Break-Point Derived from Measurents with a Digital Automatic Sphygmomanometer

Oxygen uptake efficiency slope calculations based on heart rate reserve endpoints in young, intellectually disabled individuals

COMPONENTS OF FITNESS & FITNESS SCREENINGS PHYSICAL EDUCATION MRS. MANNE

reported a considerably greater rate of blood lactate

(VE), respiratory frequency (f), tidal volume (VT) and end-tidal PCO2 progressively

Endurance ability characteristics of professional sportsmen

Optimizing the Lung Transplant Candidate through Exercise Training. Lisa Wickerson BScPT, MSc Canadian Respiratory Conference April 25, 2014

CHAPTER THREE JOURNAL MANUSCRIPT

EXERCISES FOR AMPUTEES. Joanna Wojcik & Niki Marjerrison

The systems physiology of exercise

Bengt Saltin,

SUBMAXIMAL EXERCISE TESTING: ADVANTAGES AND WEAKNESS IN PERFORMANCE ASSESSMENT IN CARDIAC REHABILITATION

Cardiac Rehabilitation & Exercise Training in Congenital Heart Disease. Jidong Sung Division of Cardiology Sungkyunkwan University School of Medicine

SUMMARY. Applied exercise physiology in rehabilitation of children with cerebral palsy

MAXIMAL AEROBIC POWER (VO 2max /VO 2peak ) Application to Training and Performance

Cardiovascular Fitness

Forma The smart cardio line

The Benefits Effects of Exercise for over 65s. Anna Haendel Physiotherapist

A clinical evaluation of stumps in lower limb amputees

Discussion: The efficacy of the self-paced VO_2max test to measure maximal oxygen uptake in treadmill running

Unchanged Muscle Deoxygenation Heterogeneity During Bicycle Exercise After 6 Weeks of Endurance Training

The Relationship Between Fitness, Body Composition and Calf Venous Compliance in Adolescents

CHAPTER 2 FATIGUE AND RECOVERY

Survival rates in dysvascular lower limb amputees

OUTCOME MEASURES are becoming increasingly important

Ventilatory Anaerobic Threshold and Improves

GEORGE MASON UNIVERSITY School of Recreation, Health, and Tourism. KINE : Exercise Prescription and Programming (3) Spring 2015

GEORGE MASON UNIVERSITY School of Recreation, Health, and Tourism. KINE : Exercise Prescription and Programming (3) Fall 2015

A new model of plastic ankle foot orthosis (FAFO (II)) against spastic foot and genu recurvatum

Physical Education Studies Year 12 General. CHAPTER 5: Exercise Physiology NEXT

Dr. K.D.C. Upendra Wijayasiri (MBBS (SL), Dip.Spo.Med (col))

Copyright Statement: Copyright 2015 The Author. This is the author's accepted version. Reproduced here with permission from the copyright holder.

EXERCISE PRESCRIPTION FOR OBESE PATIENT

Dr B. Egger Service de Pneumologie Hôpital de Rolle

Journal of Human Sport and Exercise E-ISSN: Universidad de Alicante España

Management of Patients Undergoing Dysvascular Limb Amputation. Dr. Amanda Mayo Sunnybrook Health Sciences Centre

TESTING SERVICES BODY COMPOSITION:

TESTING SERVICES BODY COMPOSITION:


Effects of Upper Limb Exercises on Physical Capacity and Heart Function in Quadriplegics

Cardiac Rehabilitation Program for LVAD Patients. Dr Katherine Fan Consultant Cardiologist Grantham Hospital, Hong Kong SAR

Tuesday, October 4, chapter CHAPTER 11

Weight Loss and Resistance Training

FITNESS TRAINING WITH THE BALL FOR YOUNG SOCCER PLAYERS

Carbohydrate (CHO) supplementation has long been known to improve endurance

Chapter 10 Measurement of Common Anaerobic Abilities and Cardiorespiratory Responses Related to Exercise

Relationship Between Maximal Oxygen Uptake and Oxygenation Level in Inactive Muscle at Exhaustion in Incremental Exercise in Humans

Cardiorespiratory, Metabolic, and Biomechanical Responses During Functional Electrical Stimulation Leg Exercise: Health and Fitness Benefits

Applied Exercise and Sport Physiology, with Labs, 4e

Relationship between Lower Extremity Muscle Mass, Leg Extension Strength and Muscle Power of Hemiplegic Stroke Patients

Running head: CROSSFIT VS. TRADITIONAL EXERCISE BIERHAUS 1

New approaches to exercise Thursday Sep 4, 3 pm

Lactate Threshold: Land versus Water Treadmill Running. Aquatic treadmill running has become increasingly popular for rehabilitation and training

Effect of Training Mode on Post-Exercise Heart Rate Recovery of Trained Cyclists

Impact of Exercise on Patients with Diabetes Mellitus. Learning Objectives. Definitions Physical Activity and Health

Acute effect of resistance exercise on arterial stiffness in healthy young women

Workbook GET YOUR BODY BUZZING. Module Five Exercise for Peak Performance

16. Exercise Energetics

THE EFFECT OF MODE AND INTENSITY ON VO 2 KINETICS IN THE SEVERE INTENSITY DOMAIN. Rhonda S. Updyke, B.S. Thesis Prepared for the Degree of

MALLEABILITY OF THE SYSTEM IN OVERCOMING LIMITATIONS: FUNCTIONAL ELEMENTS

Transcription:

Journal of Rehabilitation Research and Development Vol. 38 No. 1, January/February 2001 Pages 7 11 Effect of endurance training program based on anaerobic threshold (AT) for lower limb amputees T. Chin, MD; S. Sawamura, MD; H. Fujita; S. Nakajima, MD; I. Ojima, RPT; H. Oyabu, RPT; Y. Nagakura, RPT; H. Otsuka, PO; A. Nakagawa, Engineer Hyogo Rehabilitation Center, 1070, Akebono-Cho, Nishi-Ku, Kobe, 651-2181, Japan Abstract We have already reported that the one-leg cycling test driven by the subject s sound leg as the exercise load test is effective in measuring the anaerobic threshold (AT) of unilateral lower limb amputees. The aim of this research is to investigate whether or not endurance training based on each subject s AT gained from the one-leg cycling test is useful in improving the physical fitness of lower limb amputees. The test subjects were all unilateral transfemoral amputees comprising a group of 14 undertaking endurance training and a control group of 10. The form of endurance training is driving an ergometer with the sound limb only in the same way as the load test. The training program was designed so that the subjects would exercise at a target heart rate corresponding to AT point for 30 minutes per day, 3 5 days each week for 6 weeks. After the training periods, in the training subjects the AT and maximum oxygen uptake ( O 2max ) increased significantly. The rate of increase averaged 36.5%, 26.0%, respectively, compared to their levels before the training. On the contrary, no changes occurred in the control subjects. These results suggest that our chosen training program based on each subject s AT is effective in improving the physical fitness of lower limb amputees. Address all correspondence and requests for reprints to: T. Chin, MD, Hyogo Rehabilitation Center, 1070, Akebono-Cho, Nishi-Ku, Kobe, 651-2181, Japan; email: t-chin@pure.co.jp. Key words: endurance training, lower limb amputee, physical fitness, prosthetic rehabilitation. INTRODUCTION It is well known that for lower limb amputees the energy consumption required to walk with a prosthesis is very much higher than that required for the able-bodied (1 3). The higher the level of amputation, the greater the energy consumption demands. Therefore the burden on the cardio-respiratory system of amputees can be expected to be considerably high. Advances in prosthetics in recent years, such as weight reduction of prosthesis and the Intelligent Prosthesis (4), have brought about a reduction in the energy consumption required for walking with a prosthesis. If, in addition, it is possible to improve the physical fitness of the amputee, a relative reduction in energy consumption can be expected with a reduction of the burden on the cardio-respiratory system of the amputee. However, it is extremely difficult for the amputee to undergo ordinary endurance training. In addition, previous exercise load tests for evaluating physical fitness were difficult to carry out for the amputee, and training programs tailored to each individual amputee 7

8 Journal of Rehabilitation Research and Development Vol. 38 No. 1 2001 were not made. We have reported the efficacy of the oneleg cycling test driven by the subject s sound leg as the exercise load test for evaluating the physical fitness of the amputee (5). The aim of this research is to investigate whether or not endurance training based on each subject s anaerobic threshold (AT) obtained from the one-leg cycling test is useful in improving the physical fitness of lower limb amputees. SUBJECTS The subjects are all trans-femoral amputees who entered our hospital for prosthetic rehabilitation, and none of them had been fitted with a prosthesis in the past. The subjects were well informed of the purpose of this study and possible risk, and informed written consent was obtained. Prior to the testing, each subject underwent a complete medical examination, including ECG, blood pressure, spirometry, blood examination, and general medical check-up. None of them showed any abnormalities. The subjects were divided into two groups, one of which underwent endurance training (endurance training group) and another that was a control (control group). The endurance training group was composed of 14 amputees. The control group was composed of 10 amputees with age and weight similar to the members of the endurance training group. The cause of amputation was trauma in all cases. The physical characteristics of the subjects of the two groups are shown in Table 1. Pretraining physical fitness evaluation: The oneleg cycling test driven by the sound leg was performed to evaluate the physical fitness of the amputee. This method has already been reported (5). A cycle ergometer (Lode Angio WLP-300ST, Holland), which can be used from a supine position, was used. The tests were conducted with the subjects seated with their upper bodies reclining at an angle of approximately 45 degrees (Figure 1). An incremental exercise test was begun with 3 minutes of unloaded pedaling with the test subjects directed to turn the pedals 60 times per minute. The exercise intensity was increased by 10 watts per minute with the increase completed at the end of each section. The exercise was at the subject s self-assessed maximum load. The subject was driving the ergometer with his sound leg. During exercise the respiratory gas was monitored with a respiromonitor (Minato RM-300 system, Osaka, Japan); we then measured the AT point. At the same time the ECG and heart rate were monitored during exercise by Stress Test system (ML-5000, Fukuda Denshi, Tokyo, Japan), and cuff blood pressure was determined every minute with an autoelectrocardiometer (Colin STPB-780, Japan). The AT was determined using the following criteria: a systematic.. increase in the ventilatory equivalent for O 2 (V E /VO 2 ) without.. an increase in the ventilatory equivalent for CO 2 (V E /V CO2 ). METHODS 1) Research on the endurance training group comprised three elements: pretraining physical fitness evaluation, endurance training program, posttraining physical fitness evaluation. Table 1. Control group (n=10) Endutance training group (n=14) Age (Year) 41.2±18.4 39.8±12.4 Weight (kg) 59.4±8.7 57.0±10.8 AT (ml/kg/min) 12.9±3.3 11.9±2.1 18.8±4.7 18.6±5.8 means±se Figure 1. One-leg cycling test. The subject is driving the ergometer with his sound leg. Under comprehensive heart monitoring, oxygen uptake and other factors are measured. Endurance training program: In addition to ordinary prosthetic walking training, the following endurance training was implemented. The form of exercise was the same as for the load test, using the

CHIN. Endurance Training for Lower Limb Amputees 9 cycle ergometer (Cateye ergociser EC-3600, Osaka, Japan) driven by the sound leg (Figure 2). The training regimen was designed so that the subject would exercise at a target heart rate corresponding to heart rate at AT point for 30 minutes per day, 3 5 days each week for 6 weeks. During exercise the heart rate was monitored and a doctor or physiotherapist was in attendance. RESULTS. There were no significant differences in age, weight, or VO 2max, AT of the subjects in both groups before the training (Table 1). In the control group, there were no significant changes in the parameters between pre- and posttraining values (Figure 3). On the other hand, in the endurance training group there were. statistically significant increases after training in VO. 2max and AT values (Figure 4). The rate of increase in VO 2max and AT values compared with the pretraining values averaged 36.5 percent, and 26 percent, respectively. Figure 2. Endurance training in progress. The subject is driving with his sound leg only. The subject s heart rate is monitored during exercise to constantly check whether or not the target heart rate is being reached. Figure 3. Changes in VO 2max values and AT values before and after a 6-week program of ordinary prosthetic walking training alone are compared in control group. Posttraining physical fitness evaluation: After the completion of the endurance training program, an identical one-leg cycling test was performed to evaluate the efficacy of endurance training. In the control group the one-leg cycling test was performed before and after a 6-week program of ordinary prosthetic walking training. The control group did not perform any regular endurance training through the training period. Unpaired t-tests were used to evaluate the differences between the control group and the endurance training group before training. Paired t-tests were used to evaluate the differences between pre- and posttraining for both groups. Differences were considered significant at p<0.05. All values reported here are means±se. Figure 4. Changes in VO 2max values and AT values before and after a 6-week program of endurance training in addition to ordinary prosthetic walking training are compared in training group.

10 Journal of Rehabilitation Research and Development Vol. 38 No. 1 2001 DISCUSSION There are many physical factors that regulate prosthetic walking capacity. One of the most important factors is physical fitness in relation to the increased energy consumption when walking with a prosthesis. Kurdibaylo noted that movement capabilities depend to a large extent on the physical fitness of the subject (6). As is clear from the bed rest experiments of Saltin et al. (7), the decline of physical fitness brought on by a reduced amount of physical activity is extreme. The physical burden of walking with a prosthesis is rather great, with the result that lower limb amputees become less physically active, their physical fitness diminishes, and this further increases the burden of walking, involving the amputees in a vicious cycle. To prevent this phenomenon, it is important to undertake some kind of exercise training in order to improve and maintain physical fitness. However, in the past the prescriptions of exercise training for lower limb amputees have not been appropriately accomplished. Therefore, the first issue for amputees is the form of exercise to be used. According to the guidelines outlined by the American College of Sports Medicine, sustained aerobic exercise using the major muscle group is desirable (8). For lower limb amputees exercises such as cycling, swimming, and jogging are far from easy. The next issue is where to set the level of exercise intensity. In previous exercise prescriptions maximum oxygen uptake and maximum heart rate were firmly entrenched as the standard indicators. Davidoff et al. have conducted exercise load tests on lower limb amputees using arm ergometry and have reported that exercise based on the maximum heart rate was effective in improving physical fitness (9). However, examples such as this are rare. For disabled peers, measurement of maximum heart rate and maximum oxygen uptake is difficult in practice and another indicator for exercise prescription is necessary. The exercise intensity and evaluation of fitness have been defined for able-bodied peers; the postamputation condition in a subject is not taken into account. We have already confirmed a significant correlation between AT as obtained by the one-leg cycling test and maximum oxygen uptake and have reported that the AT is an effective indicator for fitness. It is also measurable at relatively low load levels (5). Furthermore, it has been widely reported that AT is an effective indicator for setting the level of exercise intensity of endurance training (10 14). Unfortunately, no reports have been published in the past regarding the application of AT to exercise treatment of lower limb amputees. In this research we carried out individual fitness evaluations of amputees, and by setting the exercise intensity on the basis of heart rate at each subject s AT, their maximum oxygen uptake and AT were significantly improved over their pretraining levels. These facts suggest that endurance training at AT level is effective in improving the physical fitness of amputees. It was also confirmed that driving a cycle ergometer using only the sound limb is of use as an endurance training form for amputees. On the contrary, as the control group demonstrated, it is clearly difficult to improve the fitness by ordinary prosthetic walking training alone. Therefore, prosthetic walking training should accompany some kinds of endurance training with the aim of improving fitness of amputees. The implementation of such a comprehensive program is an important task for the future. Improvement of fitness seems to be an important factor related to functional outcome of the amputee. We have measured self-selected walking speed of amputees using Intelligent Prosthesis after completion of the program. Among all subjects, six of the endurance training group and five of the control group were using Intelligent Prosthesis. Results showed that the self-selected walking speed of the endurance training group was about 70 m/min, which was almost the same as normal. On the contrary, the control group was about 50 m/min (unpublished data). These results suggest that improvement of fitness might have a clinical impact on prosthetic ambulatory capacity. In this research we did not collect the data in detail to correlate that improvement of fitness had a direct clinical impact on functional outcome. It is important to learn more about the correlation between improvement of fitness and functional outcome. Further investigation is necessary to confirm it. CONCLUSION The AT obtained by the one-leg cycling test is an effective indicator for setting the exercise intensity of endurance training for lower limb amputees, and driving a cycle ergometer using only the sound limb is of use as an endurance training form for amputees.

11 CHIN. Endurance Training for Lower Limb Amputees REFERENCES 1. Gonzalez EG, Corcoran PJ, Reyes RL. Energy expenditure in below-knee amputees: correlation with stump length. Arch Phys Med Rehabil 1974;55:111 9. 2. Traugh GH, Corcoran PJ, Reyes RL. Energy expenditure of ambulation in patients with above-knee amputation. Arch Phys Med Rehabil 1975;56:67 71. 3. Waters RL, Perry J, Antonelli D, Hislop H. Energy cost of walking of amputees: the influence of level of amputation. J Bone Joint Surg 1976;58:42 6. 4. Bukley JG, Spence WD, Solomonidis SE. Energy cost of walking: comparison of Intelligent Prosthesis with conventional mechanism. Arch Phys Med Rehabil 1997;78:330 3. 5. Chin T, Sawamura S, Fujita H, Ojima I, Oyabu H, Nagakura Y, Nakagawa A. The efficacy of the one-leg cycling test for determining the aerobic threshold (AT) of lower limb amputees. Prosthet Orthot Int 1997;21:141 6. 6. Kurdibaylo SF. Cardiorespiratory status and movement capabilities in adults with limb amputation. J Rehabil Res Dev 1994;31:222 35. 7. Saltin B, Blomqvist G, Mitchel JH, Johnson RL Jr, Wildenthal K, Chapman CB. Response to exercise after bed rest and after training. Circulation 1968;38:1 78. 8. American College of Sports Medicine. The recommended quantity and quality of exercise for developing cardiorespiratory and muscular fitness in healthy adults. Med Sci Sports Med 1990;22:265 74. 9. Davidoff GN, Lampman RM, Westbury L, Deron J, Finestone HM, Islam S. Exercise testing and training of persons with dysvascular amputation: safety and efficacy of arm ergometry. Arch Phys Med Rehabil 1992;73:334 8. 10. Davis JA, Frank MH, Whipp J, Wasserman K. Anaerobic threshold alternations caused by endurance training in middle-aged men. J Appl Physiol 1979;46:1039 46. 11. Yoshida T, Suda Y, Takeuchi N. Endurance training regimen based upon arterial blood lactate: effects on anaerobic threshold. Eur J Appl Physiol 1982;49:223 30.. 12. Hagberg JM. Effect of training on the decline of VO 2max with aging. Federation Proc 1987;46:1830 3. 13. Takeshima N, Tanaka K, Kobayashi F, Watanabe T, Kato T. Effect of aerobic exercise conditioning at intensities corresponding to lactate threshold in the elderly. Eur J Appl Physiol 1993;67:138 43 Submitted for publication April 7, 2000. Accepted in revised form June 7, 2000.

.