The eye lens is one of the most radiosensitive tissues. According

Similar documents
Introduction and Background

Epidemiologic Studies of Radiation Cataract Risk

A more accurate method to estimate patient dose during body CT examinations with tube current modulation

Measurement of organ dose in abdomen-pelvis CT exam as a function of ma, KV and scanner type by Monte Carlo method

Doses from pediatric CT examinations in Norway Are pediatric scan protocols developed and in daily use?

Doses from Cervical Spine Computed Tomography (CT) examinations in the UK. John Holroyd and Sue Edyvean

Conventional and spiral CT dose indices in Yazd general hospitals, Iran

Survey of patients CT radiation dose in Jiangsu Province

Thoracic examinations with 16, 64, 128 and 256 slices CT: comparison of exposure doses measured with an anthropomorphic phantom and TLD dosimeters

Paediatric Dose Reduction and Image Quality

CURRENT CT DOSE METRICS: MAKING CTDI SIZE-SPECIFIC

Automatic Patient Centering for MDCT: Effect on Radiation Dose

Estimated Radiation Dose Associated With Low-Dose Chest CT of Average-Size Participants in the National Lung Screening Trial

CANADIAN PERSPECTIVE ON EYE DOSE & INTERNATIONAL RECOMMENDATIONS PRESENTED TO: Presented To:

Computed tomography Acceptance testing and dose measurements

Toshiba Aquillion 64 CT Scanner. Phantom Center Periphery Center Periphery Center Periphery

Patient / Organ Dose in CT

The Risk of Cataract Associated With Repeated Head and Neck CT Studies: A Nationwide Population-Based Study

CT examination is a high-radiation-dose imaging technique

Medical Physics and Informatics Original Research

Patient dose assessment of CT perfusion scanning at the RSCH

SOMATOM Drive System Owner Manual Dosimetry and imaging performance report

Doses from CT examinations to children suffering from hydrocephalus

Estimating Patient Radiation Dose from Computed Tomography

ESTABLISHING DRLs in PEDIATRIC CT. Keith Strauss, MSc, FAAPM, FACR Cincinnati Children s Hospital University of Cincinnati College of Medicine

State of the art and future development for standardized estimation of organ doses in CT

Lens Dose in Routine Head CT: Comparison of Different Optimization Methods With Anthropomorphic Phantoms

Patient Radiation Doses from Adult and Pediatric CT

Measurements of Air Kerma Index in Computed Tomography: A comparison among methodologies

Ultralow Dose Chest CT with MBIR

Estimation of Organ and Effective Doses for Neonate and Infant Diagnostic Cardiac Catheterizations

CT Dosimetry in the Clinical Environment: Methods and Analysis

Accounting for Imaging Dose

8/18/2011. Acknowledgements. Managing Pediatric CT Patient Doses INTRODUCTION

Measurement of computed tomography dose profile with pitch variation using Gafchromic XR-QA2 and thermoluminescence dosimeter (TLD)

Epidemiological Studies of Cataract Risk at Low to Moderate Radiation Doses: (Not) Seeing is Believing

Managing the imaging dose during Image-guided Radiotherapy. Martin J Murphy PhD Department of Radiation Oncology Virginia Commonwealth University

Calculation of Effective Doses for Radiotherapy Cone-Beam CT and Nuclear Medicine Hawkeye CT Laura Sawyer

A comparison of radiation doses from modern multi-slice Computed Tomography angiography and conventional diagnostic Angiography:

Optimizing radiation dose by varying age at pediatric temporal bone CT

Acknowledgments. A Specific Diagnostic Task: Lung Nodule Detection. A Specific Diagnostic Task: Chest CT Protocols. Chest CT Protocols

SPECIFIC PRINCIPLES FOR DOSE REDUCTION IN HEAD CT IMAGING. Rajiv Gupta, MD, PhD Neuroradiology, Massachusetts General Hospital Harvard Medical School

CTDI versus New AAPM Metrics to assess Doses in CT: a case study

For IACRS. May 13, Geneva. Christopher Clement ICRP Scientific Secretary

National Cancer Institute

Assessment of Patient Dose from CT Examinations in Khorasan, Iran

Childhood Cancer Survivor Study Analysis Concept Proposal # 07-01

Ask EuroSafe Imaging. Tips & Tricks. Paediatric Imaging Working Group. Shielding in pediatric CT

Dose to Radiosensitive Organs During Routine Chest CT: Effects of Tube Current Modulation

An Assessment of Organ and Effective Dose of Patients who Undertake CT Examinations in two Teaching Hospitals of Mashhad&Isfahan

Assessment of effective dose in paediatric CT examinations

Invivo Dosimetry for Mammography with and without Lead Apron Using the Glass Dosimeters

Implementation of the 2012 ACR CT QC Manual in a Community Hospital Setting BRUCE E. HASSELQUIST, PH.D., DABR, DABSNM ASPIRUS WAUSAU HOSPITAL

Outcomes in the NLST. Health system infrastructure needs to implement screening

Multislice CT versus cone beam CT: dosimetric and image quality comparision.

Tracking Doses in the Pediatric Population

CT NUMBER ACCURACY ANALYSIS FOR RADIOTHERAPY TREATMENT PLANNING IMAGING

Chief Radiographer TEI Clinical Associate 2016

P T.Ishiguchi 1, S.Iwanami 2, S.Kawatsu 1, T.Ishigaki 1 and S.Koga 3

Dosimetric Evaluation of Multislice CT Using Anthropomorphic Head Phantom

Why is CT Dose of Interest?

CT Radiation Risks and Dose Reduction

Radiation Exposure 1980 to 2006

FDG-18 PET/CT - radiation dose and dose-reduction strategy

Testing of the Implementation of the Code of Practice on Dosimetry in X-ray Diagnostic Radiology Hungarian Contribution

Cone Beam CT Protocol Optimisation for Prostate Imaging with the Varian Radiotherapy OBI imaging system. Dr Craig Moore & Dr Tim Wood

Current status of diagnostic imaging in dental university hospitals in Japan

Adopting DAP as a dose metric in CT

Image Diagnostic Technology Ltd IDT Ireland, 15 Market Street, Kinsale, Co. Cork, Ireland P17 XN65 Tel: Mob: IRL:

Fetal Dose Calculations and Impact on Patient Care

THE UNIVERSITY OF OKLAHOMA HEALTH SCIENCES CENTER GRADUATE COLLEGE RADIATION DOSE ESTIMATION FOR DIAGNOSTIC MODALITIES

Radiation Cataract & Eye Dosimetry Madan Rehani, PhD

Eye Lens Dose Reduction in Head CT Using Bismuth Shielding: Application in CT Facility in Cameroon

A comparison of dose distributions measured with two types of radiochromic film dosimeter MD55 and EBT for proton beam of energy 175 MeV

Radiation exposure of the Yazd population from medical conventional X-ray examinations

Interventional radiology, by virtue of its low invasiveness, is

Crowd-Sourcing Quality in Imaging

Joint ICTP/IAEA Advanced School on Dosimetry in Diagnostic Radiology and its Clinical Implementation May 2009

How to Develop CT Protocols for Children

Ask EuroSafe Imaging Tips & Tricks. CT Working Group

Low-dose CT Lung Cancer Screening Guidelines for Pulmonary Nodules Management Version 2

Organ-Based Dose Current Modulation and Thyroid Shields: Techniques of Radiation Dose Reduction for Neck CT

Traceability and absorbed dose standards for small fields, IMRT and helical tomotherapy

Prof. Dr. Doğan BOR Ankara University Institute of Nuclear Science

Guidelines for the Management of Pulmonary Nodules Detected by Low-dose CT Lung Cancer Screening

To Shield or Not to Shield? Lincoln L. Berland, M.D.

Dose Reduction Options in Cardiac CT

Radiation Dose To Pediatric Patients in Computed Tomography in Sudan

Studies in both the United States and Europe have revealed that computed tomographic (CT) examinations account for only up to 15% of all imaging exami

Radiation Dosimetry for CT Protocols

Skyscan 1076 in vivo scanning: X-ray dosimetry

Calculation of Normalised Organ and Effective Doses to Adult Reference Computational Phantoms from Contemporary Computed Tomography Scanners

Radiation Dose Reduction Strategies in Coronary CT Angiography

CT Dose Estimation. John M. Boone, Ph.D., FAAPM, FSBI, FACR Professor and Vice Chair of Radiology. University of California Davis Medical Center

An audit of radiation dose of 4D CT in a radiotherapy department

RADIATION PROTECTION IN DIAGNOSTIC AND INTERVENTIONAL RADIOLOGY. L19: Optimization of Protection in Mammography

Improving personal dosimetry of medical staff wearing radioprotective garments: Design of a new whole-body dosimeter using Monte Carlo simulations

Application(s) of Alanine

MEASUREMENT OF THE EQUIVALENT INDIVIDUAL DOSES FOR PATIENTS IN ANGIOGRAPHY PROCEDURE AND INTERVENTIONAL RADIOLOGY WITH THERMOLUMINESCENT SYSTEMS

Transcription:

PATIENT SAFETY S. Suzuki S. Furui T. Ishitake T. Abe H. Machida R. Takei K. Ibukuro A. Watanabe T. Kidouchi Y. Nakano Lens Exposure during Brain Scans Using Multidetector Row CT Scanners: Methods for Estimation of Lens Dose BACKGROUND AND PURPOSE: Some recent studies on radiation lens injuries have indicated much lower dose thresholds than specified by the current radiation protection guidelines. The purpose of this research was to measure the lens dose during brain CT scans with multidetector row CT and to assess methods for estimating the lens dose. MATERIALS AND METHODS: With 8 types of multidetector row CT scanners, both axial and helical scans were obtained for the head part of a human-shaped phantom by using normal clinical settings with the orbitomeatal line as the baseline. We measured the doses on both eyelids by using an RPLGD during whole-brain scans including the orbit with the starting point at the level of the inferior orbital rim. To assess the effect of the starting points on the lens doses, we measured the lens doses by using 2 other starting points for scanning (the orbitomeatal line and the superior orbital rim). RESULTS: The s and the lens doses during whole-brain CT including the orbit were 50.9 113.3 mgy and 42.6 103.5 mgy, respectively. The ratios of lens dose to were 80.6% 103.4%. The lens doses decreased as the starting points were set more superiorly. The lens doses during scans from the superior orbital rim were 11.8% 20.9% of the doses during the scans from the inferior orbital rim. CONCLUSIONS: can be used to estimate the lens dose during whole-brain CT when the orbit is included in the scanning range. ABBREVIATIONS: CTDI CT dose index; s volume CT dose indices; D IOR lens dose during whole-brain scanning from the inferior orbital rim; D OM lens dose during scanning from the orbitomeatal line; D SOR lens dose during scanning from the superior orbital rim; ICRP International Commission on Radiological Protection; mas eff mas divided by helical pitch; RPLGD radiophotoluminescent glass dosimeter The eye lens is one of the most radiosensitive tissues. According to 1990 recommendations of the ICRP, 1 the thresholds in a single brief exposure for detectable opacities and visual impairment (cataract) are 0.5 2.0 and 5.0 Sv, respectively. In highly fractionated or protracted exposures, the threshold is 5 Sv for detectable opacities and 8 Sv for cataracts. However, a number of recent studies have supported lower thresholds for radiation-induced lens injuries. 2-6 Some authors have suggested that the risk of cataract increases with increased radiation dose without a threshold. 2,3 Given these data, the ICRP referred to the need for a detailed revaluation of the radiosensitivity of the lens. 7 During brain CT scans, the lens is irradiated indirectly and/or directly. With single-detector row CT, the evaluation of the posterior cranial fossa had been limited by streak artifacts caused by the thick irregular bone of the skull base. 8 On the other hand, multidetector row CT provides better images with fewer artifacts in the posterior cranial fossa. 8 However, Received June 15, 2009; accepted after revision October 1. From the Department of Radiology (S.S., S.F., A.W., T.K., Y.N.), Teikyo University School of Medicine, Tokyo, Japan; Departments of Environmental Medicine (T.I.) and Radiology (T.A.), Kurume University School of Medicine, Fukuoka, Japan; Department of Radiology (H.M.), Tokyo Women s Medical University, Medical Center East, Tokyo, Japan; Radiology Department (R.T.), The Cardiovascular Institute Hospital, Tokyo, Japan; and Department of Radiology (K.I.), Mitsui Memorial Hospital, Tokyo, Japan. Please address correspondence to Shigeru Suzuki, MD, Department of Radiology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan; e-mail: s-suzuki@med.teikyo-u.ac.jp DOI 10.3174/ajnr.A1946 the orbit is included in the scanning range during whole-brain CT, including the posterior cranial fossa, if the orbitomeatal line is used as a baseline. 9 Considering the above studies supporting lower thresholds for radiation-induced lens injuries, we believe the exposure to the lens during brain CT scans with multidetector row CT should be re-evaluated. However, it is difficult to estimate the lens dose during brain CT in individual cases because the dose varies considerably due to differences in the type of CT scanners and scan settings. Bauhs et al 10 reported that the CTDI can be used theoretically to estimate the average dose from multiple scans with table increments. Table 1 shows the formulas for CTDI and its variations. However, the surface dose is not constant along the z-axis in the scanning range of whole-brain CT. The dose profile along the z-axis has multiple peaks according to the number of axial scans. 10 Even with helical scanning (and of course with axial scanning), the doses near the starting and end points are lower than the dose of the central portion of the scanning range along z-axis due to the presence of less scatter radiation. The dose is not constant in the x-y plane either due to a bow-tie filter. A bow-tie filter is automatically used for brain scans in many multidetector row CT scanners to reduce the peripheral dose, and it affects the surface doses. 11 Moreover, the homogeneous polymethylmethacrylate phantom for CTDI measurement does not simulate the different tissue types and heterogeneities of a real patient. These factors preclude CTDI from being the same as tissue dosimetry in a real patient. To our knowledge, there have been no reports describing the re- 822 Suzuki AJNR 31 May 2010 www.ajnr.org

Table 1: Formulas for CTDI and its variations Dose Index Formula Notes CTDI CTDI 1 T is the nominal width of a section and D(z) is the dose D(z)dz T at point z parallel to the z-axis CTDI measured 100 mm CTDI 100 1 500 mm N is the number of acquired sections per scan, T is D(z)dz NT 50 mm the nominal width of each acquired section, and D(z) is the dose at point z parallel to the z-axis Weighted CTDI CTDIw 1 3 CTDI 100,center 2 3 CTDI CTDI 100,center is the CTDI 100 measured at the center 100,periphery of the standard CTDI phantom and CTDI 100,periphery is the CTDI 100 measured at the periphery of the phantom CTDIw pitch Pitch is table travel distance per rotation divided by nominal beam width Table 2: Scanning parameters for both axial and helical scans with each CT scanner lationship between the patient s lens dose and CTDI during brain CT scans with multidetector row CT. The purpose of this research was to measure the lens dose during brain CT with multidetector row CT and to assess methods for estimating the lens dose with s. Materials and Methods Axial Scan CT Scanning Using 8 types of multidetector row CT scanners, we obtained wholebrain CT scans for the head part of a Rando phantom (Phantom Laboratories, Salem, New York), which represented a 163-cm-tall and 54-kg female figure. We used both axial and helical scans for each CT scanner. Table 2 shows the scanning parameters. For each scanner, tube voltage was set at 120 kv, and the scanning parameters in Table 1 represent the normal clinical settings. We used the orbitomeatal line as the baseline. In each scanner, the was displayed on the console. The starting point of the whole-brain CT scan was 15 mm below the orbitomeatal line, and the end point was the top of the head. The former corresponded to the level of the inferior orbital rim. Lens-Dose Measurement on Human-Shaped Phantoms We measured the doses on the centers of both eyelids by using a RPLGD. We regarded the average dose of both sides as the lens dose. To estimate the uncertainty in these dose assessments, we repeated the measurements 3 times. The RPLGD chip (GD-352M, Asahi Techno Glass, Shizuoka, Japan) consists of a glass element with a 1.5-mm diameter and 12-mm length and a holder with an energy-compensation filter of 0.75-mm tin. We annealed the glass elements of the Rotation Time (sec) mas Collimation (mm) Helical Scan Rotation Time Helical (sec) mas eff Pitch CT Scanner (number of detector rows) Collimation (mm) Aquilion 64 (64), Toshiba Medical Systems, 8 0.5 1 350 64 0.5 1 300 0.641 Tokyo, Japan LightSpeed VCT (64), GE Healthcare, Milwaukee, 16 0.625 2 420 32 0.625 1 433 0.531 Wisconsin LightSpeed Ultra 16 (16), GE Healthcare 8 1.25 2 400 16 0.625 0.7 261 0.938 LightSpeed Ultra 8 (8), GE Healthcare 4 3.75 2 360 8 1.25 0.8 256 0.625 LightSpeed QX/i (4), GE Healthcare 4 2.5 2 400 4 2.5 0.7 326 0.75 Brilliance CT 64 (64), Philips Medical Systems, 16 0.625 1.5 450 64 0.625 0.5 450 0.423 Best, the Netherlands MX 8000 IDT (16), Philips Medical Systems, 16 1.5 1.5 400 16 0.75 0.75 400 0.5 Somatom Sensation Cardiac 64 (64), Siemens, Malvern, Pennsylvania 12 1.2 2 380 20 0.6 1 422 0.9 RPLGD for 1 hour at 400 C and cooled them down slowly to room temperature before the exposure. A preheating process was performed for 30 minutes at 70 C after the exposure, and a fully automatic system (FGD-1000, Asahi Techno Glass) was used for the readout. For calibration, we used a standard glass irradiated with 137 Cs of gamma ray energy (0.662 MeV) of 6 mgy. According to the data provided by the manufacturer, the coefficient of variation is 2% at 1 mgy. Effect of the Starting Point of the Scanning on Lens Dose To assess the effect of the starting points on the lens doses, we measured the lens doses during brain CT scanning for axial scans by using 2 other starting points of scanning (the orbitomeatal line and the superior orbital rim). The latter corresponded to the level 15 mm above the orbitomeatal line. The end points were the top of the head in all scans. Results Table 3 shows s and the lens doses during wholebrain CT including the orbit for both axial and helical scans with each CT scanner. The s and the lens doses were 50.9 113.3 mgy and 42.6 103.5 mgy, respectively. The former tended to be larger than the latter, and the ratios of lens dose to were 80.6% 103.4%. Table 4 shows the effects of the starting point of the scanning on the lens dose. The lens doses decreased as the starting points were set more superiorly. The lens doses during scanning from the superior orbital rim were 11.8% 20.9% of the doses during scanning from the inferior orbital rim. The ratios PATIENT SAFETY AJNR Am J Neuroradiol 31:822 26 May 2010 www.ajnr.org 823

Table 3: s and the lens doses for both axial and helical scans with each CT scanner during whole-brain CT including the orbit CT Scanner (Number of Detector Rows) Lens Dose Axial Scan Lens Dose/ Lens Dose Helical Scan Lens Dose/ Aquilion 64 (64) 103.5 7.2 113.3 0.0 91.4 6.4% 82.3 7.3 96.0 0.0 85.7 7.6% LightSpeed VCT (64) 81.5 9.8 101.1 0.0 80.6 9.7% 75.4 0.9 74.3 0.0 101.5 1.2% LightSpeed Ultra 16 (16) 71.5 2.4 85.8 0.0 83.3 2.8% 48.7 0.9 59.6 0.0 81.7 1.5% LightSpeed Ultra 8 (8) 56.6 0.9 66.5 0.0 85.1 1.3% 45.6 0.7 50.9 0.0 89.7 1.4% LightSpeed QX/i (4) 70.2 1.5 75.1 0.0 93.5 2.0% 66.7 1.4 65.1 0.0 102.5 2.1% Brilliance CT 64 (64) 61.7 4.9 72.4 0.0 85.3 6.8% 52.6 0.8 50.9 0.0 103.4 1.6% MX 8000 IDT (16) 48.1 3.2 51.8 0.0 92.8 6.2% 57.4 1.4 57.0 0.0 100.7 2.4% Somatom Sensation Cardiac (64) 48.4 1.7 58.9 0.0 82.2 2.8% 42.6 0.9 51.5 0.0 82.8 1.7% Table 4: Effects of starting point of scanning on the lens dose CT Scanner (Number of Detector Rows) D OM Scans from Orbitomeatal Line D OM /D IOR D OM/ D SOR Scans from Superior Orbital Rim D SOR /D IOR D SOR / Aquilion 64 (64) 89.9 4.4 86.9 79.3 12.2 0.6 11.8 10.8 LightSpeed VCT (64) 64.5 1.5 79.1 60.3 11.0 0.7 13.5 10.4 LightSpeed Ultra 16 (16) 57.9 0.9 81.0 67.5 9.2 0.2 12.9 10.7 LightSpeed Ultra 8 (8) 52.2 1.6 92.2 78.5 7.7 0.3 13.6 11.6 LightSpeed QX/i (4) 64.6 0.6 92.0 86.0 10.3 0.2 14.7 13.7 Brilliance CT 64 (64) 56.9 2.1 92.2 78.6 12.9 0.6 20.9 17.8 MX 8000 IDT (16) 44.6 3.7 92.7 86.1 7.1 0.3 14.8 13.7 Somatom Sensation Cardiac 64 (64) 42.2 0.4 87.2 71.8 8.9 0.8 8.4 15.2 of lens dose to during scanning from the orbitomeatal line and from the superior orbital rim were 60.3% 86.1%, and 10.4% 17.8%, respectively. Discussion As pointed out in ICRP publication 103, 7 some recent studies on radiation lens injuries have indicated much lower dose thresholds than specified by the current radiation-protection guidelines. In a study conducted on atomic bomb survivors by Nakashima et al, 2 the threshold doses for cortical cataract and posterior subcapsular cataract were 0.6 Sv and 0.7 Sv, respectively. 2 In another study of atomic bomb survivors, Neriishi et al 3 reported that the dose threshold was 0.1 Gy for postoperative cataracts. As for protracted radiation exposures, Worgul et al 6 investigated cataracts in Chernobyl clean-up workers. Their data indicated that the cumulative dose threshold for cataracts was 700 mgy. Other recent studies of radiation cataracts in airline pilots and astronauts also supported much lower dose thresholds for cataracts than do the guidelines. 12,13 Furthermore, the lens of a child is more sensitive to radiation exposure than that of an adult. 2,14,15 Wilde and Sjöstrand 14 reported a clinical study of radiation-induced lens injuries among patients receiving radium irradiation to treat hemangioma in the eyelid in early childhood (age range, 1.5 13 months). In 13 of 16 untreated eyes with irradiation of 0.04 0.12 Gy, posterior subcapsular opacities (n 12) or posterior subcapsular cataract (n 1) was found. In the current study with multidetector row CT, the lens doses during 1 series of whole-brain CT scans were 50 100 mgy. Considering the data of the above-mentioned recent studies, the cumulative lens doses of several series of CT scans should not be neglected from the viewpoint of radiologic protection. In fact, a population-based study of common agerelated eye disease by Klein et al in 1993 16 showed that nuclear sclerosis and posterior subcapsular opacity were significantly associated with CT scans of the head. Another study of radiation cataracts indicated a significant association between a history of 3 diagnostic x-rays to the face or neck and increased risk of cataract. 17 The lens dose during brain CT is affected by the type of CT scanner and the scanning settings. Therefore, it is important to estimate the lens dose during brain CT in individual cases in each institution. Bauhs et al 10 reported that the CTDI can be used theoretically to estimate the average dose from multiple scans with table increments. However, the dose is not constant along the z-axis in the scanning range of whole-brain CT. During whole-brain CT by using axial scanning, multiple axial scans are needed to cover the scanning range. The dose profile along the z-axis has multiple peaks, according to the number of axial scans. 10 Even with helical scanning, the doses near the starting and end points are lower than the dose of the central portion of the scan range along the z-axis. Scatter radiation exists outside the beam width both cranially and caudally. The central portion is exposed by both cranial and caudal scatter radiation. On the other hand, the starting or end point of the scanning receives either cranial or caudal scatter radiation. Furthermore, bow-tie filters affect the dose distribution in the x-y plane. According to the data of Avilés Lucas et al, 11 surface dose decreases as the measurement point moves vertically away from the scanning center. In their study, the surface doses were 83% and 62% at 8 and 12 cm from the scanning center, respectively, compared with the dose at 2.9 cm. Moreover, the homogeneous polymethylmetacrylate phantom for CTDI measurement does not simulate the different tissue types and heterogeneities of a real patient. 18 Therefore, CTDI does not generally serve as an accurate estimate of the radiation dose to 824 Suzuki AJNR 31 May 2010 www.ajnr.org

a point in a real patient, though it is an index of radiation dose due to CT scans. In the current study, the ratios of lens dose to were 80.6% 103.4%, and the lens doses tended to be smaller than the s during whole-brain CT including the orbit. As mentioned above, scatter radiation decreases at the starting point of the scanning, and the peripheral dose is decreased by the bow-tie filter in the x-y plane. Therefore, the lens doses during the whole-brain CT were probably smaller than the s. When the orbits were included in the scanning range, the differences between the lens dose and were within 20% for both helical and axial scans with each CT scanner, with this degree of difference being acceptable for clinical use. Therefore, the lens dose can be estimated approximately by the, when the orbit is included in the scanning range. This method is useful to easily estimate the patient s lens dose during brain CT on the basis of because the values of are displayed on the monitors immediately after the scanning. The lens doses decreased as the starting points were set more superiorly. The ratios of lens dose to were 10% 20% when the scanning started from the superior orbital rim. These results are in agreement with the work of Smith et al in 1998, 19 who measured weighted CTDI values and lens doses during brain CT on phantoms by using single-detector row CT scanners. On the basis of their data, we calculated the ratio of lens doses to weighted CTDIs. The ratio was calculated as 88.4 12.7% during scanning including the whole orbit (baseline: orbitomeatal line or infraorbitomeatal line), while it was 13.9 4.8% during scanning excluding the orbit (baseline: supraorbitomeatal line). Considering the lens dose during brain CT scans and the above-mentioned uncertainty about the risk of radiation lens injuries, we believe that the exposure to the lens during brain CT scans should be optimized. For dose reduction, it is fundamental to decrease by optimal selection of scanning parameters. However, this method has a limit, given the proposed reference level for brain CT, which was 60 mgy by the ICRP. 20 There are several additional methods to reduce the lens dose during brain CT. In the follow-up CT scans for patients without lesions in the posterior cranial fossa, exclusion of the posterior cranial fossa from the scanning range results in reduced lens dose if the orbitomeatal line is used as a baseline. The lens can be excluded from the scanning range by using a more angulated baseline than the orbitomeatal line, even when the posterior cranial fossa is scanned. 9,21 Eye masks such as a bismuth-coated latex shield are also useful to reduce the lens exposure. 22,23 Improvement in the CT scanner would also be desirable. With automatic tube-current modulation in the x-y plane, decreased anteroposterior exposure with increased posteroanterior exposure should reduce the lens dose, while maintaining the image quality. This study has some limitations. First, we used only 1 type of human-shaped phantom. The size and shape of the objects, especially the distance from the scanning center to the lens, may affect the surface dose. However, the sizes of adult heads have small individual differences. According to the data obtained on adult Japanese by Demura et al, 24 the mean head lengths were 23.3 1.2 cm and 21.8 0.9 cm in men and women, respectively. Second, the values during brain CT vary among institutions, even with the same type of CT scanner because they are affected by the scanning parameters selected. However, values in the current study agreed with previous survey data. The weighted CTDI was 50.0 14.6 mgy (dose range, 21.0 130 mgy) in the United Kingdom as reported by Shrimpton et al, 25 while the average s were 72.2 mgy for adults and 42.0 mgy for 5- to 7-year-old children in Australia, according to Moss and McLean. 26 Therefore, the results of the current study can be adapted to many conditions. Third, provides the estimate of the lens dose during brain CT only when the orbit is included in the scanning range. However, the lens dose during brain CT including the orbit is larger than that during brain CT excluding the orbit, and dose estimation is more important for the former. Fourth, the precise risk of radiation lens injuries for brain CT is still unknown. As for the risk of radiation lens injuries at a low dose, available studies are limited at present, and many of them were conducted on atomic bomb survivors. 2-5 The beam quality and dose rate differ between the exposure to patients undergoing brain CT and the exposure to the objects in these studies, and the differences will affect the risk. Future risk assessment of radiation lens injuries for diagnostic x-rays is desirable. In conclusion, can be used to estimate the lens dose during brain CT scanning, when the orbit is included in the scanning range. It is important to estimate the dose to the lens during brain CT scans and try to reduce it. References 1. 1990 Recommendations of the International Commission on Radiological Protection. Ann ICRP 1991;21:1 201 2. Nakashima E, Neriishi K, Minamoto A. A reanalysis of atomic-bomb cataract data, 2000 2002: a threshold analysis. Health Phys 2006;90:154 60 3. Neriishi K, Nakashima E, Minamoto A, et al. Postoperative cataract cases among atomic bomb survivors: radiation dose response and threshold. Radiat Res 2007;168:404 08 4. Minamoto A, Taniguchi H, Yoshitani N, et al. Cataract in atomic bomb survivors. Int J Radiat Biol 2004;80:339 45 5. Otake M, Neriishi K, Schull WJ. Cataract in atomic bomb survivors based on a threshold model and the occurrence of severe epilation. Radiat Res 1996;146:339 48 6. Worgul BV, Kundiyev YI, Sergiyenko NM, et al. Cataracts among Chernobyl clean-up workers: implications regarding permissible eye exposures. Radiat Res 2007;167:233 43 7. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann ICRP 2007;159 171 8. Jones TR, Kaplan RT, Lane B, et al. Single- versus multi-detector row CT of the brain: quality assessment. Radiology 2001;219:750 55 9. Yeoman LJ, Howarth L, Britten A, et al. Gantry angulation in brain CT: dosage implications, effect on posterior fossa artifacts, and current international practice. Radiology 1992;184:113 16 10. Bauhs JA, Vrieze TJ, Primak AN, et al. CT dosimetry: comparison of measurement techniques and devices. Radiographics 2008;28:245 53 11. Avilés Lucas P, Castellano IA, Dance DR, et al. Analysis of surface dose variation in CT procedures. Br J Radiol 2001;74:1128 36 12. Rafnsson V, Olafsdottir E, Hrafnkelsson J, et al. Cosmic radiation increases the risk of nuclear cataract in airline pilots: a population-based case-control study. Arch Ophthalmol 2005;123:1102 05 13. Cucinotta FA, Manuel FK, Jones J, et al. Space radiation and cataracts in astronauts. Radiat Res 2001;156:460 66 14. Wilde G, Sjöstrand J. A clinical study of radiation cataract formation in adult life following gamma irradiation of the lens in early childhood. J Ophthalmol 1997;81:261 66 15. Chen WL, Hwang JS, Hu TH, et al. Lenticular opacities in populations exposed to chronic low-dose-rate gamma radiation from radiocontaminated buildings in Taiwan. Radiat Res 2001;156:71 77 16. Klein BE, Klein R, Linton KL, et al. Diagnostic x-ray exposure and lens opacities: the Beaver Dam Eye Study. Am J Public Health 1993;83:588 90 AJNR Am J Neuroradiol 31:822 26 May 2010 www.ajnr.org 825

17. Chodick G, Bekiroglu N, Hauptmann M, et al. Risk of cataract after exposure to low doses of ionizing radiation: a 20-year prospective cohort study among US radiologic technologists. Am J Epidemiol 2008;168:620 31 18. McNitt-Gray MF. AAPM/RSNA physics tutorial for residents: topics in CT radiation dose in CT. Radiographics 2002;22:1541 53 19. Smith A, Shah GA, Kron T. Variation of patient dose in head CT. Br J Radiol 1998;71:1296 301 20. Task Group on Control of Radiation Dose in Computed Tomography. Managing patient dose in computed tomography: a report of the International Commission on Radiological Protection. Ann ICRP 2000;30:7 45 21. Lai KF, Cheung YK, Tan CB, et al. Lens exclusion in computed tomography scans of the brain: the local practice. J HK Coll Radiol 2001;4:181 84 22. Perisinakis K, Raissaki M, Theocharopoulos N, et al. Reduction of eye lens radiation dose by orbital bismuth shielding in pediatric patients undergoing CT of the head: a Monte Carlo study. Med Phys 2005;32:1024 30 23. Hopper KD, Neuman JD, King SH, et al. Radioprotection to the eye during CT scanning. AJNR Am J Neuroradiol. 2001;22:1194 98 24. Demura S, Yamaji S, Nakada M, et al. Prediction equation for head volume of Japanese young adults. J Sports Sci 2005;23:541 48 25. Shrimpton PC, Jones DG, Hillier MC, et al. Survey of CT practice in the UK. Part 2. Dosimetric aspects. In: National Radiological Protection Board, Report NRPB-R 249. London, UK: HMSO; 1991 26. Moss M, McLean D. Paediatric and adult computed tomography practice and patient dose in Australia. Australas Radiol 2006;50:33 40 826 Suzuki AJNR 31 May 2010 www.ajnr.org