Efficacy of Percutaneous Kyphoplasty in Treating Osteoporotic Multithoracolumbar Vertebral Compression Fractures

Similar documents
Clinical and Radiographic Results of Unilateral Transpedicular Balloon Kyphoplasty for the Treatment of Osteoporotic Vertebral Compression Fractures

Percutaneous balloon kyphoplasty (BKP) 1 is an interventional

Original Article The clinical application and efficacy of percutaneous kyphoplasty via unilateral pedicular approach guided by CT image measurement

Percutaneous Vertebroplasty-Induced Adjacent Vertebral Compression Fracture. Ki Seong Eom, MD, PhD, and Tae Young Kim, MD, PhD

Balloon kyphoplasty is now considered as minimally invasive

Double Cement Application Cavity Containment Kyphoplasty: Technique Description and Efficacy

Kyphoplasty and Vertebroplasty

Bone Cement-Augmented Percutaneous Short Segment Fixation : An Effective Treatment for Kummell s Disease?

Vertebral compression model and comparison of augmentation agents

Osteoporosis is a condition in which the bones lose calcium. Analysis of Related Factors on the Deformity Correction of Balloon Kyphoplasty

factor for identifying unstable thoracolumbar fractures. There are clinical and radiological criteria

Osteoporosis and Spinal Fractures

Osteoporotic Verterbal Compression Fractures

Available online at Open Access at PubMed Central. The Journal of Biomedical Research, 2016, 30(5):

Collection of abstracts

Fracture REduction Evaluation (FREE) Study

PERCUTANEOUS BALLOON KYPHOPLASTY, RADIOFREQUENCY KYPHOPLASTY, AND MECHANICAL VERTEBRAL AUGMENTATION

Balloon Kyphoplasty. An Evidence-Based Analysis. Ontario Health Technology Assessment Series 2004; Vol. 4, No. 12. December 2004

Vertebral Augmentation for Compression Fractures. Scott Magnuson, MD Pain Management of North Idaho, PLLC

Kyphoplasty for Vertebral Compression Fracture Via a Uni-Pedicular Approach

Qiang Wang, Hong-Guang Xu, Li-Jun Dong, Hong Wang, Jin-Song Zhu

Outline Vertebroplasty and Kyphoplasty: Who, What, and When

Indications for Kyphoplasty and Vertebroplasty

KumaFix fixation for thoracolumbar burst fractures: a prospective study on selective consecutive patients

Outline Vertebroplasty and Kyphoplasty: Who, What, and When

Author's response to reviews

Departement of Neurosurgery A.O.R.N A. Cardarelli- Naples.

R45 A

An Empirical Study of Osteoporotic Vertebral Fracture Review

MISS in Thoracolumbar Fractures

Pulmonary Cement Embolism in a Multiple Myeloma Patient Following Vertebroplasty: A Case Report

Outline. Vertebroplasty and Kyphoplasty. Epidemiology. Identifying Vertebral Fractures. Page 1

Vertebroplasty: Cement Leakage into the Disc Increases the Risk of New Fracture of Adjacent Vertebral Body

University of Groningen. Thoracolumbar spinal fractures Leferink, Vincentius Johannes Maria

Short Segment Screw Fixation without Fusion for Low Lumbar Burst Fracture: Severe Canal Compromise but Neurologically Intact Cases

Vertebral body augmentation with cement such as vertebroplasty

Risk Factors of New Compression Fractures in Adjacent Vertebrae after Percutaneous Vertebroplasty

Delayed surgery in neurologically intact patients affected by thoraco-lumbar junction burst fractures: to reduce pain and improve quality of life

Title: Comparative Analysis of Vertebroplasty and Kyphoplasty for Osteoporotic Vertebral Compression Fractures

YOUR SUDDEN BACK PAIN MAY BE A FRACTURE

Rehabilitation in Osteoporosis. Dr. S.Samadzadeh physiatrist

Vertebral Body Compression Fracture Treatment Options

Biomechanical Evaluation of the Vertebral Jack Tool and the Inflatable Bone Tamp for Reduction of Osteoporotic Spine Fractures

PERFORATED CLICK X Augmentable pedicle screws for osteoporotic bone

Int J Clin Exp Med 2018;11(2): /ISSN: /IJCEM Yi Yang, Hao Liu, Yueming Song, Tao Li

Risk Factors for Subsequent Fracture after Osteoporotic Vertebral Compression Fracture

Analysis of Clinical Features of Hip Fracture Patients with or without Prior Osteoporotic Spinal Compression Fractures

Lordoplasty: report on early results with a new technique for the treatment of vertebral compression fractures to restore the lordosis

Kyphoplasty and Vertebroplasty

Original Article Effects of percutaneous kyphoplasty combined with pedicle screw fixation on aged osteoporotic thoracolumbar burst fracture

Cement augmentation in spinal tumors: a systematic review comparing vertebroplasty and kyphoplasty

Service: Imaging. Vertebroplasty. Exceptional healthcare, personally delivered

What Effects Does Necrotic Area of Contrast-Enhanced MRI in Osteoporotic Vertebral Fracture Have on Further Compression and Clinical Outcome?

Treatment of thoracolumbar burst fractures by vertebral shortening

Percutaneous kyphoplasty for the treatment of very severe osteoporotic vertebral compression fractures with spinal canal compromise

ProDisc-C versus fusion with Cervios chronos prosthesis in cervical degenerative disc disease: Is there a difference at 12 months?

Low Volume Vertebral Augmentation with Cortoss Cement for Treatment of High Degree Vertebral Compression Fractures and Vertebra Plana

Comparison of vertebroplasty and kyphoplasty for complications

Posterior. Lumbar Fusion. Disclaimer. Integrated web marketing. Multimedia Health Education

Spinal Compression Fractures

Instruction for Use of Kyphoplasty Tool Kit JS-CE-SM-07-01,A/0

NATIONAL INSTITUTE FOR HEALTH AND CLINICAL EXCELLENCE. Multiple Technology Appraisal (MTA)

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

Int J Clin Exp Med 2018;11(6): /ISSN: /IJCEM Xiutong Fang 1, Hongxing Song 1, Yang Li 2

Kyphoplasty patient-centered outcomes via questionnaire

Vertebroplasty has been widely and successfully used in the

Posterior instrumentation after a failed balloon kyphoplasty in the thoracolumbar junction: a case report

UTERINE FIBROID EMBOLIZATION

Original Article Clinics in Orthopedic Surgery 2016;8:

Pott s kyphosis. University Affiliated Sixth People s Hospital, 600 Yishan Road, Shanghai , P.

The Effect of Posterior Pedicle Screws Biomechanical Fixation for Thoracolumbar Burst Fracture

Key Words: kyphoplasty, vertebroplasty, compression fracture, patient satisfaction

Vertebroplasty & Kyphoplasty

Osteoporotic Compression Fracture of Spine Treated With Posterior Instrumentation and Transpedicular Bone Grafting

In the past 2 decades, the interventional treatment of. Lordoplasty: midterm outcome of an alternative augmentation technique for vertebral fractures

3D titanium interbody fusion cages sharx. White Paper

New Dual-energy X-ray Absorptiometry Machines (idxa) and Vertebral Fracture Assessment

Clinical Analysis of Minimally Invasive Single-segment Reduction and Internal Fixation in Patients with Thoracolumbar Fractures

Vertebral body stenting and cement augmentation to restore structural stability in extreme spinal osteolysis

REFERENCE DOCTOR Thoracolumbar Trauma MIS Options. Hyeun Sung Kim, MD, PhD,

Guide to Percutaneous

Appendix. International coding of diseases according to ICD 10-GM Reimbursement codes per country (in alphabetical order)

Spine Center. at Stamford Hospital s Orthopedic Institute

Cost-effectiveness of percutaneous vertebroplasty in osteoporotic vertebral fractures

3 脊椎変形の相互関係とリスク分析の今後の方向

The Role of Unilateral Balloon Kyphoplasty for the Treatment of Patients with OVCFS: A Systematic Review and Meta-Analysis

MAS TLIF MAXIMUM ACCESS SURGERY TRANSFORAMINAL LUMBAR INTERBODY FUSION AN INTRODUCTION TO

Oklahoma Spine & Brain Institute is Proud to Introduce Michael Thambuswamy, MD, MBA

If you have a condition that compresses your nerves, causing debilitating back pain or numbness along the back of your leg.

Risk Factors Associated with Adjacent Vertebral Compression Fracture Following Percutaneous Vertebroplasty After Menopause: A Retrospective Study

NATIONAL INSTITUTE FOR HEALTH AND CARE EXCELLENCE

General introduction and outlines of this thesis

Patient Information MIS LLIF. Lateral Lumbar Interbody Fusion Using Minimally Invasive Surgical Techniques

Fractures of the Thoracic and Lumbar Spine

River North Pain Management Consultants, S.C., Axel Vargas, M.D., Regional Anesthesiology and Interventional Pain Management.

Value of Bone Scan Imaging in Predicting Pain Relief from Percutaneous Vertebroplasty in Osteoporotic Vertebral Fractures

Bone Cement-Augmented Short Segment Fixation with Percutaneous Screws for Thoracolumbar Burst Fractures Accompanied by Severe Osteoporosis

Clinical Study Percutaneous Cement-Augmented Screws Fixation in the Fractures of the Aging Spine: Is It the Solution?

J Korean Soc Spine Surg 2011 Sep;18(3): Originally published online September 30, 2011;

Postero-lateral approach with open view vertebroplasty - eggshell technique

Transcription:

Efficacy of Percutaneous Kyphoplasty in Treating Osteoporotic Multithoracolumbar Vertebral Compression Fractures HAI TANG; JIN-DONG ZHAO; YUAN LI; HAO CHEN; PU JIA; KAI-MING CHAN; GANG LI abstract Full article available online at OrthoSuperSite.com/view.aspx?rID=00000 Percutaneous kyphoplasty is a minimally invasive technique that has become an effective and routine alternative for managing osteoporotic vertebral compression fractures. This article reports the clinical outcome of a series of 54 cases of osteoporotic thoracolumbar vertebrae compression fractures treated by percutaneous kyphoplasty. Fifty-four patients with confirmed osteoporosis and at least 1 level of thoracolumbar vertebrae compression fracture were retrospectively selected. Pre- and postoperative and last follow-up clinical evaluation and radiological data were analyzed, including change of visual analog scale (VAS), reduced use of painkillers, locomotor activity, Cobb s angle, and average vertebral body height. A Mean follow-up was 20.4 months (range, 6-36 months). In all cases, percutaneous kyphoplasty treatment was successful, significantly increasing vertebral body height, diminishing kyphosis in the fractured vertebrae, and decreasing painkiller use. In all patients, percutaneous kyphoplasty partially or completely relieved back pain. No new deformity was found within the follow-up period, nor were any other complications. The cement leakage rate was 3.86% (8 of 207 vertebrae) with percutaneous kyphoplasty, but no neurological or other complaints were received. Percutaneous kyphoplasty is a simple and safe procedure in managing osteoporotic vertebrae compression fractures. It relieves pain quickly, restores vertebral height, prevents further fracture, and improves patient quality of life. Drs Tang, Zhao, Li (Yuan), Chen, and Jia are from the Department of Orthopedic Surgery, Beijing Friendship Hospital, Capital University of Medical Sciences, Beijing, and Drs Chan and Li (Gang) are from the Department of Orthopedics & Traumatology and the CUHK-WHO Collaborating Center for Sports Medicine and Health Promotion, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China. Drs Tang, Zhao, Li (Yuan), Chen, Jia, Chan, and Li (Gang) have no relevant fi nancial relationships to disclose. Correspondence should be addressed to: Hai Tang, Department of Orthopedic Surgery, Beijing Friendship Hospital, Capital University of Medical Sciences, Beijing, 100050 China (tanghai@medmail.com.cn). doi: 10.3928/01477447-20101021-06 B Figure: Measuring vertebral body height at the anterior (A), central (C), and posterior (P) aspects pre- (A) and postoperatively (B). Abbreviation: NP, 1 ORTHO1210Tang.indd 1 11/3/2010 3:22:19 PM

The prevalence of osteoporosis has increased over the past decade as society has aged. Vertebral fractures are the most common fractures associated with osteoporosis and have a substantial negative impact on the quality of patients lives. 1 It is important to treat osteoporotic vertebrae fractures promptly to reduce pain in elderly patients. The effectiveness of traditional, conservative treatments, such as bed rest, pain control, and back braces, is uncertain. Long-term bed rest could lead to further bone loss, muscular atrophy, and unhealed fractures. Traditional surgery for treatment of spinal fracture constitutes a major operation with potential large volumes of blood loss, and it is difficult to properly secure the implants in severely osteoporotic bones. 2 Percutaneous kyphoplasty is a new technique with many advantages: it is minimally invasive and does not require implants or open surgery, and patients can recover quickly. Percutaneous kyphoplasty is an invaluable alternative to treat elderly patients osteoporotic vertebral compression fractures. However, concern exists as to the safety of using the percutaneous kyphoplasty technique as a routine management of osteoporotic vertebral fractures. This article describes our results treating 54 cases of vertebral compressive fracture using percutaneous kyphoplasty between 2003 and 2006. MATERIALS AND METHODS We retrospectively studied 54 patients (6 men and 48 women; mean age at surgery, 71.6 years) with symptomatic acute amyelic osteoporotic fractures (total, 207 osteoporotic vertebral compression fractures). The 207 vertebrae involved T4-L5 (one T4, four T5, three T6, fifteen T7, seven T8, fourteen T9, six T10, nineteen T11, thirty-six T12, thirty-eight L1, twenty-one L2, sixteen L3, eighteen L4, and nine L5). All patients had low back pain and could not sit continuously for 1 hour. The pain aggravated after activity and was not relieved by bed rest. Physical examinations showed that the corresponding spinal processes had tenderness and percussion pain. The degree of vertebral compression was in the range of 25% to 75%. Symptoms lasted from 2 months to 48 months (average, 29 months). All patients had poor responses to pain relief or anti-osteoporosis drug treatment. The diagnosis of osteoporotic vertebral compression fracture was confirmed by: (1) general health examination; (2) bone mineral density examination using bone densitometry (Lunar DPX-L; GE Healthcare, Waukesha, Wisconsin) (mean BMD of the femoral neck, 0.605 g/cm 2 ); (3) routine anteroposterior (AP) and lateral radiograph examinations of the spine (Genant semi-quantitative method, II and III degree); and (4) computed tomography (CT) and magnetic resonance imaging (MRI; T1-weighted demonstrated hyposingle and T2-weighted hyprosingle). There was no sign of spinal cord or nerve root damage in any case. SURGICAL TECHNIQUE Anteroposterior and lateral radiographs and CT of the spine were obtained to confirm the integration of the posterior border of the vertebral body, and cases with burst fractures were excluded. Laboratory examination and general physical checkup were also taken to confirm the imaging findings. For the percutaneous kyphoplasty procedure, we used the balloon kyphoplasty set (Kyphon, Inc, Sunnyvale, California), comprising an introducing cannula, operative cannula, Kirschner guidewires, manual drill, inflatable balloon, dedicated pressure transducer-equipped syringe, working cannula, and reconstituted acrylic polymethylmethacrylate, which was used to fill the vertebral cavity following balloon expansion. All patients underwent surgery under general anesthesia in the prone position with the belly suspended in midair. The minimally invasive kyphoplasty apparatus and special balloon device were used via either a transpedicular or bipedicular approach. Under C-arm imaging guidance, the surgeon probed a guide pin into the lateral upper edge of the pedicle of the vertebral arch. The percutaneous puncture needle was centered at 10 o clock over the left pedicle and 2 o clock over the right pedicle on the AP view under fluoroscopic guidance. A cannula with touch needle was then inserted to the anterior 2 to 3 mm of the vertebral body posterior edge of the cortical plate, and the guide pin and touch needle were extracted. The drill was inserted along the cannula, and a channel was drilled into the fractured vertebral body, then a balloon was inserted through the drill tunnel and inflated slowly. The ideal position for the balloon was considered to be occupying three-fourths of the vertebral bodies showing at the lateral view. The inflatable balloon was used to reduce the fracture, elevate the endplates, and create a void in the vertebral body. The inflated balloon was filled with liquid contrast medium to monitor the balloon position and size continuously during fracture reduction. The pressure used for inflating the balloon was controlled at 250 to 300 psi. When a cavity had been created in the vertebral body and the compressed fracture was reduced, the balloon was deflated and removed through the tunnel. Two point zero to 7.5 cm 3 (mean, 5.7 cm) bone cement was then injected slowly into the cavity within the vertebral body, and the surgery was completed by dressing the wound. In some patients, percutaneous kyphoplasty was repeated in a similar fashion in several adjacent vertebrae with fractures or with early signs of compression. For osteoporosis management, our standard regime included initial use of calcitonin for pain relief (20 IU/week for 1-2 months) and calcium carbonate (600 mg/day) or calcitriol (0.5 g/day) for calcium and vitamin D supplementation. One to 2 months after kyphoplasty, patients switched to bisphosphonates such as alendronate (70 mg/week) for 18 months. 2 ORTHOPEDICS ORTHOSuperSite.com ORTHO1210Tang.indd 2

PERCUTANEOUS KYPHOPLASTY FOR VERTEBRAL COMPRESSION FRACTURES TANG ET AL Clinical Evaluations Evaluations were performed 3 times: one day preoperatively, 3 days postoperatively, and 6 to 36 months postoperatively (average postoperative follow-up, 20.4 months). Visual analogue scale (VAS), painkiller score (0, no medicine; 1, use of nonsteroidal anti-inflammatory drugs; 2, use of painkiller not used for anesthesia; 3, use of painkiller used for anesthesia; 4, use of intravenous or intramuscularly injected painkiller), and locomotor activity score (1, no difficulty; 2, difficulty walking; 3, use of wheelchair or can only sit; 4, lying in bed only) 3 were monitored. Anteroposterior and lateral radiographs of the spine were taken pre- and postoperatively and during follow-up. The Cobb angle and vertebral heights of the anterior, middle, and posterior border were measured on the lateral projection (Figure), and the changes were compared over time. SPSS11.0 software (SPSS, Inc, Chicago, Illinois) was used to analyze the data. Statistical analyses were performed using paired samples t test, and P.05 was considered significance. RESULTS All patients completed the percutaneous kyphoplasty surgery as planned. Mean surgery time per vertebra was 25 minutes. There was no evidence of side effects or complications due to the anesthesia protocol, except for discomfort reported by some patients about the surgical position. No nerve or spinal cord injury or disruption of the balloon occurred in any case. The mean amount of bone cement filled in each vertebra was 5.7 ml (range, 2.0-7.5 ml). Mean blood loss during surgery was 35 ml (range, 20-50 ml) (Table 1). Among the 54 patients (207 vertebrae) undergoing the percutaneous kyphoplasty technique, 8 vertebrae had bone cement leakage, including 3 cases leaking into the tunnels of the vertebral arches, 2 leaking into the next intervertebral spaces, 2 leaking to the side of vertebra, and 1 leaking into the vertebral canal. The rate of bone cement A B Figure: Measuring vertebral body height at the anterior (A), central (C), and posterior (P) aspects pre- (A) and postoperatively (B). Abbreviation: NP, leakage was 3.86%. However, no patients with bone cement leakage had symptoms of nerve damage postoperatively. After lying in bed for 6 to 12 hours, patients could sit freely, and 24 hours postoperatively, they were allowed to walk freely. No nerve injury, spinal cord compression, or lung embolism was seen in any patient. Postoperative Changes Significant improvements in VAS values, painkiller scores, and locomotor activity scores were found in the postoperative data compared to the preoperative data. The difference between the VAS values for pain detected before and after percutaneous kyphoplasty was statistically significant, whereas no difference in VAS value was found between the time immediately postoperatively and at follow-up (Table 2). There were significant differences between the pre- and postoperative period in the anterior and middle heights of the vertebral bodies, and no significant difference was found in the posterior heights of the vertebral bodies at all time points. There was a significant increase in the anterior heights (0.24 0.32 cm) and the middle heights of the vertebral bodies (0.35 0.33 cm) postoperatively. Mean Table 1 Patient Demographics and Treatment Details Age, y 71.6 7.5 No. women (%) 48 (88.9) Degree of compression, % 64.6 5.9 Duration of symptoms, mo 29 3.0 BMD of lumbar vertebrae, 3.1 1.0 T-score BMD of hip, T-score 2.8 1.0 Balloon pressure, psi 271.2 18.3 Surgery time, min 25 1.9 Cement used per vertebral 5.7 0.4 body, cm 3 Leakage rate, % 3.86 Blood loss, ml 35 2.8 Abbreviation: BMD, bone mineral density. Cobb angle decreased by 2.57 6.59 (P.05) postoperatively, and mean kyphotic angle decreased by 10.2% postoperatively (Table 3). DISCUSSION Percutaneous kyphoplasty is a convenient, efficient, reliable, economic, and minimally invasive technique developed by 3 ORTHO1210Tang.indd 3

Table 2 Scores Before and After Percutaneous Kyphoplasty a Reiley in the early 1990s. 4 It inserts a guide pin into the vertebral body, sends an inflatable bone tamp/balloon to create a void and reduce the elevation of the compression vertebra, and then fills bone cement in the vertebral void created by the bone tamp. Percutaneous kyphoplasty can relieve pain quickly and correct kyphosis by enhancing the rigidity and intensity of vertebrae. Vertebral compression fractures are common fractures that occur whenever loads on the vertebral bodies overstep stability and stiffness. It has been reported that percutaneous kyphoplasty can significantly relieve pain in 90% to 100% of patients with osteoporotic vertebral compression fractures within 1 week postoperatively, and in most cases patients can stand and walk within 24 to 48 hours postoperatively. 4-6 In our study, VAS values decreased from 8.2 to 2.6 following percutaneous kyphoplasty, suggesting that pain relief was Visual Analog Scale Painkiller Score Locomotor Activity Score Preoperatively 8.20 1.14 1.59 0.91 2.91 0.75 Immediately postoperatively 2.60 1.10 b 0.18 0.39 b 1.27 0.46 b Postoperative follow-up 2.70 1.24 c 0.21 0.32 c 1.30 0.34 c a n 54. b P<.01 compared with preoperatively. c P<.01 compared with immediately postoperatively. Table 3 Vertebral Height and Cobb Angle Changes a Anterior Middle Posterior Cobb Angle, deg Preoperatively 1.98 0.61 1.92 0.61 2.62 0.56 24.32 12.37 Immediately postoperatively 2.23 0.60 b 2.27 0.54 b 2.72 0.53 b 21.85 11.02 b Postoperative follow-up 2.23 0.53 c 2.26 0.60 c 2.70 0.54 22.77 12.01 c a n 207. b P<.01 compared with preoperatively. c P<.01 compared with immediately postoperatively. quick and significant. The relapse of pain was rare in the 6-month follow-up period. The mean painkiller score decreased from 1.59 to 0.18, and the mean locomotor activity score decreased from 2.91 to 1.27, indicating that the quality of patients lives improved remarkably. Reports indicate that 92% of vertebral compression fracture patients had pain relief and function improvement immediately postoperatively. 4-7 Although the mechanism of pain relief following percutaneous kyphoplasty is still unclear, most reports speculate that it may be due to: (1) the heat generated during the cement consolidation destroying the nerve endings in the surrounding tissues 8 ; or (2) the injected bone cements improving the strength of the vertebral bodies and the stability of the spine, hence reducing the irritation to vertebral nerves. 9,10 Patients with multithoracolumbar vertebral compression fractures often have severe kyphosis, so that multilevel percutaneous kyphoplasty surgery could significantly improve their clinical symptoms. It has been reported that 1 percutaneous kyphoplasty session can reinforce 6 levels of vertebrae. 11 Percutaneous kyphoplasty was developed on the basis of percutaneous vertebroplasty. Percutaneous vertebroplasty injects bone cement into compression vertebrae in hypoviscosity by percutaneous puncture and fixes it in the compression position, which can relieve pain rather than correct the deformity of spine. 12 Percutaneous kyphoplasty has more advantages than percutaneous vertebroplasty because it can restore the anterior and middle heights of the vertebral bodies, correct the kyphosis, and restore the spinal line of force with bone tamp bracing. Garfin et al 6 reported that approximately 67% of compression vertebral fractures could be recovered totally or partially in 340 cases (603 vertebrae) with percutaneous kyphoplasty. Rhyne et al 7 reported that corrected kyphosis averaged 14% after percutaneous kyphoplasty; the anterior and middle vertebral height increased by 4.6 and 3.9 mm, respectively. Our study showed an immediate and marked clinical improvement in patients after percutaneous kyphoplasty, with a significant increase in vertebral body height and normalization of vertebral body shape. In addition to excellent pain relief, our study confirms that percutaneous kyphoplasty can also restore the heights of compressed vertebrae, correct the kyphosis, reduce complications, and improve the quality of patients lives. If the vertebral compression fractures in our patients involved 1 vertebra, we used the same balloon kit for multilevel vertebral correction, and on average 1 balloon kit could be used for 4 vertebral corrections. Since all patients sustained osteoporotic compression fractures, the main purpose of kyphoplasty was to stabilize the fracture and reduce the pain (allow early weight-bearing movements). Kyphoplasty can also restore the vertebral 4 ORTHOPEDICS ORTHOSuperSite.com ORTHO1210Tang.indd 4

PERCUTANEOUS KYPHOPLASTY FOR VERTEBRAL COMPRESSION FRACTURES TANG ET AL body height and reinforce the adjacent vertebral bodies to prevent similar fractures. The decision on how to select the adjacent levels for preventative injection was based on the patient s clinical assessments (eg, the bone mineral density scores and radiographic appearances of the adjacent vertebral bodies). If a patient has a T- score 2.5 standard deviation and signs of vertebral body compression fracture (early stage), then adjacent levels should be injected, and usually we will do at least 2 more levels (eg, below and above the fractured vertebra), although multilevels can be injected if necessary. We gave all patients anti-osteoporosis medication immediately following percutaneous kyphoplasty; this is essential to prevent or slow osteoporotic fracture. Cement leakage is the most common complication of percutaneous kyphoplasty because of the high pressure needed for cement injection. Other factors causing leakage include an excessive amount of bone cement, longer bone cement consolidation time, and defects of the vertebral walls. Garfin et al 6 reported the incidence of cement leakage rate to be 1% with percutaneous kyphoplasty, whereas in our study the cement leakage rate was 3.86%. No patients with cement leakage reported complications within the followup period, suggesting that cement leakage is not a major concern. The incident of cement leakage can be minimized by using the correct cement injection pressure and amount and not using percutaneous kyphoplasty when the posterior wall of the vertebra is incomplete. In our experience, the amount of cement injection should not exceed 4.5 ml in thoracic vertebrae and 6 ml in lumbar vertebrae. Under fluoroscopic monitoring, the surgeon should do his best to insert the puncture pin at lateral upper edge of the pedicle of the vertebral arch to avoid the spinal cord and vertebral plexus. The cement should be injected in the cement drying-off period; otherwise the liquid from the cement may leak into the vertebral canal. If the bone cement leaks into the vertebral canal, the surgeon must stop the operation, wait until the cement completely consolidates, and then continue the procedure. We experienced no balloon breakage, vertebral fracture, or pedicle fracture. Because the average vertebral body and volume of Chinese women is smaller than that of their European and American counterparts, we did not need to use excessive force to expand the balloon. The average pressure we used was 140 to 200 psi. REFERENCES 1. Genant HK, Cooper C, Poor G, et al. Interim report and recommendation of World Health Organization Task-Force for Osteoporosis. Osteoporos Int. 1999; 10(4):259-264. 2. Taylor RS, Taylor RJ, Fritzell P. Balloon kyphoplasty and vertebroplasty for vertebral compression fractures: a comparative systematic review of efficacy and safety. Spine (Phila Pa 1976). 2006; 31(23):2747-2755. 3. Cortet B, Cotten A, Boutry N, et al. Percutaneous vertebroplasty in the treatment of osteoporotic vertebral compression fractures: an open prospective study. J Rheumatol. 1999; 26(10):2222-2228. 4. Lieberman IH, Dudeney S, Reinhardt MK, Bell G. Initial outcome and efficacy of kyphoplasty in the treatment of painful osteoporotic vertebral compression fractures. Spine (Phila Pa 1976). 2001; 26(14):1631-1638. 5. Berlemann U, Franz T, Orler R, Heini PF. Kyphoplasty for treatment of osteoporotic vertebral fractures: a prospective non-randomized study [published online ahead of print April 9, 2004]. Eur Spine J. 2004; 13(6):496-501. 6. Garfin SR, Yuan HA, Reiley MA. New technologies in spine: kyphoplasty and vertebroplasty for the treatment of painful osteoporotic compression fractures. Spine (Phila Pa 1976). 2001; 26(14):1511-1515. 7. Rhyne A III, Banit D, Laxer E, Odum S, Nussman D. Kyphoplasty: report of eighty-two thoracolumbar osteoporotic vertebral fractures. J Orthop Trauma. 2004; 18(5):294-299. 8. Coumans JV, Reinhardt MK, Lieberman IH. Kyphoplasty for vertebral compression fractures: 1-year clinical outcomes from a prospective study. J Neurosurg. 2003; 99(1 Suppl):44-50. 9. Belkoff SM, Mathis JM, Erbe EM, Fenton DC. Biomechanical evalution of a new bone cement for use in vertebroplasty. Spine (Phila Pa 1976). 2000; 25(9):1061-1064. 10. Cotten A, Boutry N, Cortet B, et al. Percutaneous vertebroplasty: state of the art. Radiographics. 1998; 18(2):311-320; discussion 320-323. 11. Heini PF, Orler R. Vertebroplasty in severe osteoporosis. Technique and experience with multi-segment injection [in German]. Orthopade. 2004; 33(1):22-30. 12. Kobayashi K, Shimoyama K, Nakamura K, Murata K. Percutaneous vertebroplasty immediately relieves pain of osteoporotic vertebral compression fractures and prevents prolonged immobilization of patients [published online ahead of print November 25, 2004]. Eur Radiol. 2005; 15(2):360-367. 5 ORTHO1210Tang.indd 5 11/3/2010 3:22:21 PM