It is important to distinguish the

Similar documents
How to Recognize a Suspected Cardiac Defect in the Neonate

Pediatrics. Blue Baby Syndrome (Cyanotic Newborn) and Hyperoxia Test. Definition. See online here

Cardiovascular Pathophysiology: Right to Left Shunts aka Cyanotic Lesions

Cardiovascular Pathophysiology: Right to Left Shunts aka Cyanotic Lesions Ismee A. Williams, MD, MS Pediatric Cardiology

Screening for Critical Congenital Heart Disease

When is Risky to Apply Oxygen for Congenital Heart Disease 부천세종병원 소아청소년과최은영

Patent ductus arteriosus PDA

Anatomy & Physiology

CYANOSIS. İ.U. Cerrahpaşa Medical School Department of Pediatric Cardiology. İ. Levent SALTIK, MD

The Blue Baby. Network Stabilisation of the Term Infant Study Day 15 th March 2017 Joanna Behrsin

Congenital Heart Disease. CCCHD In WI. Critical Congenital Heart Disease. Why Screen? 4/20/2018. Early Detection = Better Outcomes

CONGENITAL HEART DISEASE (CHD)

Cardiac Emergencies in Infants. Michael Luceri, DO

Approach to a baby with cyanosis

Critical Heart Disease in the Newborn. What you need to know

Introduction. Pediatric Cardiology. General Appearance. Tools of Assessment. Auscultation. Vital Signs

Congenital Heart Disease: Physiology and Common Defects

PAEDIATRIC EMQs. Andrew A Mallick Paediatrics.info.

The blue baby. Case 4

CongHeartDis.doc. Андрій Миколайович Лобода

Lecture Notes. Chapter 2: Introduction to Respiratory Failure

Module G: Oxygen Transport. Oxygen Transport. Dissolved Oxygen. Combined Oxygen. Topics to Cover

CYANOTIC CONGENITAL HEART DISEASES. PRESENTER: DR. Myra M. Koech Pediatric cardiologist MTRH/MU

Pathophysiology: Left To Right Shunts

DORV: The Great Chameleon. Heart Conference October 15, 2016 Tina Kwan, MD

Pathophysiology: Left To Right Shunts

Pulse Oximetry Screening in Newborns to Enhance the Detection Of Critical Congenital Heart Disease. Frequently Asked Questions

Notes by Sandra Dankwa 2009 HF- Heart Failure DS- Down Syndrome IE- Infective Endocarditis ET- Exercise Tolerance. Small VSD Symptoms -asymptomatic

Paediatrics Revision Session Cardiology. Emma Walker 7 th May 2016

Neonatal/Pediatric Cardiopulmonary Care. Persistent Pulmonary Hypertension of the Neonate (PPHN) PPHN. Other. Other Diseases

Cardiology Competency Based Goals and Objectives

Paediatric Cardiology. Acyanotic CHD. Prof F F Takawira

CCHD Screening with Pulse Oximetry: A Success Story!

Karen Corlett, RN, MSN, CPNP-AC/PC Pediatric Nurse Practitioner Congenital Heart Surgery Unit Pediatric Cardiac Intensivists of North Texas Medical

3/14/2011 MANAGEMENT OF NEWBORNS CARDIAC INTENSIVE CARE CONFERENCE FOR HEALTH PROFESSIONALS IRVINE, CA. MARCH 7, 2011 WITH HEART DEFECTS

5.8 Congenital Heart Disease

Foetal Cardiology: How to predict perinatal problems. Prof. I.Witters Prof.M.Gewillig UZ Leuven

Duct Dependant Congenital Heart Disease

Respiratory Failure. Causes of Acute Respiratory Failure (ARF): a- Intrapulmonary:

Heart and Lungs. LUNG Coronal section demonstrates relationship of pulmonary parenchyma to heart and chest wall.

Congenital Heart Disease

3. Which of the following would be inconsistent with respiratory alkalosis? A. ph = 7.57 B. PaCO = 30 mm Hg C. ph = 7.63 D.

11/27/2012. Objectives. What is Critical Congenital Heart Disease?

2) VSD & PDA - Dr. Aso

Duct Dependant Congenital Heart Disease

Slide 1. Slide 2. Slide 3 CONGENITAL HEART DISEASE. Papworth Hospital NHS Trust INTRODUCTION. Jakub Kadlec/Catherine Sudarshan INTRODUCTION

Chronic Obstructive Pulmonary Disease

Congenital heart disease. By Dr Saima Ali Professor of pediatrics

ECHOCARDIOGRAPHIC APPROACH TO CONGENITAL HEART DISEASE: THE UNOPERATED ADULT

Appendix E Choose the sign or symptom that best indicates severe respiratory distress.

Pulmonary Problems of the Neonate. Jon Palmer, VMD, DACVIM Chief, Neonatal Intensive Care Service New Bolton Center, University of Pennsylvania, USA

The Physiology of the Fetal Cardiovascular System

1st Annual Clinical Simulation Conference

November 2012 Critical Care Case of the Month: I Just Can t Do It Captain! I Can t Get the Sats Up!

Absent Pulmonary Valve Syndrome

APPROACH TO CARDIAC HISTORY TAKING. Index

Management of a child with cyanosis

By Dickens ATURWANAHO & ORIBA DAN LANGOYA MAKchs, MBchB CONGENTAL HEART DISEASE

Hyaline membrane disease. By : Dr. Ch Sarishma Peadiatric Pg

INTRODUCTION The effect of CPAP works on lung mechanics to improve oxygenation (PaO 2

Home Pulse Oximetry for Infants and Children

Interpretation of Arterial Blood Gases. Prof. Dr. W. Vincken Head Respiratory Division Academisch Ziekenhuis Vrije Universiteit Brussel (AZ VUB)

Objectives Part 1. Objectives Part 2. Fetal Circulation Transition to Postnatal Circulation Normal Cardiac Anatomy Ductal Dependence and use of PGE1

Congenital Heart Defects

Pediatric Echocardiography Examination Content Outline

Coarctation of the aorta

HISTORY. Question: What type of heart disease is suggested by this history? CHIEF COMPLAINT: Decreasing exercise tolerance.

The Chest X-ray for Cardiologists

NCC Review Cardiac 8/22/12. Intrauterine Blood Flow. Topics

24. An infant with recurrent pneumonia underwent a frontal chest radiograph (Fig 24-A) followed by

Management of a Patient after the Bidirectional Glenn

Pediatric Board Review Congenital Heart Disease. Steven H. Todman, M.D. Pediatric Cardiologist Louisiana State University

The fetal circulation

Congenital heart disease: When to act and what to do?

Cardiovascular Nursing Practice: A Comprehensive Resource Manual and Study Guide for Clinical Nurses 2 nd Edition

Uptofate Study Summary

The Fetal Cardiology Program

Index. Note: Page numbers of article titles are in boldface type.

Solution Title: CONGENITAL HEART DISEASE SCREENING IN THE NEWBORN

1. When a patient fails to ventilate or oxygenate adequately, the problem is caused by pathophysiological factors such as hyperventilation.

Objectives. Prenatal Diagnosis of Critical Congenital Heart Disease. The Law. Disclosure. Dylan s Story

Heart and Soul Evaluation of the Fetal Heart

Chapter 2 Cardiac Interpretation of Pediatric Chest X-Ray

Notes: 1)Membranous part contribute in the formation of small portion in the septal cusp.

Page

HISTORY. Question: What category of heart disease is suggested by this history? CHIEF COMPLAINT: Heart murmur present since early infancy.

: Provide cardiovascular preventive counseling to parents and patients with specific cardiac diseases about:

AORTIC COARCTATION. Synonyms: - Coarctation of the aorta

Simulation 08: Cyanotic Preterm Infant in Respiratory Distress

Congenital Heart Disease: Cyanotic Lesions. Amitesh Aggarwal

Talking with Parents about a Positive Critical Congenital Heart Disease (CCHD) Screen or Test. Emily Drake, PhD RN May 20, 2014.

J Somerville and V Grech. The chest x-ray in congenital heart disease 2. Images Paediatr Cardiol Jan-Mar; 12(1): 1 8.

Critical Care Monitoring. Assessing the Adequacy of Tissue Oxygenation. Tissue Oxygenation - Step 1. Tissue Oxygenation

Cyanosis and Pulmonary Disease in Infancy

Omar Sami. Mustafa Khader. Yanal Shafaqouj

Stabilization and Transportation guidelines for Neonates and infants with Heart disease:

Respiratory Failure in the Pediatric Patient

Data Collected: June 17, Reported: June 30, Survey Dates 05/24/ /07/2010

SWISS SOCIETY OF NEONATOLOGY. Supercarbia in an infant with meconium aspiration syndrome

Transcription:

Diagnostic Considerations in Infants and Children with Cyanosis Gurumurthy Hiremath, MD; and Deepak Kamat, MD, PhD Abstract Cyanosis is defined by bluish discoloration of the skin and mucosa. It is a clinical manifestation of desaturation of arterial or capillary blood and may indicate serious hemodynamic abnormality. The goal of this article is to help the reader understand the etiology and pathophysiology of cyanosis and to formulate an approach to its differential diagnosis. [Pediatr Ann. 2015;44(2):76-80.] It is important to distinguish the terms cyanosis, hypoxia, and hypoxemia. Hypoxemia is a condition in which arterial oxygen content is low. It is usually defined as an arterial oxygen tension (partial pressure of oxygen in systemic artery [ ]) that Gurumurthy Hiremath, MD, is a Senior Fellow in Pediatric Interventional Cardiology, Department of Pediatrics, University of California, San Francisco. Deepak Kamat, MD, PhD, is a Professor of Pediatrics, and the Vice Chair of Education, Department of Pediatrics, Wayne State University School of Medicine; and a Designated Institutional Official, Children s Hospital of Michigan. Address correspondence to Gurumurthy Hiremath, MD, Department of Pediatrics, University of California, San Francisco, 505 Parnassus Avenue, M-1235, San Francisco, CA 94143; email: Gurumurthy.Hiremath@ucsf.edu. Disclosure: The authors have no relevant financial relationships to disclose. doi: 10.3928/00904481-20150203-12 is below normal (normal is 80-100 mm Hg) and usually associated with systemic arterial desaturation. The relationship between and saturation is defined by the oxygen dissociation curve and the various factors that influence it. 1 Hypoxia is defined as the failure of oxygenation at the tissue level and usually manifests as metabolic acidosis due to anaerobic metabolism. 2 Cyanosis is the clinical manifestation of bluish discoloration of skin or mucosa resulting from the presence of deoxygenated hemoglobin in the circulation. Cyanosis, hypoxemia, and hypoxemia, although interrelated, can each exist independently of the others. For example, an infant or a child with cyanotic congenital heart disease could have hypoxemia and cyanosis but no hypoxia as long as the cardiac output or hemoglobin is adequately increased. On the other hand, an infant or a child with decreased cardiac function or severe anemia may have normal saturations but evidence of tissue hypoxia due to decrease in total oxygen delivery. Some cases of abnormal hemoglobin or methemoglobinemia can have clinical cyanosis but normal saturations and oxygen content. 3 The goal of the clinician is to detect hypoxemia (either by low pulse oximetery in mild desaturation or by clinical cyanosis when severely desaturated). Pediatric patients suspected of having cyanosis should be assessed promptly by a pediatric cardiologist or by pediatric pulmonologist as dictated by clinical situation. PATHOPHYSIOLOGY OF CYANOSIS partial pressure of oxygen in alveoli (PAO 2 ) is approximately 100 mm Hg at sea level in room air. Partial pressure of oxygen in systemic artery ( ) is approximately 80 mm Hg at sea level in room air. Thus, the normal alveolararterial oxygen gradient (the A-a gradient, which is defined as PAO 2 minus ) is about 20 mm Hg and results from baseline physiological atelectasis. Oxygen capacity is a combination of oxygen that is bound to hemoglobin (normally this is 1.34 ml of oxygen per gram of hemoglobin at 38 C) and dissolved oxygen (0.003 ml of oxygen per 100 ml of plasma). The dissolved component is a small fraction of oxygen content at room air and normal hemoglobin concentration. These data are usually ignored but become very important when a patient needs supplemental oxygen or has anemia. The oxygen content could be lower than the oxygen capacity depending on the degree of desaturation. Total oxygen delivery is a product of oxygen content and cardiac output. When oxygen content decreases (either due to anemia or desaturation), the cardiac output is increased appropriately to maintain oxygen delivery. Cyanosis is discernible to the human eye when the deoxygenated hemoglobin 76 Copyright SLACK Incorporated

content is 3-5 g/dl. 2,4 It is sometimes difficult to detect clinically due to factors such as skin color, exposure to light, or presence of jaundice. arterial saturation as measured by pulse oximetery is 95%. Depending on the hemoglobin concentration, the degree of desaturation required to produce the same amount of cyanosis varies considerably. For example, an infant or a child with hemoglobin of 20 g/dl will exhibit cyanosis at a saturation of 85% (15% of 20 g/dl is 3 g/dl of deoxygenated hemoglobin), whereas an infant or a child with hemoglobin of 10 g/dl will not exhibit clinical cyanosis until saturation drops to as low as 70% (30% of 10 g/dl is 3 g/ dl of desaturated hemoglobin). Thus, in children with anemia with hypoxemia, clinical cyanosis may not be recognized until saturations drop below 85%. Cyanosis may become apparent only during episodes of crying or feeding, when the saturations decrease further. 5 It is for this reason that pulse oximetery plays a very important role in screening for congenital heart disease and is recommended to be done on all neonates before discharge from the nursery. 5-7 The American Academy of Pediatrics suggests using saturation of <95% in a lower extremity after 24 hours of life as an indication for further evaluation. 7 MECHANISMS OF CYANOSIS/ HYPOXEMIA Cyanosis/hypoxemia in children results from one of the following physiological mechanisms: (1) pulmonary venous desaturation; (2) extrapulmonary right to left shunting; (3) transposition physiology; or (4) hemoglobin disorders affecting affinity to oxygen. The different causes and physiological mechanisms are summarized in Figure 1 and Table 1. 1,8 Pulmonary Venous Desaturation Pulmonary venous desaturation can result from three broad mechanisms: Figure 1. Physiological mechanisms of hypoxemia. (1) hypoventilation; (2) parenchymal or extra-parenchymal lung disease; and (3) intrapulmonary right to left shunt. Hypoventilation can be secondary to central nervous system (CNS) infection, injury, inflammation, malformation, 9 or due to drug overdose (eg, opiod, sedatives). 2,9 Associated findings in such patients may include low A-a gradient, apnea, hypoventilation, lethargy, and hypotonia, and arterial blood gas will show hypercarbia in addition to hypoxia. Parenchymal or interstitial lung disease results in pulmonary venous desaturation, respiratory distress, abnormal chest X-ray, and variable (usually low) A-a gradient depending on the disease severity. Intrapulmonary right to left shunting results from ventilation perfusion mismatch or arteriovenous (AV) malformations that are seen in liver failure or Glenn physiology. In Glenn physiology, the pulmonary artery is directly anastomosed to the superior vena cava and disconnected from the heart (as part of staged surgical single ventricle palliation), resulting in hepatic blood flow diverted away from the lungs. These patients develop AV malformations due to lack of the yet-to-be characterized hepatic factor. 10 AV malformations can be diagnosed with a positive bubble study on transthoracic echocardiogram. Extrapulmonary Right to Left Shunting In the second group of lesions involving extrapulmonary right to left shunt, the two main lesions are cyanotic congenital heart lesions and pulmonary hypertension. The pulmonary venous saturation is normal in this group, but systemic arterial desaturation results from deoxygenated blood shunting from the systemic venous side to systemic circulation. The heart lesions have right-sided obstruction or insufficiency PEDIATRIC ANNALS Vol. 44, No. 2, 2015 77

Pulmonary venous desaturation With high A-a gradient as a common finding, resulting in decreased pulmonary blood flow. Examples include tricuspid atresia, Ebstein s anomaly, pulmonary atresia, tetralogy of Fallot, absent pulmonary valve syndrome, and critical pulmonary stenosis. In general, they present a few hours to days after birth with hypoxemia without respiratory distress as the ductus starts to close. These lesions could be ductal dependent based on severity of obstruction, so timely initiation of prostaglandin is crucial. The pulmonary hypertension group presents with hypoxemia if there is a communication to allow right to left shunt at the atrial, ventricular, or ductal level. This is typically seen in a newborn baby with persistent primary pulmonary hypertension (PPHN) where right to left shunt at atrial or ductal level leads to hypoxemia. If the shunt is at the ductal level, it will manifest with differential cyanosis; the saturations will be normal in right upper limb but lower in the legs TABLE 1. Causes of Hypoxemia in Children Severe parenchymal lung disease (eg, acute respiratory distress syndrome, pulmonary hemorrhage) Lung disease with diffusion impairment (eg, interstitial lung disease) Intrapulmonary right to left shunting (eg, atelectasis, pulmonary arteriovenous malformations With low A-a gradient (eg, central hypoventilation, opioid overdose, parenchymal lung disease such as pneumonia) Extrapulmonary right to left shunting Cyanotic congenital heart disease with decreased pulmonary blood flow and right to left shunting (eg, tetralogy of Fallot, pulmonary atresia) Pulmonary hypertension, primary or secondary, with right to left shunt at the level of ductus or patent foramen ovale (eg, primary pulmonary hypertension, Eisenmenger syndrome) Transposition physiology (eg, D-transposition of great arteries, double outlet right ventricle with malposed great vessels and subpulmonary ventricular septal defects) Hemoglobin disorders with decreased oxygen affinity (eg, methemoglobinemia) due to right to left shunt. If there is no patent ductus arteriosus, right to left shunt at the patent foramen ovale (PFO) leads to uniform desaturation in both upper and lower body. It is important to understand that sometimes the right subclavian is aberrant and originates distal to the ductus (hence is postductal). In such a situation, there would be no differential saturations between right upper limb and lower limbs even though there is a right to left shunt at the ductus. Saturations in the right ear lobe are always preductal and should be checked when in doubt. 5 Transposition Physiology Transposition physiology occurs when systemic and pulmonary circulations are arranged in parallel rather than in series due to ventriculo-arterial discordance. D-transposition of great arteries is the typical example for such lesions. The fully saturated pulmonary venous blood is directed back into the pulmonary circulation, and systemic venous blood is directed to the systemic arterial circulation. Survival depends on some pulmonary venous blood shunting to the systemic side at the atrial, ventricular, or ductal level, and hence some of these patients need urgent balloon atrial septostomy and a prostaglandin infusion before surgery. 8,11 The hypoxemia in such a physiology presents immediately at birth, unlike the cases with decreased pulmonary blood flow. 8 Clinical exam usually shows a single and loud second heart sound (because the great vessels are anterior-posterior), prominent right ventricular impulse (because right ventricle is the systemic ventricle), and differential cyanosis with higher postductal saturations than preductal saturations. Hemoglobin Disorders Affecting Affinity to Oxygen Methemoglobinemia or other hemoglobin disorders of oxygen affinity should be suspected in an otherwise asymptomatic infant or a child with cyanosis and discrepancy between, saturation, and clinical assessment. 3,12 The primary pathology is in the decreased affinity of the hemoglobin to oxygen, resulting from multiple mechanisms. Saturations by pulse oximetry could be normal or low, but as a group all patients exhibit normal. Family history is usually positive in hemoglobin disorders. DIAGNOSTIC APPROACH TO CYANOSIS Careful history and detailed clinical exam usually guide the physician to the etiology of the cyanosis. Laboratory evaluation, such as complete blood count, arterial blood gas, co-oximetry, chest X-ray, and echocardiogram, helps in confirming the clinical suspicion (Table 2). History should include detailed perinatal history, such as asphyxia, maternal ingestion of nonsteroidal medications (resulting in premature ductal 78 Copyright SLACK Incorporated

Test Respiratory distress Pulmonary Parenchymal Disease Present; may have fever TABLE 2. Diagnostic Testing of Cyanosis in Children Intra- or Extrapulmonary Right to Left Shunt Cardiac examination May have single S2, RV heave, thrill, and murmurs Chest X-ray Differential saturation (preductal vs postductal) Complete blood count Pulmonary pathology Absent Elevated white cell count Arterial blood gas on >150 mm Hg 100% FiO 2 PCO 2 variable No Variable cardiac silhouette; usually clear lung fields Present if right to left shunt at ductus; postductal < preductal Central Hypoventilation No; apnea/hypoventilation Transposition Physiology Mild distress, usually tachypnea due to increased PBF Single S2, flow murmur, RV heave Egg-on-end appearance, pulmonary venous congestion +/- No Hemoglobin Disorders Absent Postductal > preductal Absent Polycythemia if chronic Polycythemia if chronic <150 mm Hg PCO 2 >150 mm Hg, usually much higher; elevated PCO 2 <150 mm Hg, usually <50 mm Hg; normal PCO 2 and PCO 2 Abbreviations: FiO 2, fraction of inspired oxygen;, partial pressure of oxygen in a systemic artery; PBF, pulmonary blood flow; PCO 2, partial pressure of carbon dioxide; RV, right ventricle. closure), and meconium aspiration, that would increase the risk for PPHN. Presence of fever and respiratory distress on clinical exam would suggest respiratory pathology. Timing of presentation would help differentiate ductal-dependent decreased pulmonary blood flow lesions versus transposition physiology. Clinical exam should include careful examination of skin, mucosa, as well as cardiac and respiratory systems. Acrocyanosis is the bluish discoloration of extremities, often seen in newborns (and sometimes in older patients) exposed to cold stress, and it results from peripheral vasoconstriction. It is benign and should be differentiated from central cyanosis in which the entire skin and mucosa are bluish. Clubbing of the fingers suggests chronic hypoxemia. Central hypoventilation presents with shallow breathing/ apnea, pulmonary pathology presents with respiratory distress, and most cardiac causes have normal respiratory exam. The presence of abnormal cardiac impulse/heave, abnormal second heart sound, or murmur or thrills points to cardiac etiology. The hyperoxia test is a useful tool to help differentiate the different causes of hypoxemia. 4,12,13 It is a simplified way of differentiating lesions with high A-a gradient from lesions with low A-a gradient. In this test, the patient is placed on 100% oxygen for 10-15 minutes. An arterial blood gas is obtained from a preductal artery (usually from the right upper extremity). This is important because the natural tendency is to obtain a blood gas from the existing umbilical arterial line, which could be more or less saturated, rather than the preductal artery depending on the relationship of the great arteries and the direction of ductal shunting. With 100% oxygen, the alveolar PAO 2 at sea level is greater than 500 mm Hg (PAO 2 = 760 fraction of inspired oxygen [FiO 2 ] 1.2 partial pressure of carbon dioxide [PaCO 2 )]). If the A-a gradient is normal (approximately 20 mm Hg), then the pulmonary venous partial pressure of oxygen (PO 2 )should be close to 500 mm Hg. In pulmonary parenchymal disease, depending upon the severity of diffusion abnormality, the pulmonary venous partial PO 2 and hence the systemic arterial PO 2 are decreased but usually >150 mm Hg. In case of right to left shunting or transposition physiology, the systemic arterial PO 2 (referred to as ) is much lower (usually <150 mm Hg) depending on the severity of shunt and mixing (Table 2). Chest X-ray is helpful in confirming a pulmonary pathology such as consolidation, pleural effusion, or congenital malformations of lungs. Complete blood count may show elevated white cell count in infections, and polycythemia suggests chronic state of hypoxemia. Echocardiogram is diagnostic in excluding or confirming cardiac pathology. MANAGEMENT Management of hypoxemia depends on the etiology; pulmonary pathology PEDIATRIC ANNALS Vol. 44, No. 2, 2015 79

and central hypoventilation need ventilatory support whereas cardiac causes may require treatment with prostaglandins and/or surgery. SUMMARY Central cyanosis can result from a variety of conditions involving pulmonary, cardiac, hematological, or central nervous system etiologies. Understanding the pathophysiology of hypoxemia is important. A careful history, complete physical exam, and focused laboratory evaluation are usually sufficient for determining the cause and initiating treatment. REFERENCES 1. Rudolph A. Congenital Diseases of the Heart. Clinical-Physiological Considerations. 3rd ed. West Sussex, UK: Wiley-Blackwell; 2009. 2. Rohan AJ, Golombek SG. Hypoxia in the term newborn: part one-cardiopulmonary physiology and assessment. MCN Am J Matern Child Nurs. 2009;34(2):106-112; quiz 113-114. 3. Li AM, Wong W, Chan MH, et al. pulse oximeter reading in a cyanotic infant. J Paediatr Child Health. 2001;37(1):94-95. 4. Lees MH. Cyanosis of the newborn infant. recognition and clinical evaluation. J Pediatr. 1970;77(3):484-498. 5. Hiremath G, Kamat D. When to call the cardiologist: treatment approaches to neonatal heart murmur. Pediatr Ann. 2013;42(8):329-333. 6. Reich JD, Miller S, Brogdon B, et al. The use of pulse oximetry to detect congenital heart disease. J Pediatr. 2003;142(3):268-272. 7. Mahle WT, Newburger JW, Matherne GP, et al. Role of pulse oximetry in examining newborns for congenital heart disease: a scientific statement from the American Heart Association and American Academy of Pediatrics. Circulation. 2009;120(5):447-458. 8. Artman M, Mahony L, Teitel D, eds. Neonatal Cardiology. 2nd ed. New York, NY: McGraw-Hill Professional; 2011. 9. Singhi P, Mahajan V, Hiremath G. Joubert syndrome: review and report of five cases from india. J Pediatr Neurol. 2007;5:317-321. 10. Srivastava D, Preminger T, Lock JE, et al. Hepatic venous blood and the development of pulmonary arteriovenous malformations in congenital heart disease. Circulation. 1995;92(5):1217-1222. 11. Hiremath G, Natarajan G, Math D, Aggarwal S. Impact of balloon atrial septostomy in neonates with transposition of great arteries. J Perinatol. 2011;31(7):494-499. 12. Sasidharan P. An approach to diagnosis and management of cyanosis and tachypnea in term infants. Pediatr Clin North Am. 2004;51(4):999-1021, ix. 13. Jones RW, Baumer JH, Joseph MC, Shinebourne EA. Arterial oxygen tension and response to oxygen breathing in differential diagnosis of congenital heart disease in infancy. Arch Dis Child. 1976;51(9):667-673. Classified Marketplace Golisano Children s Hospital of Southwest Florida 13th Annual Pediatric Conferece For Physicians and Nurses Fort Myers, Florida May 30 & 31, 2015 Sanibel Harbour Marriott Resort & Spa www.sanibel-resort.com 12 CME credits Take the search out of job search Save the Date. Receive alerts on jobs that match your qualifications For registration information Call 239-424-2397 Joanne.Gorgone@LeeMemorial.org Upload your résumé today! HealioJobs.com/Pediatrics New jobs added daily 80 Copyright SLACK Incorporated