Chapter 7: Membranes

Similar documents
Membranes. Chapter 5

Membrane Structure. Membrane Structure. Membrane Structure. Membranes

Membranes. Chapter 5. Membrane Structure

A. Membrane Composition and Structure. B. Animal Cell Adhesion. C. Passive Processes of Membrane Transport. D. Active Transport

Lecture Series 5 Cellular Membranes

I. Fluid Mosaic Model A. Biological membranes are lipid bilayers with associated proteins

Lecture Series 4 Cellular Membranes

Cell Membrane: a Phospholipid Bilayer. Membrane Structure and Function. Fluid Mosaic Model. Chapter 5

Cell Membranes and Signaling

Chapter 7: Membrane Structure and Function. Key Terms:

The Cell Membrane & Movement of Materials In & Out of Cells PACKET #11

Phospholipids. Extracellular fluid. Polar hydrophilic heads. Nonpolar hydrophobic tails. Polar hydrophilic heads. Intracellular fluid (cytosol)

Plasma Membrane Structure and Function

Lecture Series 4 Cellular Membranes. Reading Assignments. Selective and Semi-permeable Barriers

The Cell Membrane & Movement of Materials In & Out of Cells PACKET #11

Membrane Structure and Function. Cell Membranes and Cell Transport

Membrane Structure and Function

Membrane Structure and Function - 1

Membrane Structure and Function

Lecture Series 4 Cellular Membranes

Membrane Structure. Membrane Structure. Membranes. Chapter 5

Chapter 7: Membrane Structure & Function

Chapter 7: Membrane Structure & Function. 1. Membrane Structure. What are Biological Membranes? 10/21/2015. Why phospholipids? 1. Membrane Structure

The Cell Membrane. Lecture 3a. Overview: Membranes. What is a membrane? Structure of the cell membrane. Fluid Mosaic Model. Membranes and Transport

Diffusion across cell membrane

CHAPTER 8 MEMBRANE STUCTURE AND FUNCTION

I. Chemical Properties of Phospholipids. Figure 1: Phospholipid Molecule. Amphiphatic:

Chapter 4: Cell Membrane Structure and Function

Cell Membranes Valencia college

Homeostasis, Transport & The Cell Membrane. Chapter 4-2 (pg 73 75) Chapter 5

Membrane Structure and Function. Selectively permeable membranes are key to the cell's ability to function

Plasma Membrane. Functions of the plasma membrane

Describe the Fluid Mosaic Model of membrane structure.

10/28/2013. Double bilayer of lipids with imbedded, dispersed proteins Bilayer consists of phospholipids, cholesterol, and glycolipids

Cell membrane & Transport. Dr. Ali Ebneshahidi Ebneshahidi

Cells: The Living Units

Constant Motion of Molecules. Kinetic Theory of Matter Molecules move randomly and bump into each other and other barriers

CELL TRANSPORT and THE PLASMA MEMBRANE. SB1d. Explain the impact of water on life processes (i.e., osmosis, diffusion).

Ch7: Membrane Structure & Function

The Plasma Membrane - Gateway to the Cell

Outline. Membrane Structure and Function. Membrane Models Fluid-Mosaic. Chapter 5

Chapter 8 Cells and Their Environment

MEMBRANE STRUCTURE AND FUNCTION

The Plasma Membrane. 5.1 The Nature of the Plasma Membrane. Phospholipid Bilayer. The Plasma Membrane

Maintained by plasma membrane controlling what enters & leaves the cell

Membrane Structure and Membrane Transport of Small Molecules. Assist. Prof. Pinar Tulay Faculty of Medicine

CH 7.2 & 7.4 Biology

Chapter 7 Membrane Structure and Function. The plasma membrane surrounds the living cells from their surroundings.

Chapter 4 Skeleton Notes: Membrane Structure & Function

The Cell Membrane. Usman Sumo Friend Tambunan Arli Aditya Parikesit. Bioinformatics Group Faculty of Mathematics and Science University of Indonesia

MEMBRANE STRUCTURE & FUNCTION

Concept 7.1: Cellular membranes are fluid mosaics of lipids and proteins

The Cell Membrane. Cell membrane separates living cell from nonliving surroundings. Controls traffic in & out of the cell

The Cell Membrane. Phospholipids. Chapter 7: Arranged as a Phospholipid bilayer. Cell membrane defines cell! Cell membrane separates living cell from

TRANSPORT ACROSS MEMBRANES

Equilibrium is a condition of balance. Changes in temperature, pressure or concentration can cause a shift in the equilibrium.

The Cell Membrane AP Biology

Plasma Membrane Structure and Function

Comprehensive and Easy Course Notes for BIOL1040 Exams and Assessment

Plasma Membrane & Movement of Materials in Cells

MEMBRANE STRUCTURE AND TRAFFIC. Cell Membrane Structure and Function

Gateway to the Cell 11/1/2012. The cell membrane is flexible and allows a unicellular organism to move FLUID MOSAIC MODEL

Cytoskeleton. Provide shape and support for the cell. Other functions of the cytoskeleton. Nucleolus. Nucleus

Plasma Membrane Function

Chapter 7: Membrane Structure and Function

II. Active Transport (move molecules against conc. gradient - cell must expend energy) (uses carrier proteins)

What do you remember about the cell membrane?

The Plasma Membrane - Gateway to the Cell

Phospholipids. Phosphate head. Fatty acid tails. Arranged as a bilayer. hydrophilic. hydrophobic. Phosphate. Fatty acid. attracted to water

Monday, September 30 th :

AP Biology. Overview. The Cell Membrane. Phospholipids. Phospholipid bilayer. More than lipids. Fatty acid tails. Phosphate group head

Cells and Their Environment Chapter 8. Cell Membrane Section 1

The Cell Membrane and Cellular Transportation

CWDHS Mr. Winch Grade 12 Biology

Division Ave High School Ms. Foglia AP Biology

Membrane Structure and Function

Membrane Structure and Function

BSC Exam I Lectures and Text Pages

Biology Kevin Dees. Chapter 7 Membrane Structure and Function

Chapter 3: Exchanging Materials with the Environment. Cellular Transport Transport across the Membrane

Cellular Transport. Biology Honors

BIOLOGY. Membrane Structure and Function CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

Transport. Slide 1 of 47. Copyright Pearson Prentice Hall

(d) are made mainly of lipids and of proteins that lie like thin sheets on the membrane surface

Unit 1 Matter & Energy for Life

Cell Transport & the Cell Membrane

Inorganic compounds: Usually do not contain carbon H 2 O Ca 3 (PO 4 ) 2 NaCl Carbon containing molecules not considered organic: CO 2

Transport: Cell Membrane Structure and Function. Biology 12 Chapter 4

Cell Membranes. Q: What components of the cell membrane are in a mosaic pattern?

Membrane Structure and Function

BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes

Chapter 1 Plasma membranes

Diffusion, Osmosis and Active Transport

Cell Membrane Structure and Function. What is the importance of having a cell membrane?

3.2.3 Transport across cell membranes

Cells & Transport. Chapter 7.1, 7.2, & 7.4

Unit 1 Matter & Energy for Life

MEMBRANE STRUCTURE AND FUNCTION

1. I can explain the structure of ATP and how it is used to store energy.

Transcription:

Chapter 7: Membranes Roles of Biological Membranes The Lipid Bilayer and the Fluid Mosaic Model Transport and Transfer Across Cell Membranes Specialized contacts (junctions) between cells

What are the major roles of biological membranes?

Roles of Biological Membranes border: keeping in in and out out membranes separate aqueous environments, so that differences can be maintained the plasma membrane surrounds the cell and separates the interior of the cell from the external environment membrane-bound organelles have their interior region separated from the rest of the cell

Roles of Biological Membranes border guarding: controlling what gets in and out passage of substances across membranes is generally regulated helps to establish and maintain appropriate environments in the cell even as the outside environment changes

Roles of Biological Membranes surface for chemistry many enzymes are embedded in membranes helps make reactions easier to control can help in getting reactants together can help in getting catalysts and reaction chains together sometimes, reactants on one side of a membrane and products are released on the other side, helping cells avoid equilibrium

Roles of Biological Membranes more surface chemistry: raising flags and sending or receiving messages proteins and glycoproteins embedded in membranes are used for chemical recognition and signaling

What are the major roles of biological membranes?

Chapter 7: Membranes Roles of Biological Membranes The Lipid Bilayer and the Fluid Mosaic Model Transport and Transfer Across Cell Membranes Specialized contacts (junctions) between cells

What about phospholipids makes a bilayer when mixed with water? Use the term amphipathic, and contrast with what detergents do

Physical properties of cell membranes: the lipid bilayer and the fluid mosaic model biological membranes are lipid bilayers with associated proteins and glycoproteins most of the lipids involved are phospholipids, although others like cholesterol and various glycolipids are also present

Physical properties of cell membranes: the lipid bilayer and the fluid mosaic model phospholipids molecules spontaneously form bilayers in aqueous environments means no energy required from cells to get this to happen two reasons amphipathic nature (distinct hydrophobic and hydrophilic regions) overall cylindrical structure

Physical properties of cell membranes: the lipid bilayer and the fluid mosaic model recall the hydrophilic head and hydrophobic tails of phospholipids tails come from two chains of fatty acids linked to glycerol head comes from a polar organic molecule linked via a phosphate group to the glycerol backbone

Physical properties of cell membranes: the lipid bilayer and the fluid mosaic model roughly cylindrical shape to the phospholipid molecule favors the formation of lipid bilayers over lipid spheres there are other amphipathic molecules, such as detergents (soaps, etc), that come to a point at their single hydrophobic tail, thus tending to form spheres instead of bilayers

Physical properties of cell membranes: the lipid bilayer and the fluid mosaic model detergents can solubilize lipids to varying degrees; high enough concentrations of detergents will disrupt cell membranes

What about phospholipids makes a bilayer when mixed with water? Use the term amphipathic, and contrast with what detergents do

Describe the fluid mosaic model: what does it mean to have a 2-dimensional fluid and not a 3-dimensional one, and what does the mosaic term mean here? Discuss membrane fluidity: why it is important and the ways it can be adjusted Contrast integral and peripheral membrane proteins

fluid mosaic model the fluid mosaic model describes the structure and properties of cell membranes From the 1930s: the sandwich model EM data after the 1950s ruled out the sandwich model membrane bilayers are uniformly about 8 nm thick, too thin for the sandwich model isolated membrane proteins were often found to have a globular nature

fluid mosaic model the fluid mosaic model was proposed in 1972 model has some proteins imbedded in lipid bilayers that act as two-dimensional fluids

fluid mosaic model biological membranes act as two-dimensional fluids, or liquid crystals free to move in two dimensions, but not in the third, the molecules of the membrane can rotate or move laterally molecules rarely flip from one side of the membrane to the other (that would be movement in the third dimension)

fluid mosaic model this model explained the existing data and made two key predications that have been verified: materials, including embedded proteins, can be moved along the membrane due to its fluid properties digestion of certain transmembrane proteins applied to one side of a membrane will produce protein fragments that differ from those found if digestion is done only on the other side

fluid mosaic model the fluidity of a membrane is a function of both temperature and the molecules in the membrane cells need membranes to be within a reasonable range of fluidity too fluid and they are too weak, too viscous and they are more like solid gels at a given temperature, phospholipids with saturated fats are less fluid than those with unsaturated fats

fluid mosaic model in an unsaturated fat, a carbon-carbon double bond produces a bend that causes the phospholipids to be spaced further away from its neighbors, thus retaining more freedom of motion

fluid mosaic model the upshot is: at colder temperatures, unsaturated fats are preferred in cell membranes (makes them more fluid) at higher temperatures, saturated fats are preferred (make them less fluid) other lipids, such as cholesterol, can stabilize membrane fluidity

fluid mosaic model organisms control membrane fluidity by several means by regulating their temperature (fastest method) by changing the fatty acid profile of their membranes (slow process) by adding fluidity modifiers or stabilizers like cholesterol ( fluidity buffer usually always present)

fluid mosaic model biological membranes resist having open ends a lipid bilayer will spontaneously self-seal usually, this results in nearly spherical vesicles with an internal, aqueous lumen

fluid mosaic model the spherical tendency can be modified with structural elements, such as structural proteins winding membrane surfaces must be kept far enough apart and structurally supported to prevent them from self-sealing vesicle formation takes advantage of self-sealing as regions of membrane are pinched off by protein contractile rings

fluid mosaic model fusion of membrane surfaces can occur when they are in close proximity (spontaneously; no energy cost) fusion is common between vesicles and various organelles contents of two separate membrane-bound lumens are mixed when fusion occurs fusion of vesicles with the plasma membrane delivers the material in the vesicle lumen to the outside of the cell

Membrane-Associated Proteins membrane proteins are classified as either integral or peripheral

Membrane-Associated Proteins integral proteins are amphipathic proteins that are firmly bound to the membrane, and can only be released from the membrane by detergents some integral proteins are transmembrane proteins, extending completely across the membrane hydrophobic a-helices are common in the membrane spanning domains of transmembrane proteins some wind back-and-forth across the membrane

Fig 611

Membrane-Associated Proteins peripheral proteins are not embedded in the membrane usually bound ionically or by hydrogen bonds to a hydrophilic portion of an integral protein

Membrane-Associated Proteins the protein profile of one membrane side typically differs from that of the other side many more proteins are on the cytoplasmic side of the plasma membrane, as revealed by freeze-fracturing plasma membranes the types of processing that a protein receives differs depending on the target side, or if it is integral

Describe the fluid mosaic model: what does it mean to have a 2-dimensional fluid and not a 3-dimensional one, and what does the mosaic term mean here? Discuss membrane fluidity: why it is important and the ways it can be adjusted Contrast integral and peripheral membrane proteins

Chapter 7: Membranes Roles of Biological Membranes The Lipid Bilayer and the Fluid Mosaic Model Transport and Transfer Across Cell Membranes Specialized contacts (junctions) between cells

Define and discuss these terms related to transport/transfer across cell membranes: selectively permeable diffusion concentration gradient osmosis tonics isotonic hypertonic hypotonic turgor pressure

Transport and transfer across cell membranes cell membranes are selectively permeable some substances readily pass through, others do not most permeable to small molecules and lipidsoluble substances water(!) and other small molecules like CO 2 and O 2 can pass through easily some examples of molecules that do not pass through easily: amino acids, sugars, ions

Transport and transfer across cell membranes cell membranes are selectively permeable some passage across the membrane is assisted with special channels to allow or speed up the passage the specific selectivity can vary depending on the membrane

Transport and transfer across cell diffusion across membranes is based on random motion of particles membranes particles move by random motion (kinetic energy); over time, the concentration across a membrane will tend to equalize diffusion is the net movement of particles from an area with a high (initial) concentration to an area with a low (initial) concentration

Transport and transfer across cell membranes a difference in concentrations establishes a concentration gradient, which provides the energy for diffusion given enough time, equilibrium will be reached (the concentrations on both sides of the membrane will be equal) often equilibrium is never reached due to continual removal and/or continual production of a substance rate of diffusion is a function temperature and of the size, shape, and charge nature of the substance

Transport and transfer across cell membranes osmosis is diffusion of a solvent across a membrane in biology, the solvent is typically water solutes do not always travel across membranes with water, but they affect movement by affecting the concentration of water osmotic pressure is determined by the amount of dissolved substances in a solution; it is the tendency of water to move into the solution

Transport and transfer across cell membranes comparing two solutions: isotonic - both have the same osmotic pressure if they have different osmotic pressures, then: water will tend to flow out of one solution and into the other hypertonic solution more tonics, thus: higher osmotic pressure water will tend to flow into it hypotonic solution less tonics, thus: lower osmotic pressure water will tend to flow out of it

Transport and transfer across cell membranes comparing two solutions: isotonic hypertonic hypotonic

Transport and transfer across cell membranes turgor pressure is hydrostatic pressure in cells with a cell wall a cell wall enables cells to take in extra amounts of water without bursting the cells take in water and push against the cell wall, which pushes back many cells use turgor pressure as part of maintaining structure; thus, if they lose turgor pressure, plants wilt

Define and discuss these terms related to transport/transfer across cell membranes: selectively permeable diffusion concentration gradient osmosis tonics isotonic hypertonic hypotonic turgor pressure

What is carrier-mediated transport? Differentiate between facilitated diffusion and active transport Describe how the sodium-potassium pump works Explain linked cotransport

Transport and transfer across cell membranes special integral membrane proteins assist in transport across membranes (carrier-mediated transport) facilitated diffusion when net transport follows a concentration gradient, but proteins are needed to assist in transport the carrier protein often provides a regulated channel or pore through the membrane typically used to transport ions and large molecules like glucose, although water channels also exist added energy is not required (concentration gradient provides the energy), and in some cases is harvested during transport

Transport and transfer across cell membranes carrier-mediated active transport requires energy to work against a concentration gradient energy is often supplied by ATP powering a protein pump that moves a substance against a gradient example: sodium-potassium pump in nearly all animal cells (moves 3 Na + out, 2 K + in)

Transport and transfer across cell more carrier-mediated active transport linked cotransport can also provide the energy for active transport Na +, K +, or H + is transported down its gradient, providing energy another substance is transported at the same time against its gradient, using the energy membranes the Na +, K +, or H + gradient is often produced by active transport via a pump that uses ATP

What is carrier-mediated transport? Differentiate between facilitated diffusion and active transport Describe how the sodium-potassium pump works Explain linked cotransport

Define the processes of exocytosis and endocytosis (include different forms of endocytosis)

Transport and transfer across cell membranes large particles are transported across membranes via exocytosis and endocytosis

Transport and transfer across cell membranes exocytosis - fusion of vesicles or vacuoles with the plasma membrane that results in secretion outside the cell or discarding waste outside the cell

Transport and transfer across cell membranes endocytosis vesicles or vacuoles bud into the cell from the plasma membrane, bringing materials into the cell; several types

endocytosis phagocytosis large solid particles are ingested (including whole cells in some cases)

endocytosis pinocytosis smaller regions of dissolved materials are ingested

endocytosis receptor-mediated endocytosis receptor proteins in the plasma membrane bind to specific molecules, causing protein conformational (shape) changes that lead to the formation of a coated vesicle typically, lysosomes bind with the vesicles or vacuoles formed via phagocytosis or receptor-mediated endocytosis

Define the processes of exocytosis and endocytosis (include different forms of endocytosis)

Where does exocytosis fit? Where does endocytosis fit (all forms)?

Summarize processes for transport of materials across membranes; include information about which ones are active (energy-requiring)

Cell-Cell Interactions Cell Signaling Cell Contacts (junctions) Anchoring Junctions Tight Junctions Gap Junctions Plasmodesmata

Discuss information transfer across a membrane (signal transduction); why is it needed, what are some concepts that you should associate with it?

Cell Signaling signal transduction is the transfer of information across the cell membrane two aspects: signal reception signal transmission *

signal transduction signal reception - special protein receptors in the cell membrane bind to signaling molecules outside the cell

signal transmission signal transduction the receptor, now activated, changes shape in some way then it transfers information to the interior of the cell often done using a series of protein activations and eventual formation of a second messenger such as camp on the cytosolic side of the cell membrane

Signal Ions Fig 75 (TEArt) Signal Chemically gated ion channel Inactive catalytic domain Enzymic receptor Active catalytic domain G protein G-protein-linked receptor Activated G protein Enzyme or ion channel Activated enzyme or ion channel

signal transduction

signals often wind up greatly amplified

Discuss information transfer across a membrane (signal transduction); why is it needed, what are some concepts that you should associate with it?

Chapter 7: Membranes Roles of Biological Membranes The Lipid Bilayer and the Fluid Mosaic Model Transport and Transfer Across Cell Membranes Specialized contacts (junctions) between cells

Differentiate between the following in terms of structure and function: anchoring junctions (such as desmosomes) tight junctions gap juntions plasmodesmata

Specialized Contacts (junctions) Between Cells Cell Contacts (junctions) typically connect cells and can allow special transport between connected cells Anchoring Junctions Tight Junctions Gap Junctions Plasmodesmata

Specialized Contacts (junctions) Between Cells anchoring junctions hold cells tightly together; one common type in animals is the desmosome desmosomes form strong bonds, including merging of cytoskeletons, making it hard to separate the cells from each other materials can still pass in the space between cells with anchoring junctions NOT involved in the transport of materials between cells

Specialized Contacts (junctions) Between Cells tight junctions between some animal cells are used to seal off body cavities cell plasma membranes are adjacent to each other and held together by a tight seal materials cannot pass between cells held together by tight junctions NOT involved in the transport of materials between cells

Specialized Contacts (junctions) Between Cells gap junctions between animal cells act as selective pores proteins connect the cells those proteins are grouped in cylinders of 6 subunits the cylinder can be opened to form a small pore (less than 2 nm), through which small molecules can pass

Specialized Contacts (junctions) Between Cells plasmodesmata act as selective pores between plant cells plant cell walls perform the functions of tight junctions and desmosomes plant cell walls form a barrier to cell-to-cell communication that must be breached by the functional equivalent of a gap junction plasmodesmata are relatively wide channels (20-45 nm) across the cell wall between adjacent cells actually connect the plasma membranes of the two cells allow exchange of some materials between the cells

Differentiate between the following in terms of structure and function: anchoring junctions (such as desmosomes) tight junctions gap juntions plasmodesmata