RADON RESEARCH IN MULTI DISCIPLINES: A REVIEW

Similar documents
BIOLOGICAL EFFECTS OF

Biological Effects of Ionizing Radiation & Commonly Used Radiation Units

Biological Effects of Ionizing Radiation & Commonly Used Radiation Units

Laboratory Safety 197/405. Types of Radiation 198/405

RADIATION RISK ASSESSMENT

Radiation Carcinogenesis

Radiation Health Effects

Health Physics and the Linear No-Threshold Model

Radiation Safety Information for Students in Courses given by the Nuclear Physics Group at KTH, Stockholm, Sweden

Sources of Data of Stochastic Effects of Radiation. Michael K O Connor, Ph.D. Dept. of Radiology, Mayo Clinic

Biological Effects of Radiation KJ350.

Ionizing Radiation. Alpha Particles CHAPTER 1

LET, RBE and Damage to DNA

Radioactivity. Lecture 8 Biological Effects of Radiation

Radiologic Units: What You Need to Know

Ionizing Radiation. Michael J. Vala, CHP. Bristol-Myers Squibb

Cancer Risk Factors in Ontario. Other Radiation

Lecture 14 Exposure to Ionizing Radiation

Ernest Rutherford:

Chem 481 Lecture Material 3/11/09

JEFFERSON COLLEGE. Radiographic Biology

GUIDELINES ON IONISING RADIATION DOSE LIMITS AND ANNUAL LIMITS ON INTAKE OF RADIOACTIVE MATERIAL

U.S. Low Dose Radiation Research Program

COMMENTARY ON USING LNT FOR RADIATION PROTECTION AND RISK ASSESSMENT

Core Concepts in Radiation Exposure 4/10/2015. Ionizing Radiation, Cancer, and. James Seward, MD MPP

Understanding Radiation and Its Effects

PRINCIPLES AND METHODS OF RADIATION PROTECTION

Biological Effects of Radiation

Chemical Engineering 412

UNC-Duke Biology Course for Residents Fall

Genome Instability is Breathtaking

IONIZING RADIATION, HEALTH EFFECTS AND PROTECTIVE MEASURES

The health risks of exposure to internal radiation. Korea National Assembly Seoul 22 nd August 2015

1/31/2014. Radiation Biology and Risk to the Public

Application of the Commission's Recommendations for the Protection of People in

ICRP 128 ICRP ICRP ICRP 1928

The Linear No-Threshold Model (LNT): Made to Be Tested, Made to Be Questioned. Richard C. Miller, PhD Associate Professor The University of Chicago

Background Radiation in U.S. ~ msv/yr msv/yr ~0.02 ~0.02 msv msv/day /day (~2 m rem/day) mrem/day) NCRP 4

Review of the Radiobiological Principles of Radiation Protection

Lab & Rad Safety Newsletter

Possible Consequences of Inhomogeneous Suborgan Distribution of Dose and the Linear No-Threshold Dose-Effect Relationship

Effects of Long-Term Exposure to Radiation. Tim Marshel R.T. (R)(N)(CT)(MR)(NCT)(PET)(CNMT)

Chapter 8. Ionizing and Non-Ionizing Radiation

ACUTE RADIATION SYNDROME: Diagnosis and Treatment

Chapter 7. What is Radiation Biology? Ionizing Radiation. Energy Transfer Determinants 09/21/2014

What is radiation quality?

Estimates of Risks LONG-TERM LOW DOSE EFFECTS OF IONIZING RADIATION

RADIOACTIVITY & RADIATION CHARACTERISTICS

Progress in understanding radon risk

QUANTIFICATION OF THE RISK-REFLECTING STOCHASTIC AND DETERMINISTIC RADIATION EFFECTS

User's Guide for the Interactive RadioEpidemiological Program (NIOSH-IREP)

Everyday Radiation. David D. Dixon HDT Rally Hutchinson, KS October 15, 2014

Estimating Risk of Low Radiation Doses (from AAPM 2013) María Marteinsdóttir Nordic Trauma,

Hiroshima / Fukushima: Gender Matters in the Atomic Age

Learning Objectives. Review of the Radiobiological Principles of Radiation Protection. Radiation Effects

Where does the estimate of 29,000 cancers come from? Based on Table 12D from BEIR VII, + risk estimates for 56,900,000 patients

Sources of ionizing radiation Atomic structure and radioactivity Radiation interaction with matter Radiation units and dose Biological effects

Free Executive Summary

Everyday Radiation. David D. Dixon HDT Rally Hutchinson, KS October 13, 2015

Radiation Physiology and Effects

Twelfth Annual Warren K. Sinclair Keynote Address

LOW DOSES OF RADIATION REDUCE RISK IN VIVO

BEIR VII: Epidemiology and Models for Estimating Cancer Risk

Fukushima: What We All Should Know about Radiation

Introduction To Nuclear Power Module 3: Understanding Radiation and Its Effects

Radiation in Everyday Life

Public and Worker Health Impacts from the Fukushima Nuclear Plant Accident Thomas McKone, PhD & James Seward, MD, MPP

Special Topic: Radiological Dispersal Device or Dirty Bomb EXPLOSION AND BLAST INJURIES

Is there a safe level of radiation exposure? The Petkau effect

Radiation Protection

Basics of biological effects of ionizing radiation

Radiopharmaceuticals. Radionuclides in NM. Radionuclides NUCLEAR MEDICINE. Modes of radioactive decays DIAGNOSTIC THERAPY CHEMICAL COMPOUND

Space Radiation Risks for Long. Duration Missions Edward Semones

ALPHA PARTICLE MICRODOSIMETRY IN THE LUNG

STANDARDIZED RADIOGENIC CANCER RISK COEFFICIENTS: A REVIEW OF THE METHODOLOGY PRESENTED IN FEDERAL GUIDANCE REPORT NO. 13

William F. Morgan. Ph.D., D.Sc.

A Commentary on: A History of the United States Department of Energy (DOE) Low Dose Radiation Research Program: Dr. Antone L.

ESTIMATING RADIOGENIC CANCER RISKS

Public Summary: The Health Effects of Exposure to Indoor Radon

Rulemaking1CEm Resource

Thomas S. Tenforde. President CIRMS 2006 Conference. National Institute of Standards & Technology Gaithersburg, Maryland October 23-25, 2006

AN INTRODUCTION TO NUCLEAR MEDICINE

Save Our Sievert! Ches Mason BHP Billiton Uranium, 55 Grenfell Street, Adelaide, SA5000, Australia

2.1 The Importance of Cell Division

RADIATION HAZARDS. A dabbler s perspective. Jess H. Brewer

DOWNLOAD OR READ : IONIZING RADIATION EFFECTS IN ELECTRONICS FROM MEMORIES TO IMAGERS DEVICES CIRCUITS AND SYSTEMS BOOK 50 PDF EBOOK EPUB MOBI

Radioactive Exposure. Abstract of Article:

CANCER AND LOW DOSE RESPONSES IN VIVO: IMPLICATIONS FOR RADIATION PROTECTION

RADON RISK IN URANIUM MINING AND ICRP

María José Mesa López

The Impact of Bystander Effects and Adaptive Responses in the Health Risks of Low Dose Ionizing Radiation

Medical Use of Radioisotopes

Physical Bases : Which Isotopes?

HUMAN LUNG CANCER RISKS FROM RADON PART II INFLUENCE FROM COMBINED ADAPTIVE RESPONSE AND BYSTANDER EFFECTS A MICRODOSE ANALYSIS

Determination of Radon Concentration in Some Types of Cigarettes

Chronic cell death may play a crucial role in mutagenesis and carcinogenesis due to radon exposure

Advances in biological dosimetry

Dose-equivalent equivalent = absorbed

ICRP Recommendations Evolution or Revolution? John R Cooper Main Commission

COMPARISON OF RADIOBIOLOGICAL EFFECTS OF CARBON IONS TO PROTONS ON A RESISTANT HUMAN MELANOMA CELL LINE

Transcription:

RADON RESEARCH IN MULTI DISCIPLINES: A REVIEW PILLALAMARRI ILA Earth Atmospheric & Planetary Sciences Neutron Activation Analysis Laboratory Massachusetts Institute of Technology Cambridge, MA 02139 IAP 2007: 12.091 Credit Course: January 17 25, 2007 Session 3, January 19, 2007

COURSE OUTLINE I. Fundamentals of radon physics: review II. Radon research in geology III. Radon research in radiation biology IV. Radon research in medicine V. Radon research in health physics Earth & Planetary Science Radon research in multi disciplines summary Student Presentations Radioactivity Laboratory demonstration 12.091 Session 3: P. ILA 2

DETAILED COURSE WORK The course work involves the following: 1. January 17, 18, 19, 22, 25 1 3 PM 5 sessions each of 2 hours 25% 2. Study Assignments 4 20% 3 Project Literature Survey Writing a report 30% 4. Project Presentation 25% Required percentage to pass this course is 95% Grading: P/F 12.091 Session 3: P. ILA 3

Session 3 Radon & Radiation Biology 12.091 Session 3: P. ILA 4

Session 3 January 19, 2007 Objective 1. Review of Radiation Biology Basics: 1.1 Introduction 1.2 Radioactivity and Absorbed dose Dosimetry 1.3 Effects of radiation on cell primary site of damage 1.4 Target theory 1.5 Linear No Threshold Theory 2. Examples of Some Current Research: Current Research on Effects of Low Dose Ionizing Radiation 12.091 Session 3: P. ILA 5

1. REVIEW OF RADIATION BIOLOGY BASICS 1.1 Introduction 1.2 Radioactivity and Absorbed dose dosimetry 1.3 Effects of radiation on cell Primary site of damage 1.4 Target theory 1.5 Linear No Threshold theory 12.091 Session 3: P. ILA 6

1.1 Introduction Radiation biology research is in wide range of subjects like detection of chemical or microscopic changes in irradiated organisms; observation and explanation of many changes at gross or nano level, lethal or non-lethal, long term or short term, caused by ionizing radiations in biological materials; development of ultimate principles and procedures for radiation protection. 12.091 Session 3: P. ILA 7

1.2 Radioactivity and Absorbed Dose Dosimetry Radioactivity is measured in units of disintegrations per second. 1 Curie = 1 Ci = 3.7 x 10 10 dps 1 Becquerel =1 Bq = 1 dps Rad is a unit of absorbed dose for any ionizing radiation. 1 Rad = 1R = 100 ergs absorbed per gram of any substance 1 Gray = 1 Gy =100 Rads 12.091 Session 3: P. ILA 8

1.2 Radioactivity and Absorbed Dose Dosimetry Roentgen: Unit of exposure of X-X or gamma radiation ionization produced in air. 1 Roentgen results 1 esu per cc of air at STP. Roentgen Equivalent Man Rem is dose equivalent 12.091 Session 3: P. ILA 9

1.2 Radioactivity and Absorbed Dose Dosimetry Roentgen Equivalent Man = Rem = Rad x RBE (or QF) x DF RBE = Relative Biological Effectiveness is a factor expressing relative effectiveness of radiations with differing linear energy transfer (limited to radiobiology usage) QF = Quality Factor similar to RBE (used mostly in Radiation Protection) DF = Dose Distribution Factor accounts biological effect due to non uniform distribution of internally deposited radionuclides. 12.091 Session 3: P. ILA 10

1.2 Radioactivity and Absorbed dose Dosimetry Linear Energy Transfer LET The average energy released per unit track length traversed. LET is useful in comparing radiations. Comparisons are based on LET value. 12.091 Session 3: P. ILA 11

Table 1. Comparison of LETs for different radiations LET ( Radiation 3 MeV X-ray 0.3 60 Co gamma (1.3 MeV) 250 kev X-ray LET (kev/u) u = micron length in water 0.3 ray 3.0 5.3 MeV alpha 110.0 Fission Fragment 4000-9000 Ref: Radiation Biology, A. P. Casarett pp 28 12.091 Session 3: P. ILA 12

1.2 Radioactivity and Absorbed Dose Dosimetry Dose Dose relates to the effect on a material exposed to radiation. Absorbed dose is the amount of energy absorbed by a material when exposed to radiation. Equivalent dose (in unit Sievert) ) is the potential biological effect in tissue exposed to radiation = Absorbed dose x Quality Factor. 12.091 Session 3: P. ILA 13

1.2 Radioactivity and Absorbed Dose Dosimetry Irradiation damage to a cell: Radiation may pass through the cell causing no damage; pass through the cell causing damage, but the cell still able to repair the damage before forming new cells pass through the cell causing damage, cell passes damage on to new cells; pass through the cell, completely destroying the cell. 12.091 Session 3: P. ILA 14

Table 2. Total body radiation exposure and effects Exposure Effect 50 mgy ( 5 rads) No significant symptoms 1 Gy (100 rads) Possible symptoms of nausea and vomiting for about 2 days; temporary reduced activity of new blood cell formation 3 Gy (350 rads) Initial symptoms of nausea and vomiting; after 3-4 weeks, possible development of deficiency WBC and platelets; recommended medical attention Higher levels Fatal; recommended immediate medical attention. Ref: http://orise.orau.gov/reacts/guide/injury.htm 12.091 Session 3: P. ILA 15

1.3 Effects of radiation on cell Components of cell structures Ref: Radiation Biology by A. P. Casarett 12.091 Session 3: P. ILA 16

1.3 Effects of radiation on cell Some functions of cell structures: Cell Membrane: Cell is contained by a membrane called plasma membrane consisting of lipoprotein complex of phospholipids and layers of protein molecules making it a semi-permeable membrane. Endoplasmic reticulum membrane can be viewed as a connecting net work. 12.091 Session 3: P. ILA 17

1.3 Effects of radiation on cell Functions of Cell structures Within the cytoplasm of the cell are ribosomes, mitochodria, golgi complex and lysosomes. Ribosomes: : sites for important enzyme synthesis Mitochondria: also sites for the respiratory enzymes which couple oxidation and phosprylation reactions. Lysosomes: : sites for a number of digestive enzymes of the cell. 12.091 Session 3: P. ILA 18

1.3 Effects of radiation on cell Functions of Cell structures Chromosomes: The nucleus consists of the nucleoli and the chromosomes. Chromosomes consist primarily of DNA and RNA. DNA consists of only four different nucleotides, replicating themselves. RNA is like a messenger providing blueprints for the cells. 12.091 Session 3: P. ILA 19

1.3 Effects of radiation on cell Radiation effects on membranes Healthy membrane structure is vital to cell integrity. Radiation damage: rupturing dilation of endoplasmic reticulum swelling of mitochondria disorganization of internal membrane altering of permeability 12.091 Session 3: P. ILA 20

1.3 Effects of radiation on cell Radiation effects on enzymes: Higher doses of radiation are required,. to induce enzyme activity alteration, causing reduction of cell growth; as compared to mutation effects or chromosome damage. 12.091 Session 3: P. ILA 21

1.3 Effects of radiation on cell Radiation effects on DNA and RNA Effect on DNA: Synthesis becomes reduced due to decrease in the activity of enzymes which regulate the synthesis of DNA. These effects seem to be more delayed rather than immediate. Decrease in DNA causes changes in cell population. Effect on RNA: The synthesis of RNA may be delayed or depressed by radiation. Also alteration of DNA synthesis effects RNA as the messenger for blueprint function. 12.091 Session 3: P. ILA 22

1.3 Effects of radiation on cell Radiation effects of chromosomes: Structural aberrations caused by lesions. Lesions may be single arm, inter am intra arm. Chromatid type aberrations: Well presented diagrams or pictures of aberrations can be seen in radiobiology text books or on websites. 12.091 Session 3: P. ILA 23

1.3 Effects of radiation on cell Primary site of damage Primary site of damage Vast data, both direct and inferential evidence, provide conclusion that cell nuclei are a major site of radiation damage leading to cell demise. Cell Division (not in present scope of this session) Genetic Effects (not in present scope of this session) Note: When a cell is exposed to radiation, the change depends both on the cell and the surrounding cells, their functions and activity at the time of radiation exposure. 12.091 Session 3: P. ILA 24

1.4 Target Theory Model applied Biological effects vs dose, with constraints or criteria imposed States that the production or ionization in or near a structure called the target is responsible for the measured effect. 12.091 Session 3: P. ILA 25

1.4 Target Theory The production of an effective event in the target is called a hit. In its simplest model, one hit is sufficient to produce a measured effect such as reduced growth or division or even cell death In its simplest model, random occurrence of event is assumed. But in reality the probability may be multi target single hit. So models become more complex and sophisticated. 12.091 Session 3: P. ILA 26

1.4 Target Theory Alpha radiation has high LET, hence causes direct damage to the DNA. X-rays and gamma radiation have low LETs,, however, generate free radicals, which are toxic. The end effect is that the DNA of the cell is altered. 12.091 Session 3: P. ILA 27

1.5 Linear No Threshold Theory The linear no-threshold model (LNT) is a model of the dose by ionizing radiation and the response effect Assumptions of the LNT model: The response is linear. Response/Effect is directly proportional to dose at all dose levels. There is NO THRESHOLD of exposure below which the response ceases to be linear. 12.091 Session 3: P. ILA 28

1.5 Linear No Threshold Theory National Council on Radiation Protection and Measurements (NCRP) recently recommended that - radiation effects should be considered to be proportional to the dose an individual receives, regardless of how small that dose is, in order to be cautious. 12.091 Session 3: P. ILA 29

1.5 Linear No Threshold Theory Alternative An alternate model is radiation hormesis. Postulates that: radiation is beneficial at low doses, and harmful at high doses. 12.091 Session 3: P. ILA 30

2. Current Research on Effects of Low Dose Ionizing Radiation Current understanding of low dose ionizing effects and dialogue on Linear No Threshold Theory 12.091 Session 3: P. ILA 31

2. Recent Research on Effects of Low Dose Ionizing Radiation The most important aspect of radiation protection is : to provide protection, from low as well as high levels of ionizing radiation, to professionals as well as general public. Many risk estimate studies are based on earlier studies such as ionizing radiation effects due to atom bomb exposure; uranium mining; recent studies such as exposure due to nuclear power plant accidents. Also many cohort studies are being conducted world wide. (Ref. BEIR Reports). However, recently, there is a debate/dialogue going on about damage to the human cells causing non-cancerous effects; no-damage and/or ability of cells to repair from damage; no effects for certain dose levels; from low dose ionizing radiations. 12.091 Session 3: P. ILA 32

The dialogue about the appropriateness of LNT in radiation protection According to in favor discussion: (Ref: Brenner. D., 2001) Low dose range may be considered as 10 100 mgy. At this level, there is difficulty in measuring the signals with sufficient the precision and accuracy. Yes, there may be three-four options of (non-linear) in the dose-response relationships. The reason that could give solid weight to in-favor scenario: Ionizing radiation energy deposition is of unique nature; when dose is decreased, fewer cells may be hit by more than one radiation track which may be sufficient to damage cells, even at very low doses. Quoting Dr. Brenner, to sum up: A risk not statistically distinguishable from background is not in itself evidence that the risk is or is not zero, so is not evidence for or against the applicability of LNT. 12.091 Session 3: P. ILA 33

The dialogue about the appropriateness of LNT in radiation protection Opposing the LNT: (Ref. Raabe, O.G., 2001): The LNT model uses simple mathematical relationships that prorate higher dose-response down to lower and zero dose and risk. This is inappropriate in the context of current understanding of cancer risk estimates which showed non-linear threshold like phenomenon for ionizing alpha radiation. Also, studies of beneficial effects of low level ionizing radiation are now being reported frequently (Luckey 1991, Jaworowski, 1995, Cohen 1995). 12.091 Session 3: P. ILA 34

Linear No Threshold Theory & Low Dose Ionizing Radiation Linear No Threshold model: Major concern is damage to DNA Requires protection to DNA from ionizing radiation. Current understanding Low-dose ionizing radiation interaction with DNA may be in contrast to the impairment by high-dose radiation. The ionizing radiation effect is not measured by the number of mutations, but by oxidative DNA damage. At low doses, radiation may prevent cancer by increasing removal of premalignant or malignant cells with persistent DNA damage, in human radio immunotherapy, completely remove malignant tumors with metastases. 12.091 Session 3: P. ILA 35

Current Understanding of Low Dose Ionizing Effects Three key effects observed: genomic instability, adaptive responses and bystander effects. The understanding: Low doses suggest significant non-linear responses. These new observations pose a significant challenge to understanding of low-dose exposure Conclusion: Further research is needed to explain the mechanisms, and effects of ionizing radiation by low dose exposure and determine their relevance. 12.091 Session 3: P. ILA 36

Internet Keywords Radiation dosimetry, Target Theory Single hit, Multi hit Linear No Threshold Ionizing radiation Toxicology, Ionizing radiation -- Physiological effect. Ionizing radiation -- Dose-response Radiation -- Physiological effect Radon -- Health aspects. Radon -- Physiological effect. Radiation carcinogenesis. Health risk assessment 12.091 Session 3: P. ILA 37

References & Further Reading Brenner, D. J.; Raabe, O. G. Is the linear no-threshold hypothesis appropriate in radiation protection Radiation Protection Dosimetry, 97(3): 270-285; 2001. Cohen, B. L. Test of the Linear-No Threshold Theory of Radiation Carcinogenisis of Inhaled Radon Decay Products, Health Physics 68: 157-174; 1995. Evans. R. D. Radium in Man, Health Physics 27:497-519; 1974 12.091 Session 3: P. ILA 38

References & Further Reading Grosswendt, B Nano dosimetry, the metrological tool for connecting radiation physics with radiation Biology, Radiat Prot Dosimetry. 2006 Dec 14 ( page numbers n/a) Luckey, T. D. Radiation Hormesis, Boca Raton, Fl: CRC Press, 1991 Jaworowski, Z. Beneficial Radiation, Nukleonika, 40: 3-12; 1995. 12.091 Session 3: P. ILA 39

References & Further Reading Pollycove M, Feinendegen LE. Molecular biology, epidemiology, and the demise of the linear no-threshold (LNT) hypothesis. Comptes rendus de l'académie des sciences. Série 3, Sciences de la vie (C. r. Acad. sci., Sér. 3, Sci. vie) 322 (2-3): 197-204; 1999. Prise, K. M. New advances in radiation biology Occupational Medicine 56(3):156-161; 2006 12.091 Session 3: P. ILA 40

References & Further Reading Hall, E. J.; Giaccia, A. J. Radiobiology for the radiologist 6th edition, Philadelphia: Lippincott Williams & Wilkins, c2006. ISBN 0781741513 Henriksen, T.; H. Maillie, D. H. Radiation and health London ; New York : Taylor & Francis, 2003. ISBN 0415271614 (hbk) ISBN 0415271622 (pbk.) 12.091 Session 3: P. ILA 41

References & Further Reading BEIR REPORTS Health Risks from exposure to low levels of ionizing radiation, BEIR VII Phase 2, Jostes, R. Washington National Academies Press 2006 ISBN 030909156X Health effects of exposure to radon, BEIR VI, Authors: Committee on Health Risks of Exposure to Radon, Board on Radiation Effects Research, Commission on Life Sciences, National Research Council, National Academy Press, Washington, D.C. ISBN 0309056454 12.091 Session 3: P. ILA 42

References & Further Reading BEIR Reports Health effects of exposure to low levels of ionizing radiation, BEIR V, Authors: Committee on the Biological Effects of Ionizing Radiations, Board on Radiation Effects Research, Commission on Life Sciences, National Research Council. National Academy Press, 1990. Washington, D.C. ISBN 0309039975 ISBN 0309039959 (pbk.) 12.091 Session 3: P. ILA 43

References & Further Reading BEIR REPORTS Health risks of radon and other internally deposited alpha-emitters: BEIR IV Authors: Committee on the Biological Effects of Ionizing Radiations, Board on Radiation Effects Research, Commission on Life Sciences, National Research Council. National Academy Press, 1988. Washington, D.C. ISBN 0309037891 (pbk.) ISBN 0309037972 (hard) 12.091 Session 3: P. ILA 44

References & Further Reading BEIR REPORTS Considerations of health benefit-cost analysis for activities involving ionizing radiation exposure and alternatives : a report, Biological effects of ionizing radiation BEIR II Report, Authors: National Research Council (U.S.). Advisory Committee on the Biological Effects of Ionizing Radiations. United States. Environmental Protection Agency. Office of Radiation Programs. Criteria and Standards Division, National Academy of Sciences (U.S.), National Academy Press, 1977. Washington, D.C. Sub Docs Number EP 6.2:H 34## 12.091 Session 3: P. ILA 45