Solanum trilobatum in the management of atopy: Through inhibition of mast cell degranulation and moderation of release of interleukins

Similar documents
EVALUATION OF ANTI-INFLAMMATORY ACTIVITY OF THE LEAF EXTRACTS OF SOLANUM TRILOBATUM LINN

Journal of Chemical and Pharmaceutical Research

Scholars Research Library J. Nat. Prod. Plant Resour., 2017, 7(2): (

3. PRELIMINARY PHYTOCHEMICAL SCREENING

Research Article GALLIC ACID AND FLAVONOID ACTIVITIES OF AMARANTHUS GANGETICUS

IN VITRO ANTICANCER ACTIVITY OF FLOWER EXTRACTS OF COUROUPITA GUIANENSIS

Phytochemical,Screening,of,Various,Extracts,of,Root,of,Withania, Somnifera*(L)*Dunal*

SensoLyte pnpp Alkaline Phosphatase Assay Kit *Colorimetric*

E-1 Role of IgE and IgE receptors in allergic airway inflammation and remodeling

Journal of Chemical and Pharmaceutical Research

Immunomodulatory effect of methanol extract of Solanum xanthocarpum fruits

ISOLATION AND CHARACTERIZATION OF HESPERIDIN FROM ORANGE PEEL

Phytochemical Analysis and Antioxidant property of Aegle marmelos Extracts

In Vivo Mast Cell Stabilizing Activity of Different Extracts Of Trigonella Foenum-Graecum on the Rat Mesenteric Mast Cells

4. Determination of fat content (AOAC, 2000) Reagents

INHIBITION OF ANAPHYLACTIC SHOCK IN THE RAT BY ANTIHISTAMINES AND ASCORBIC ACID

Metabolism of echitamine and plumbagin in rats

SUPPLEMENTARY INFORMATION. Involvement of IL-21 in the epidermal hyperplasia of psoriasis

Experiment 1. Isolation of Glycogen from rat Liver

QUANTITATIVE ESTIMATION OF PHYTOSTEROL FROM TWO MEDICINALLY IMPORTANT PLANTS OF CUCURBITACEAE

PRELIMINARY PHYTOCHEMICAL SCREENING AND IN-VITRO FREE RADICAL SCAVENGING ACTIVITY OF MELOCHIA CORCHORIFOLIA PLANT EXTRACTS

PRELIMINARY PHYTOCHEMICAL STUDIES ON SOLANUM SURATTENSE BURM.F. SEEDS

CONTENTS. STUDY DESIGN METHODS ELISA protocol for quantitation of mite (Dermatophagoides spp.) Der p 1 or Der f 1

South Asian Journal of Biological Sciences Vo.1. No.1 (September 2011)

MyBioSource.com. Instructions for use. Histamine Release

CELL MEDIATED IMMUNE RESPONSE

Scholars Research Library

WORLD JOURNAL OF PHARMACY AND PHARMACEUTICAL SCIENCES. World Journal of Pharmacy and Pharmaceutical Sciences SJIF Impact Factor 6.

Study of Phytochemical Screening and Antimicrobial Activity of Citrus aurantifolia Seed Extracts

10.00 PBS OVA OVA+isotype antibody 8.00 OVA+anti-HMGB1. PBS Methatroline (mg/ml)

EXPERIMENT 4 DETERMINATION OF REDUCING SUGARS, TOTAL REDUCING SUGARS, SUCROSE AND STARCH

Toxicological Studies of the Aqueous Leaves Extracts of Combretum micranthum on Rats

SUPPLEMENTARY MATERIAL

Journal of Chemical and Pharmaceutical Research

ANTI-DIABETIC ACTIVITY OF HELICTERES ISORA ROOT

Asian Journal of Research in Pharmaceutical Sciences and Biotechnology

AQUEOUS EXTRACTION OF NIMBA PATRA (Azardirachta indica ITS PHYTOCHEMICAL ANALYSIS

International Journal of Drug Research and Technology

INTERNATIONAL JOURNAL OF PHARMACEUTICAL RESEARCH AND BIO-SCIENCE

Octa Journal of Biosciences

Anticancer Properties of Phytochemicals Present in Indian Medicinal Plants.

Pharmacognostic and preliminary phytochemical analysis of Aegle marmelos L. and Centella asiatica L.

Global Histone H3 Acetylation Assay Kit

Evaluation of Diuretic Activity of Jussiaea Suffruticosa Linn.

Bioprospecting of Neem for Antimicrobial Activity against Soil Microbes

Preparation and characterization of Aloe vera extract

A STUDY ON ANTIBACTERIAL PROPERTIES OF TINOSPORA CORDIFOLIA LEAF, STEM, ROOT EXTRACTS

B16-F10 (Mus musculus skin melanoma), NCI-H460 (human non-small cell lung cancer

Journal of Chemical and Pharmaceutical Research

In vitro antimicrobial activity of leaves and bark extracts of Ficus religiosa (Linn.)

6. SUMMARY AND CONCLUSION

TOPICAL ANTI-INFLAMMATORY ACTIVITY OF PINDA THAILAM, A HERBAL GEL FORMULATION

ACTIVE.LITE. Patent-Pending Technology + Visibly Perceivable Results in Less than 14 Days. Tomorrow s Vision Today!

Phytochemical and Anti-cholestrol activity of Aegel marmelos (L.) Corr. leaf extract using in albino mice

HYPOGLYCAEMIC ACTION OF THE FLAVONOID FRACTION OF ARTOCARPUS HETEROPHYLLUS LEAF

EPIGENTEK. EpiQuik Global Histone H3 Acetylation Assay Kit. Base Catalog # P-4008 PLEASE READ THIS ENTIRE USER GUIDE BEFORE USE

EPIGENTEK. EpiQuik Global Histone H4 Acetylation Assay Kit. Base Catalog # P-4009 PLEASE READ THIS ENTIRE USER GUIDE BEFORE USE

Jigna Parekh, Nehal Karathia and Sumitra Chanda*

International Journal of Pharma and Bio Sciences

EVALUATION OF ANTIANAPHYLACTIC ACTIVITY OF VARIOUS EXTRACTS OF WITHANIA SOMNIFERA IN RATS

Procaspase-3. Cleaved caspase-3. actin. Cytochrome C (10 M) Z-VAD-fmk. Procaspase-3. Cleaved caspase-3. actin. Z-VAD-fmk

Standardization of Milagathi Choornam

Allergy Skin Prick Testing

FABRICATION AND EVALUATION OF GLIMEPIRIDE CORDIA DICHOTOMA G.FORST FRUIT MUCILAGE SUSTAINED RELEASE MATRIX TABLETS

Phytochemical and Physico-Chemical Analysis of Siddha Preparation Magizham Pattai Chooranam

Pharmacologyonline 1: (2010) Effect of Various Extracts of Tectona grandis Linn. Bark on Bronchitis

Life Science Archives (LSA)

STUDIES OF THE HEMAGGLUTININ OF HAEMOPHILUS PERTUSSIS HIDEO FUKUMI, HISASHI SHIMAZAKI, SADAO KOBAYASHI AND TATSUJI UCHIDA

A Study on Phytochemicals, Antioxidant, Antidiabetic and Antimicrobial Activity of the Leaves of Solanum Trilobatum

In Vitro Antioxidant and Cytotoxic Analysis of Boerhaavia diffusa Linn.

Tylophora indica in the treatment

Murugan M. et al / Journal of Pharmaceutical Science and Technology Vol. 1 (2), 2009, 69-73

MTS assay in A549 cells

Antioxidant Activity of the plant Andrographis paniculata (Invitro)

Research Article ISSN :

Phytochemical screening and antibacterial properties of Garcinia kola

Chandan Prasad.et.al. Int. Journal of Engineering Research and Application ISSN : , Vol. 7, Issue 9, ( Part -6) September 2017, pp.

Title proteinase-activated receptor 2 ago. Published by Elsevier Ireland Ltd.

Immunologic Mechanisms of Tissue Damage. (Immuopathology)

Scholars Research Library. Phytochemical studies of Svensonia hyderobadensis (walp.) Mold: A rare medicinal plant

Everant.in/index.php/jmpr. Journal of Medical Practice and Review

Peptide stimulation and Intracellular Cytokine Staining

EpiQuik Total Histone H3 Acetylation Detection Fast Kit (Colorimetric)

The nature of adhesion factors which lie on the surfaces of Lactobacillus adhering to cells

1.1. Gelatinizing Plates Prepare plates by covering surface with 0.1% Gelatin solution:

Test Name Results Units Bio. Ref. Interval ALLERGY, INDIVIDUAL MARKER, BAHIA GRASS (PASPALUM NOTATUM), SERUM (FEIA) 0.39 kua/l <0.

STABILITY INDICATING ASSAY. differentiate an intact drug from its potential decomposition products 425.

International Journal of PharmTech Research CODEN (USA): IJPRIF, ISSN: Vol.9, No.4, pp , 2016

Transfusion and Allergy: What is it, and what is it not? Prof. Olivier GARRAUD INTS, Paris Université de Lyon/Saint-Etienne France

MTS assay in THP-1 cells

The attached protocol was used for growing RWPE-1 cells per ATCC instructions.

EVALUATION OF THE EFFECTIVENESS OF A 7% ACCELERATED HYDROGEN PEROXIDE-BASED FORMULATION AGAINST CANINE PARVOVIRUS

Exploring Possible Anticancer Potential Of Some Plants Of Cucurbitaceae Family

Dhanashri Mestry, Vidya V. Dighe

Journal of Chemical and Pharmaceutical Research, 2013, 5(5): Research Article. Anticancer properties of Cissus quandrangularis

SPERMICIDAL ACTIVITY IN VITRO OF BARK EXTRACT OF AZADIRACHTA INDICA IN RATS

ab Lipid Extraction Kit (Chloroform-Free)

Total Histone H3 Acetylation Detection Fast Kit (Colorimetric)

Asparagus racemosus Emblica officinalis Curcuma longa Hemidesmus indicus Piper longum Punica granatum Tinospora cordifolia Withania somnifera

Transcription:

P H C O G R E S. O R I G I N A L A R T I C L E Solanum trilobatum in the management of atopy: Through inhibition of mast cell degranulation and moderation of release of interleukins M. S. Ranjith, A. J. A. Ranjitsingh 1, S. Gokul Shankar, G. S. Vijayalaksmi 2, K. Deepa 3, K. Babu 4, Harcharan Singh Sidhu Faculty of Medicine, Microbiology Unit, 3 Anatomy Unit, AIMST University, Kedah, Malaysia, 1 Department of Advanced Zoology and Biotechnology, Sri Paramakalyani College, Alwarkurichi, 2 Sri Paramakalyani Center for Environmental Sciences, M. S. University, Tirunelveli, 4 R and D Center, Cholayil Private Limited, Chennai, India Submitted: 05-10-2009 Revised: 20-11-2009 Published: 13-03-2010 A B S T R A C T Solanum trilobatum is a widely used plant in the Indian indigenous systems of medicine. It is mainly used in the treatment of respiratory diseases like bronchial asthma. In our present study, we report that the aqueous and alcoholic extracts of S. trilobatum exhibited inhibition of mast cell degranulation. Further, aqueous and alcoholic extracts of S. trilobatum significantly decreased the release of IL1a and increased the release of IL8 from the cultured keratinocytes. Oral administration of the aqueous and alcoholic extracts of S. trilobatum stabilized mast cells in experimental rats. Key words: Histamine, immunomodulation, interleukin, mast cell, medicinal plants, Solanum trilobatum INTRODUCTION Solanum trilobatum belongs to the family Solanaceae, which is commonly known as Alarka in Sanskrit. Several reports document the diverse properties of this plant. S. trilobatum possesses antioxidant activity, [1] hepatoprotective activity [2] and protects against UV-induced damage and radiationinduced toxicity in mice. [3] Aqueous and solvent extracts of S. trilobatum were found to possess anti-inflammatory and antimicrobial properties. [4-6] Atopic allergy implies a familial tendency to manifest conditions such as asthma, rhinitis, urticaria and eczematous dermatitis, alone or in combination. However, individuals without an atopic background may also develop hypersensitivity reactions, particularly urticaria and anaphylaxis, associated with IgE antibody. Mast cell is the key effector cell of the biologic response in allergic reaction. The use of synthetic antihistamines to control atopic allergy over a prolonged period of time could lead to potential side effects, and the relief offered by them is Address for correspondence: Dr. M. S. Ranjith, Associate Professor, Microbiology Unit, Faculty of Medicine, AIMST University, Bedong 08100, Kedah, Malaysia. E-mail: msranjith@yahoo.com DOI:10.4103/0974-8490.60581 mainly symptomatic and short-lived. A safe and effective management of atopy through plant resources has received much attention in recent years. This study was undertaken to evaluate the efficacy of aqueous and solvent extracts of S. trilobatum in regulating the mast cell degranulation event and inflammatory responses (IL1a and IL8) through in vitro and in vivo studies. Further, the determination of efficacy of these extracts in preventing the disease progression in experimental model was also attempted. MATERIALS AND METHODS Extraction procedure S. trilobatum plant was collected from Chennai, south India, and authenticated by the Department of Plant Biology and Biotechnology, The New College, Chennai. Nondestructive cold-process extraction was employed with different solvents (ethanol, ethyl acetate and chloroform); and in the case of aqueous extraction, heat distillation process was used. Shade-dried powdered leaves of S. trilobatum were soaked separately in ethanol, ethyl acetate and chloroform in a ratio of 1:5 (solute versus solvent) in a conical flask. The entire setup was kept at room temperature for 24 hours with intermittent shaking. After 24 hours, the mixture was filtered through Whatman no.1 filter paper, and the filtrate was dried to evaporate the solvent. The extract settled at the bottom was used for the experiment at varying concentrations. In 10 Pharmacognosy Research January 2010 Vol 2 Issue 1

the case of aqueous extraction, the leaves were boiled in water at 1:5 ratio at 100 C for 30 minutes. [7] After 30 minutes, the mixture was filtered and the filtrate was stored in a refrigerator until use. All animal experiments were approved by the Institutional Animal Ethics Committee. Collection of peritoneal mast cells Cold normal saline (2 ml) was injected into the peritoneal cavity of the BALB/c mice under mild ether anesthesia. After a gentle massage, the peritoneal fluid was collected and transferred into siliconized test tubes containing 3 ml of RPMI-1640 medium (ph, 7.2-7.4). The cells were washed twice by low-speed centrifugation (400-500 rpm) and suspended in RPMI-1640 medium (Himedia, India). [8] Degranulation of mast cells The peritoneal exudate cells containing, among other things, mast cells were incubated for 15 minutes at 378C with antigen (0.1 mg egg albumin/ml). After incubation, the cells were stained with 1% toluidine blue [9] and observed under high-power microscope. The total number of peritoneal exudate cells and the number of mast cells (degranulated and granulated) were counted in the complete field of the microscope. Effect of S. trilobatum on rat mesenteric mast cells Male albino Wistar rats weighing 150-200 g were sensitized with egg albumin (1 mg/rat) intramuscularly. After 10 days another dose of egg albumin was given as above. The rats were then divided into five groups (six rats in each group). The aqueous and ethanolic extracts of S. trilobatum in 5% Tween 80 were given orally for 3 consecutive days, following the second dose of antigen administration. The aqueous extract was administered at a dose of 5 and 10 mg/kg body weight to groups I and II, respectively. The ethanolic extract was administered at 5 and 10 mg/ kg body weight to groups III and IV, respectively. Group V animals treated with cetrizine hydrochloride at 0.5 mg/kg body weight were used as control. Twenty-four hours after the last dose of drug or 5% Tween 80 treatment, rats were sacrificed by cervical dislocation and intestinal mesentery was collected. Collection and preparation of mesentery This was done essentially as described by Rathinum et al. [10] The intestinal mesentery of overnight-fasted rats was collected, washed in normal saline, separated along with gut and suspended in RPMI-1640 medium. The mesentery was then cut into pieces of 1 cm 2 each and used for the experiment. Two pieces from each rat were incubated in 5 ml RPMI-1640 medium with or without 0.1 mg/ml egg albumin, for 15 minutes at 37 C. The mesentery was removed, spread on a clean glass slide, dried in air and separated from the gut using a sharp blade. The dried slide was stained with toluidine blue and counter-stained with light green stain [9] and observed under the microscope. Effect of release of histamine from mast cells Mast cells were isolated from peritoneal cavity of albino Wistar rats and maintained in RPMI-1640. Substance P (neuromediator) was used as mast cell degranulation substance. Substance P prepared at a concentration of 3.10-5 M was used for the test. Different solvent extracts of S. trilobatum were tested for their effect on histamine release. After treatment with the respective extracts, the cells were incubated at 378C for 20 minutes. After incubation the reaction was stopped by changing the temperature to 4 C. [11] Later, reaction mixture was centrifuged and the supernatant was assayed for histamine by Immunotech kit (Beckman Coulter Cat. No. 2562). Isolation of keratinocytes Primary cultures of human keratinocytes were established from the skin remaining of abdomen surgery from healthy donors. Skin pieces of 1 cm 2 were exposed to dispase 2.4 U/ ml (Sigma) overnight at 48C. The epidermis was removed from the dermal layer and incubated in 0.25% EDTA-trypsin (Sigma) for 10 minutes at 378C. After incubation, enzymatic activity of trypsin was stopped to adding Dulbecco's Modified Eagle Medium (DMEM) medium (Gibco) supplemented with 10% heat-inactivated fetal bovine serum (Gibco) and was homogenized by repeated aspirations. Cell suspension was centrifuged at 1500 rpm for 10 minutes, and the pellet was resuspended in serum-free medium for keratinocytes (Gibco). Cells were seeded into 75-cm 2 culture flasks and kept at 378C at 5% CO 2. The culture medium was renewed every 3 days. [12] Release of IL1a from keratinocytes Keratinocytes were incubated in keratinocyte serum-free medium (KSFM) (Gibco, BRL - France) at 378C with 5% CO 2. All the extracts at all the concentrations were tested for the effect of release of IL1a. Keratinocytes were irradiated with UV A and B at 0.15 J/cm 2. After irradiation, the cell culture was kept at 378C for 24 hours in KSFM; the supernatant was collected and assayed for IL1a by ELISA kit (Beckman Coulter Cat. No. IM0755) Release of IL8 from keratinocytes To study the release of IL8, a procedure similar to the one mentioned above was employed. Subsequently PMA (Phorbol-12- Myristate 13-Acetate) was used as IL8 stimulant. IL8 was assayed by ELISA kit (Beckman Coulter Catalog No. IM227) Dust inhalation assay Twelve healthy New Zealand white rabbits (6 animals per group) orally pretreated with aqueous extract of Pharmacognosy Research January 2010 Vol 2 Issue 1 11

S. trilobatum at 10 mg/kg body weight for 14 days were exposed to house dust on day 15 through a nebulizer in a dust inhalation chamber for 1 hour. Four extract-pretreated animals each unexposed to house dust challenge were maintained as control. The amounts of histamine released in test and control animals were assayed using standard procedure. [13] Statistical analysis The results are expressed as mean 6 SD. Significant differences between two experimental groups were analyzed by ANOVA. Values of P, 0.05 were considered significant. RESULTS The aqueous and alcoholic extracts of S. trilobatum exhibited mast cell degranulation inhibition activity at 15 mg/ml. Increase in activity with increase in concentration with the above extracts was seen. Chloroform and ethyl acetate extracts of the above plant did not show any activity at all concentrations [Table 1]. Ten-day administration of the aqueous and alcoholic extracts of S. trilobatum showed mast cell stabilization in animals at 10 mg/kg body weight. The histamine release in these animals was as low as that for cetrizine hydrochloride (0.5 mg/kg body weight)-treated animals. Increase in activity with increase in concentration of the above extract was not seen [Tables 2 and 3]. Aqueous and alcoholic extracts of S. trilobatum at 10 and 15 mg/ml, respectively, significantly decreased the release of IL1a and increased the release of IL8 from the cultured keratinocytes [Tables 4 and 5]. DISCUSSION With the advent of urbanization and industrialization, allergic manifestation, especially the state of atopy, has increased significantly. As per WHO, 20% of the global population is considered to be hypersensitive/atopic in nature. Management of atopy is widely achieved either through immune-suppressive drugs such as steroids or through neutralization of the end product of allergic process histamine with antihistamine drugs. [14] Therefore, for the management of allergy, there arises the need for either histamine inactivation or mast cell stabilization. In the current study, we have evaluated the role of S. trilobatum by addressing the preliminary mechanism of response in the allergic manifestation, i.e., mast cell degranulation inhibition. The aqueous and ethanolic extracts of S. trilobatum showed mast cell degranulation inhibition property, whereas none of the other extracts of the same plant showed any significant activity. This was reconfirmed by quantifying the release Table 3: Effect of S. trilobatum in the release of histamine in animals exposed to dust (dust inhalation test/extract administration at 10 mg/kg body weight) Treatment group (Animals) Quantity of histamine release (nm) time interval 6 hours 12 hours 18 hours Untreated control 806 810 819 Negative control 145 151 162 (cetrizine treated) Aqueous extract 211 214 221 Ethanolic extract 216 219 227 Chloroform extract 800 809 815 Ethyl acetate extract 802 811 814 Table 1: Effect of S. trilobatum on mast cell degranulation Concentrations (mg/ml) Percentage of inhibition of degranulation in response to extracts Aqueous Ethanol Chloroform Ethyl acetate Control 1 87 6 1.3 87 6 1.9 82 6 1.3 78 6 1.4 88 6 1.2 5 89 6 1.5 89 6 1.1 85 6 1.5 78 6 1.9 10 81 6 1.2 81 6 1.9 80 6 1.2 81 6 1.9 15 64 6 1.7 63 6 1.6 88 6 1.1 83 6 1.7 20 60 6 1.3 61 6 1.4 86 6 1.2 80 6 1.4 Table 2: Effect of S. trilobatum in the release of histamine from mast cells Experiment Extracts/quantity of histamine release (nm) Aqueous Ethanol Chloroform Ethyl acetate Control 312 Mast cells treated with substance P 1543 Mast cells treated with substance P 1 1 mg/ml extract 1242 1391 1510 1405 Mast cells treated with substance P 1 5 mg/ml extract 1132 1252 1493 1400 Mast cells treated with substance P 1 10 mg/ml extract 1100 1113 1448 1381 Mast cells treated with substance P 1 15 mg/ml extract 1064 1083 1400 1377 Mast cells treated with substance P 1 20 mg/ml extract 1018 1002 1340 1374 12 Pharmacognosy Research January 2010 Vol 2 Issue 1

Table 4: Effect of S. trilobatum in the release of IL1a from keratinocyte culture Extracts Variation of IL1a by test/control 1 mg/ml 5 mg/ml 10 mg/ml 15 mg/ml 20 mg/ml Aqueous 231 6 5 232 6 6 251 6 8 247 6 6 236 6 6 Ethanol 241 6 6 242 6 5 255 6 5 252 6 6 243 6 7 Chloroform 233 6 5 235 6 7 235 6 6 237 6 6 237 6 5 Ethyl acetate 232 6 5 234 6 7 235 6 7 237 6 7 237 6 6 Table 5: Effect of S. trilobatum in the release of IL8 from keratinocyte culture Extracts Variation of IL8 by test/control 1 mg/ml 5 mg/ml 10 mg/ml 15 mg/ml 20 mg/ml Aqueous 230 6 7 229 6 5 222 6 8 220 6 5 227 6 5 Ethanol 230 6 5 231 6 6 223 6 6 218 6 7 226 6 6 Chloroform 232 6 6 234 6 6 235 6 6 236 6 6 236 6 5 Ethyl acetate 230 6 6 231 6 5 232 6 6 234 6 6 234 6 5 of histamines in mesenteric mast cells. The aqueous and ethanolic extracts of S. trilobatum showed activity for in vitro assay for inhibition of mast cell degranulation, whereas other extracts of the same plant did not show any activity. This plant if properly exploited can serve as an effective drug in the management of various allergic and inflammatory conditions. The efficacy of S. trilobatum in the inhibition of mast cell degranulation was reconfirmed by dust inhalation study. In the S. trilobatum-treated animals, the release of histamine was very low in response to dust exposure. This could be due to the mast cell stabilization event, resulting in relatively low release of histamine. The in vitro-in vivo concordance in the result proves that S. trilobatum has anti-allergic properties. Studies have been carried out in the past to establish anti-inflammatory and anti-oxidant properties of S. trilobatum, [15-20] but its antihistaminic property, in particular, is a novel finding of this present investigation. Keratinocytes are the chief cells which play a vital role in the skin during allergic responses. They release a variety of interleukins; IL1a and IL8, in particular, are proinflammatory mediators. There is a dearth of studies on the effect of S trilobatum extract over the cultured keratinocytes and the release of interleukins and hence this study assumes prime importance. Biological activity of IL1a is pleotropic. Many of its effects are to increase the production of other cytokines. Chemotaxis, transendothelial migration, induction of lysosomal enzyme release, respiratory burst and generation of superoxide anions are the chief effects of IL8 on neutrophils. In order to confirm the effect of S. trilobatum in controlling inflammatory responses, the extracts were studied for their effect on the release of IL1a and IL8. The keratinocytes were treated with extracts in vitro and were exposed to UV radiation. The findings revealed that the release of IL1a significantly decreased while that of IL8 increased in the treated cells. Interestingly, this is the first report revealing the anti-inflammatory property S. trilobatum by modulating the release of interleukins by keratinocytes. S. trilobatum showed activity in controlling allergic responses. The aqueous and ethanolic extracts of S. trilobatum exhibited anti-inflammatory activities. The above activities could be attributed to the presence in these plants of specific active compounds capable of producing pharmacological effects. The analysis of the crude aqueous and ethanolic extracts showed an alkaloid content of 0.42% and the presence of tannins, saponins, flavonoids, steroids, terpenoids and cardiac glycosides (data not included). The immunomodulatory and anti-inflammatory properties of S. trilobatum could be attributed to these constituent ingredients in the extracts. In the present study, an attempt was made to investigate the effect of whole extract as used in the traditional systems of therapy, such as Ayurveda, rather than studying the activity of specific isolated active principles. Pure phytochemicals, besides their pharmacological benefits, may also possess toxicity when used individually. However, their toxic activities may get nullified/neutralized while present together with other compounds during therapeutic use. REFERENCES 1. Shahjahan M, Vani G, Shyamaladevi CS. Effect of Solanum trilobatum on the antioxidant status during diethyl nitrosamine induced and phenobarbital promoted hepatocarcinogenesis in rat. Chem Biol Interact 2005;156:113-23. 2. Shahjahan M, Sabitha KE, Jainu M, Shyamala Devi CS. Effect of Solanum trilobatum against carbon tetrachloride induced hepatic damage in albino rats. Indian J Med Res 2004;120:194 8. 3. Mohanan PV, Devi KS. Effect of Sobatum on tumour development and chemically induced carcinogenesis. Cancer Lett 1997;112:219-23. 4. Doss H, Mubarack M, Dhanabalan R. Antibacterial activity of tannins from the leaves of Solanum trilobatum Linn. Indian J Sci Technol 2009;2:41-3. Pharmacognosy Research January 2010 Vol 2 Issue 1 13

5. Govindan S, Viswanathan S, Vijayasekaran V, Alagappan R. A pilot study on the clinical efficacy of Solanum xanthocarpum and Solanum trilobatum in bronchial asthma. J Ethnopharmacol 1999;66:205-10. 6. Govindan S, Viswanathan S, Vijayasekaran V, Alagappan RJ. Antimicrobial activity and phytochemicals of Solanum trilobatum Linn. Cancer Lett 2004;127:135-40. 7. Ignácio SR, Ferreira JL, Almeida MB, Kubelka CF. Nitric oxide production by murine peritoneal macrophages in vitro and in vivo treated with Phyllanthus tenellus extracts. J Ethnopharmacol 2001;74:181-7. 8. Gupta PP, Srimal RC, Avasthi K, Garg N, Chandre T, Bhakuni DS. Anti-allergic activity of alkyl substituted pyrazolo[3,4-d] pyrimidine (compound 88-765). Ind J Exp Biol 1995;33:38-40. 9. Gupta RJ, Skelton FR. The role of mast cells in cadmium chloride induced injury in mature rat testis. Arch Pathol 1968; 85:89-93. 10. Rathinum K, Mohanan PV, Lizzy M. Comparative studies on mesenteric mast cells of rats, mice, rabbits, guinea pigs, chicken and frogs. Biomedicine 1991;11:17-9. 11. Taylor M, Reide P. Immune system; Allergic disorders and drug therapy. London: Mosby; 1998. 12. Niyonsaba F, Ushio H, Nakano N, Ng W, Sayama K, Hashimoto K, et al. Antimicrobial peptides human beta-defensins stimulate epidermal keratinocyte migration proliferation and production of proinflammatory cytokines and chemokines. J Invest Dermatol 2007;127:594-604. 13. Van Dyke K, Head RJ. Histamine and histamine antagonists. Modern Pharmacology 5 th ed. Little Brown and Company; 1998. 14. Rabson A, Roitt IM, Delves PJ. Really Essential Medical Immunology. 2 nd ed. Blackwel Publishing; 2005. 15. Pezzuto JM. Plant-derived anticancer agents. Biochem Pharmacol 1997;53:121-33. 16. Wagner H, Bladt S. Plant Drug Analysis-A Thin Layer Chromatographic Atlas. Springer-Verlag Berlin Heidelberg; 1996. 17. Gupta MB, Bhalla TN, Gupta GP, Mitra CR, Bhargava KP. Anti inflammatory activity of natural products: I. Triterpenoids. Eur J Pharmacol 1969;6:67-70. 18. Pandurangana A, Khosaa RL, Hemalathab S. Evaluation of Antiinflammatory and Analgesic Activity of Root Extract of Solanum trilobatum Linn. Iranian J Pharma Res 2008;7:217-21. 19. Sini H, Devi KS. Antioxidant activities of the chloroform extract of Solanum trilobatum. Pharm Biol 2004;42:462-6. 20. Emmanuel S, Ignacimuthu S, Perumalsamy R, Amalraj T. Anti-inflammatory activity of Solanum trilobatum. Fitoterapia 2006;77:611-2. Source of Support: Nil, Conflict of Interest: None declared. Author Help: Reference checking facility The manuscript system (www.journalonweb.com) allows the authors to check and verify the accuracy and style of references. The tool checks the references with PubMed as per a predefined style. Authors are encouraged to use this facility, before submitting articles to the journal. The style as well as bibliographic elements should be 100% accurate, to help get the references verified from the system. Even a single spelling error or addition of issue number/month of publication will lead to an error when verifying the reference. Example of a correct style Sheahan P, O leary G, Lee G, Fitzgibbon J. Cystic cervical metastases: Incidence and diagnosis using fine needle aspiration biopsy. Otolaryngol Head Neck Surg 2002;127:294-8. Only the references from journals indexed in PubMed will be checked. Enter each reference in new line, without a serial number. Add up to a maximum of 15 references at a time. If the reference is correct for its bibliographic elements and punctuations, it will be shown as CORRECT and a link to the correct article in PubMed will be given. If any of the bibliographic elements are missing, incorrect or extra (such as issue number), it will be shown as INCORRECT and link to possible articles in PubMed will be given. 14 Pharmacognosy Research January 2010 Vol 2 Issue 1