Journal of the American College of Cardiology Vol. 42, No. 5, by the American College of Cardiology Foundation ISSN /03/$30.

Similar documents
Development and validation of a simple exercise test score for use in women with symptoms of suspected coronary artery disease

Utility of Myocardial Perfusion Imaging in Patients With Low-Risk Treadmill Scores

Journal of the American College of Cardiology Vol. 50, No. 11, by the American College of Cardiology Foundation ISSN /07/$32.

Value of Exercise Treadmill Testing in Women

My Patient Needs a Stress Test

Impaired Chronotropic Response to Exercise Stress Testing in Patients with Diabetes Predicts Future Cardiovascular Events

Value of Stress Myocardial Perfusion Single Photon Emission Computed Tomography in Patients With Normal Resting Electrocardiograms

The standard exercise treadmill test is widely used

Exercise echocardiography is a routine test in patients

Achieving an Exercise Workload of >10 Metabolic Equivalents Predicts a Very Low Risk of Inducible Ischemia

Effect of intravenous atropine on treadmill stress test results in patients with poor exercise capacity or chronotropic incompetence ABSTRACT

exercise and the heart Effect of Age and End Point on the Prognostic Value of the Exercise Test*

A Prognostic Score for Prediction of Cardiac Mortality Risk After Adenosine Stress Myocardial Perfusion Scintigraphy

ATTENUATED HEART RATE REcovery

The elderly aged 75 years constitute 6% of the US

Stress ECG is still Viable in Suleiman M Kharabsheh, MD, FACC Consultant Invasive Cardiologist KFHI KFSHRC-Riyadh

exercise and the heart Clinical Utility of the Exercise ECG in Patients With Diabetes and Chest Pain*

Normal Stress-Only Versus Standard Stress/Rest Myocardial Perfusion Imaging

Type of intervention Diagnosis. Economic study type Cost-effectiveness analysis.

Be Still My Beating Heart!

Risk Stratification for CAD for the Primary Care Provider

The diagnostic role of stress echocardiography in women with coronary artery disease: evidence based review John R. McKeogh

MPS and Calcium Score in asymptomatic patient F. Mut, J. Vitola

Journal of the American College of Cardiology Vol. 37, No. 1, by the American College of Cardiology ISSN /01/$20.

Exercise treadmill testing is frequently used in clinical practice to

Chest Pain in Women ;What is Your Diagnostic Plan? No Need for Noninvasive Test

Guideline Number: NIA_CG_024 Last Review Date: January 2011 Responsible Department: Last Revised Date: May 2, 2011 Clinical Operations

Is There a Better Way to Predict Death Using Heart Rate Recovery?

Is Myocardial Perfusion Imaging an Important Predictor of Mortality in Women

PRIORITIZING PATIENTS FOR CORONARY ANGIOGRAPHY USING SIMPLIFIED TREADMILL SCORE IN HIGH RISK ASIAN SUBJECTS IN SAUDI ARABIA

Clinical Investigations

Journal of the American College of Cardiology Vol. 39, No. 10, by the American College of Cardiology Foundation ISSN /02/$22.

In recent decades, there has been an appropriate focus on

Stress Testing METHODS

HEART-RATE RECOVERY IMMEDIATELY AFTER EXERCISE AS A PREDICTOR OF MORTALITY HEART-RATE RECOVERY IMMEDIATELY AFTER EXERCISE AS A PREDICTOR OF MORTALITY

ORIGINAL ARTICLE. Risk stratification of CAD with SPECT -MPI in women with known estrogen status

Exercise-Induced Silent Ischemia: Age, Diabetes Mellitus, Previous Myocardial Infarction and Prognosis

Proper risk stratification is critical for the management of

Exercise Test: Practice and Interpretation. Jidong Sung Division of Cardiology Samsung Medical Center Sungkyunkwan University School of Medicine

Usefulness of Exercise Testing in the Prediction of Coronary Disease Risk Among Asymptomatic Persons as a Function of the Framingham Risk Score

Long-term outcome after normal myocardial perfusion imaging in suspected ischaemic heart disease

Journal of the American College of Cardiology Vol. 35, No. 4, by the American College of Cardiology ISSN /00/$20.

Journal of the American College of Cardiology Vol. 35, No. 5, by the American College of Cardiology ISSN /00/$20.

Long-Term Outcome of Patients With Silent Versus Symptomatic Ischemia Six Months After Percutaneous Coronary Intervention and Stenting

Team members: Felix Krainski, Besiana Liti, William Lane Duvall (ASNC member)

Department of Cardiology, North Shore University Hospital, Manhasset, New York, NY , USA 2

Stress tests: How to make a calculated choice Spare your patients unnecessary stress testing by determining their pretest probability for CAD

Central pressures and prediction of cardiovascular events in erectile dysfunction patients

Chronic heart failure (CHF) is a major cause of morbidity

Prior research has revealed that event rates associated

exercise and the heart

The American College of Cardiology (ACC)/American

T he treadmill exercise test is the classic initial investigation

Cardiology Division, Veterans Affairs Palo Alto Health Care System, Stanford University, Palo Alto, California, USA

Relationship between body mass index, coronary disease extension and clinical outcomes in patients with acute coronary syndrome

Test in Subjects with Suspected CAD Anatomic Study is Better

Accurate and safe diagnostic testing provides the crucial link between detection and optimal

Clinical Correlates and Prognostic Significance of Exercise-Induced Ventricular Premature Beats in the Community. The Framingham Heart Study

DIAGNOSTIC TESTING IN PATIENTS WITH STABLE CHEST PAIN

Practical Applications in Stress Echocardiography Risk Stratification and Prognosis in Patients With Known or Suspected Ischemic Heart Disease

Using and Interpreting Exercise Stress Testing in Clinical Practice

Current and Future Imaging Trends in Risk Stratification for CAD

journal of medicine The new england Prognostic Significance of Dyspnea in Patients Referred for Cardiac Stress Testing abstract

The aim of risk stratification in patients with known or

Guideline for Assessment of Cardiovascular Risk in Asymptomatic Adults. Learn and Live SM. ACCF/AHA Pocket Guideline

Is computed tomography angiography really useful in. of coronary artery disease?

Kavitha Yaddanapudi Stony brook University New York

Searching for the optimal strategy for the diagnosis of stable coronary artery disease. Cost-effectiveness of the new algorithm

F or many patients with chronic coronary artery disease,

Coronary Artery Calcium to Predict All-Cause Mortality in Elderly Men and Women

Evaluating Clinical Risk and Guiding management with SPECT Imaging

ESC CONGRESS 2010 Stockholm, august 28 september 1, 2010

Heart Rate Recovery After Exercise Is a Predictor of Mortality, Independent of the Angiographic Severity of Coronary Disease

Graded exercise testing (GXT): extension of medical history and physical examination

Choosing the Appropriate Stress Test: Brett C. Stoll, MD, FACC February 24, 2018

FFR-CT Not Ready for Primetime

Σεμινάριο Ομάδων Εργασίας Fractional Flow Reserve (FFR) Σε ποιούς ασθενείς; ΔΗΜΗΤΡΗΣ ΑΥΖΩΤΗΣ Επιστ. υπεύθυνος Αιμοδυναμικού Τμήματος, Βιοκλινική

Patient referral for elective coronary angiography: challenging the current strategy

DECLARATION OF CONFLICT OF INTEREST

ORIGINAL INVESTIGATION. Ventricular Arrhythmias During Clinical Treadmill Testing and Prognosis

CHRONIC CAD DIAGNOSIS

Typical chest pain with normal ECG

Case Study 50 YEAR OLD MALE WITH UNSTABLE ANGINA

Prognostic Value of Multidetector Coronary Computed Tomographic Angiography for Prediction of All-Cause Mortality

The Coronary Artery Calcium Score and Stress Myocardial Perfusion Imaging Provide Independent and Complementary Prediction of Cardiac Risk

EDITORIAL. Raymond J. Gibbons, MD a. See related article, pp

GALECTIN-3 PREDICTS LONG TERM CARDIOVASCULAR DEATH IN HIGH-RISK CORONARY ARTERY DISEASE PATIENTS

Journal of the American College of Cardiology Vol. 43, No. 2, by the American College of Cardiology Foundation ISSN /04/$30.

Patient-centered Imaging in Coronary Artery Disease. Jason H Cole, MD, MS, FACC January 10, 2015

Family Practice. Stress tests: How to make a calculated choice. For personal use only. Copyright Dowden Health Media

CLINICAL SYMPTOMS AND ANGIOGRAPHIC FINDINGS OF PATIENTS UNDERGOING ELECTIVE CORONARY ANGIOGRAPHY WITHOUT PRIOR STRESS TESTING. Mouin S.

Cardiovascular nuclear imaging employs non-invasive techniques to assess alterations in coronary artery flow, and ventricular function.

AN ATTENUATED HEART RATE REsponse

Single-Center Experience with 8-year Follow-up 1

Quality Payment Program: Cardiology Specialty Measure Set

Cardiovascular nuclear imaging employs non-invasive techniques to assess alterations in coronary artery flow, and ventricular function.

Cardiac evaluation for the noncardiac. Nathaen Weitzel MD University of Colorado Denver Dept of Anesthesiology

The use of myocardial perfusion imaging (MPI) for estimating cardiac risk

Improved Near-Term Coronary Artery Disease Risk Classification With Gated Stress Myocardial Perfusion SPECT

Summary Objective: To define the prognostic value and cost-effectiveness of the treadmill stress test (TST) in comparison to the

Transcription:

Journal of the American College of Cardiology Vol. 42, No. 5, 2003 2003 by the American College of Cardiology Foundation ISSN 0735-1097/03/$30.00 Published by Elsevier Inc. doi:10.1016/s0735-1097(03)00837-4 Evaluation of Pretest and Exercise Test Scores to Assess All-Cause Mortality in Unselected Patients Presenting for Exercise Testing With Symptoms of Suspected Coronary Artery Disease Anthony P. Morise, MD, FACC, Farrukh Jalisi, MD Morgantown, West Virginia OBJECTIVES BACKGROUND METHODS RESULTS CONCLUSIONS To determine how well recently developed multivariables scores assess for all-cause mortality in patients with suspected coronary disease presenting for exercise electrocardiography (ExECG). Recently revised American College of Cardiology/American Heart Association guidelines for ExECG have suggested that ExECG scores be used to assist in management decisions in patients with suspected coronary artery disease. Recently developed scores accurately stratify patients according to angiographic disease severity. To determine how well these scores assess for all-cause mortality, we utilized 4,640 patients without known coronary disease who underwent ExECG to evaluate symptoms of suspected coronary disease between 1995 and 2001. Previously validated pretest and exercise test scores as well as the Duke treadmill score were applied to each patient. All-cause mortality was our end point. Overall mortality was 3.0% with 2.8 1.6 years of follow-up. All three scores stratified patients into low-, intermediate-, and high-risk groups (p 0.00001). No differences were seen when patients were evaluated as subgroups according to gender, diabetes, beta-blockers, or inpatient status. Low-risk patients defined by the Duke treadmill score had consistently higher mortality and absolute number of deaths compared with low-risk patients using other scores. In addition, the Duke treadmill score had less incremental stratifying value than the new exercise score. Simple pretest and exercise scores risk-stratified patients with suspected coronary disease in accordance with published guidelines and better than the Duke treadmill score. These results extend to diabetics, inpatients, women, and patients on beta-blockers. (J Am Coll Cardiol 2003;42:842 50) 2003 by the American College of Cardiology Foundation The simple exercise electrocardiogram (ExECG) is alive and well, but living and existing in the shadow of exercise imaging. Recent consensus guidelines for chronic stable angina recommend the simple treadmill exercise ECG in a variety of diagnostic and prognostic situations (1). American College of Cardiology/American Heart Association (ACC/ AHA) guidelines for exercise testing suggested that pretest See page 851 and exercise scores be utilized in the interpretation of exercise tests and in clinical decision-making (2). Recently developed and validated pretest and exercise scores have demonstrated accuracy in stratifying men and women according to the likelihood of the presence of any and severe angiographic coronary disease (3 5). Given that these scores were developed in angiographic populations, the purpose of the present study was to validate them in a clinically relevant unselected population presenting with suspected coronary disease using the end point of all-cause mortality rather than From the Section of Cardiology, Department of Medicine, West Virginia University School of Medicine, Morgantown, West Virginia. Manuscript received October 17, 2002; revised manuscript received April 7, 2003, accepted April 24, 2003. angiographic disease. Secondarily, we wished to validate these scores in clinically relevant subpopulations defined by gender and diabetic, inpatient, and beta-blocker status. METHODS Patient populations. Between May 1995 and February 2001, we screened all patients 18 years of age referred by primary-care physicians and cardiologists to the stress laboratory for their first exercise test. First exercise tests could include ExECG, nuclear, or echocardiographic studies. We included only symptomatic patients referred with the express purpose of evaluating for the presence of coronary disease. Included in this population were inpatients admitted for chest pain. These inpatients were observed for at least 24 h and had infarction excluded by assessment of serum markers. Those physicians caring for them as well as those in the exercise laboratory felt they were appropriate for exercise testing. We excluded asymptomatic patients, those receiving digitalis preparations, those with a history of coronary artery disease (prior myocardial infarction or coronary angiography), and those with resting electrocardiograms (ECGs) that were considered uninterpretable (left ventricular hypertrophy, left bundle branch block, Wolff-

JACC Vol. 42, No. 5, 2003 September 3, 2003:842 50 Morise and Jalisi Scores and Mortality 843 Abbreviations and Acronyms ACC/AHA American College of Cardiology/ American Heart Association ECG electrocardiogram ExECG exercise electrocardiogram METs metabolic equivalents Parkinson-White Syndrome, or other significant downward displacement of the ST-segment) (2). Baseline clinical information. We collected the following data from patients during a pre-execg interview: age, symptoms, medication usage at the time of the ExECG, and other coronary risk factors. Patients had height and weight recorded. We classified chest pain using the three categories of Diamond (6): typical angina, atypical angina, and non-anginal chest pain. Risk factors included the following: current or prior cigarette smoking, history of hypertension (on antihypertensive therapy), history of insulin- or noninsulin-requiring diabetes, history of high cholesterol or on cholesterol-lowering therapy, a family history of premature ( 60 years of age) coronary disease (infarction, coronary bypass or angioplasty, sudden death) in first-degree relatives, and obesity defined as a body-mass index (kg/m 2 ) 27. We determined estrogen status using previously published criteria (7,8). Women were estrogen status negative if they were postmenopausal and not receiving estrogen replacement therapy. If they were premenopausal or receiving estrogen replacement therapy, they were considered as estrogen status positive. Women who underwent hysterectomy without oopherectomy were considered estrogen status positive if they were under the age of 50 and without symptoms of estrogen deficiency. Otherwise, they were considered estrogen status negative. Exercise tests. All patients exercised using the Cornell treadmill protocol. We did not use predetermined peak heart rates to determine when to stop exercise. We read all studies in a blinded fashion. Using the 12 standard leads, we measured peak exercise or 3-min recovery ST-segment changes (60 ms following the J-point compared to the baseline between 2 PR segments). We qualitatively categorized peak exercise ST slope as upsloping, horizontal, or downsloping. Positive ST-segment criteria consisted of 1 mm horizontal/ downsloping ST depression. For purposes of the Duke treadmill score calculation, we considered any mm ( 1 mm) of exercise-induced ST-segment depression (over baseline measurements) that was associated with horizontal or downsloping ST segments. Exercise-induced ST-segment elevation was not considered in this analysis. We also recorded resting and peak exercise heart rate and blood pressure, exercise capacity estimated in metabolic equivalents (METs), and exercise-induced angina. Because the Duke treadmill score employs exercise duration using the Bruce protocol, METs were converted to minutes of exercise duration using the Bruce protocol by use of the speed and elevation of the treadmill. Angina during testing was classified according to the Duke Treadmill Angina Index (2 if angina required stopping the test, 1 if angina occurred during or after treadmill test, and 0 for no angina) (9). Score and end point determination. Utilizing the scores presented in Figures 1A to 1C, each patient had the following scores determined with respective assignment to low-, intermediate-, and high-risk subgroups for each score: Pretest score: low 0 to 8 points, intermediate 9 to 15 points, high 15 points (3). Exercise test scores for men and women: low 0 to 39 points, intermediate 40 to 60 points, high 60 points (4,5). For the purposes of this study, these two scores will be considered as one score and referred to as the new exercise score. Duke treadmill score: low 5 points, intermediate 10 to 4 points, high 11 points (9). The Duke treadmill score was calculated using the following equation: Bruce exercise minutes 5 mm ST depression) 4 Treadmill Angina Index) Patients had vital status and date of death determined by a search of the Social Security Death Index. Approval for collection of follow-up data was obtained from our institutional Human Subjects Committee. Statistical analysis. The NCSS 2001 software (Number Cruncher Statistical System) was used for all statistical analyses. Comparison of frequencies was accomplished using chi-square testing. Comparison of means was accomplished using nonpaired t testing. Normality of data distribution was determined using the Wilk-Shapiro test as well as observation of box and normal probability plots. When data were not distributed normally, the Mann-Whitney U test was utilized. Survival analysis was accomplished using Kaplan-Meier curves and Cox proportional hazards analysis. A p value 0.05 was considered statistically significant. Incremental stratifying value of the exercise scores over the pretest score was assessed as follows. To demonstrate incremental value, two things should occur: 1) the number of correct classifications (low-probability patients who are alive plus high-probability patients who are dead) should significantly increase, and 2) the number of unclassified patients (those with an intermediate pretest probability) should significantly decrease. RESULTS Patient populations. During the period of interest, 4,640 symptomatic patients with suspected coronary disease and interpretable ECGs underwent exercise testing with or without simultaneous imaging (echocardiographic 992, or 21%; and nuclear 2,206, or 48%). See Table 1 for summary

844 Morise and Jalisi JACC Vol. 42, No. 5, 2003 Scores and Mortality September 3, 2003:842 50 Figure 1. The details of how to calculate the pretest (A) and exercise scores are presented. There are exercise scores for men (B) and women (C). Both exercise scores have the same exercise test variables with differing point assignments depending on gender. BMI body mass index; CAD coronary artery disease. Continued on next page.

JACC Vol. 42, No. 5, 2003 September 3, 2003:842 50 Morise and Jalisi Scores and Mortality 845 of clinical and exercise test characteristics of the entire population as well as selected subgroups defined by their clinical relevance, such as inpatient/outpatient status at the time of the Table 1. Clinical and Exercise Test Characteristics Figure 1 Continued. All Inpatients Outpatients Diabetics Nondiabetics exercise test, diabetic status (as defined earlier), and betablocker status at the time of the exercise test. Prior reports have presented the characteristics of the men and women (4,5). Beta- No Beta- Number 4,640 665 3975 587 4,053 715 3,925 Age 50 12 47 13 50 13* 51 12 49 13* 53 12 49 13* Women 2,176 (47) 276 (42) 1,900 (48) 277 (47) 1,899 (47) 308 (43) 1,868 (48) Symptoms Typical 479 (10) 58 (9) 421 (11) 75 (13) 404 (10) 128 (18) 351 (9) Atypical 1,985 (43) 287 (43) 1,698 (43) 242 (41) 1,743 (43) 271 (38) 1,714 (44)* Nonanginal 2,176 (47) 320 (48) 1,856 (46) 270 (46) 1,906 (47) 316 (44) 1,860 (47) Diabetes 587 (13) 81 (12) 506 (13) 587 (100) 0 (0) 113 (16) 474 (12) Smoking 2,272 (49) 383 (57) 1,889 (48)* 278 (47) 1,994 (49) 390 (55) 1,882 (48) Hyperlipidemia 1,606 (35) 208 (31) 1,398 (35) 282 (48) 1,324 (33)* 352 (49) 1,254 (32)* Hypertension 1,769 (38) 241 (36) 1,528 (38) 352 (60) 1,417 (35)* 495 (69) 1,274 (32)* Obesity 2,830 (61) 387 (58) 2,443 (61) 447 (76) 2,383 (59)* 453 (63) 2,377 (61) Family history 2,404 (52) 362 (54) 2,042 (51) 319 (54) 2,085 (51) 396 (55) 2,008 (51) Positive ST 707 (15) 80 (12) 627 (16)* 95 (16) 612 (15) 151 (21) 556 (14)* Peak Heart rate 157 21 154 21 158 21* 148 21 159 21* 142 21 160 20* Systolic BP 162 22 162 22 169 22* 171 24 168 22* 166 22 169 22* METs 8.1 2.8 8.0 2.8 8.1 2.8 6.7 2.5 8.3 2.8* 7.7 2.6 8.2 2.9* Exercise minutes 6.9 2.9 6.8 2.9 6.9 3.0 5.3 2.7 7.1 2.9* 6.5 2.7 7.0 3.0* Duke angina Limiting 364 (8) 51 (8) 313 (8) 61 (10) 303 (7) 83 (12) 281 (7)* Nonlimiting 345 (7) 46 (7) 299 (8) 49 (8) 296 (7) 67 (9) 278 (7) Values are n (%). *p 0.001, p 0.01, p 0.05 compared to column to the immediate left. BP blood pressure; METs metabolic equivalents.

846 Morise and Jalisi JACC Vol. 42, No. 5, 2003 Scores and Mortality September 3, 2003:842 50 Table 2. Pretest and Exercise Scores All Inpatients Outpatients Diabetics Nondiabetics Beta- No Beta- Pretest score 10 4.5 9.7 4.3 10.1 4.5 13.4 4.3 9.5 4.3* 11.7 4.3 9.7 4.4* Pretest group Low 1,803 (39) 288 (44) 151 (38) 101 (17) 1,702 (42) 168 (24) 1,635 (42) Intermediate 2,262 (49) 301 (45) 1,961 (49) 277 (47) 1,985 (49)* 410 (57) 1,852 (47)* High 575 (12) 76 (11) 499 (13) 209 (36) 366 (9) 137 (19) 438 (11) Exercise score 33 16 32 15 33 16 45 15 31 16* 40 16 32 16* Exercise group Low 3,067 (66) 471 (71) 2,597 (65) 216 (37) 2,851 (70) 362 (51) 2,705 (69) Intermediate 1,318 (28) 165 (25) 1,153 (29) 278 (47) 1,040 (26)* 264 (37) 1,054 (27)* High 255 (6) 30 (4) 225 (6) 93 (16) 162 (4) 89 (12) 166 (4) Duke score 4.5 5.5 4.8 5.3 4.1 5.1 2.6 5.2 4.8 5.5* 3.1 6.3 4.7 5.3* Duke group Low 2,734 (59) 402 (60) 2,332 (59) 243 (41) 2,491 (61) 365 (51) 2,369 (60) Intermediate 1,822 (35) 256 (39) 1,566 (39) 326 (56) 1,496 (37)* 323 (45) 1,499 (38)* High 84 (2) 7 (1) 77 (2) 18 (3) 66 (2) 27 (4) 57 (2) Values are n (%). *p 0.001, p 0.05 compared to column to the immediate left. Scores. Table 2 summarizes the pretest, new exercise test, and Duke treadmill score results. The outpatient, diabetic, and beta-blockers subgroups had consistently higher pretest and exercise test scores than their respective alternate subgroups. The distribution of low-, intermediate-, and high-risk patients differed for all subgroup comparisons and scores, except the inpatient/outpatient comparison using the Duke treadmill score. Survival analysis. The mean follow-up for the group was 2.8 1.6 years (alive: 2.8 1.6 years, and dead: 2.5 1.7 years). Table 3 summarizes the all-cause mortality data for all subgroups and for risk groups for each of the three scores. Not shown are the results for men and women, which mirrored nearly exactly the results seen by the entire group. The men had slightly but significantly higher overall mortality than the women (3.7% vs. 2.3%; p 0.01). For the pretest and both exercise scores, there was significant stratification within all subgroups. The mortality of the low-risk Duke treadmill score groups varied from 1.8% to 3.7%, whereas the mortality of the low risk exercise score groups was consistently below 2.0%. Figure 2 displays the Kaplan-Meier curves for each of the three scores comparing the low-risk group to a combined intermediate- and high-risk group. These latter groups were combined because of the relatively small number of highrisk patients. For each score there was significant stratification (p 0.000001); however, the clearest separation of the low risk group from the other groups occurred with the new exercise score. Figures 3 and 4 are similar to Figure 2 and display Kaplan-Meier curves for selected subgroups using only the new exercise score. In each case, a low-risk group is clearly identified. Cox proportional hazards analysis was performed with scores as the independent variables. Univariate analysis demonstrated that the pretest score (p 0.00001) and exercise score (p 0.01) were significant predictors of the time to death. However, the Duke score was not (p 0.10). When both the pretest and exercise scores were included in the model, both scores remained significant (pretest score p 0.0003, exercise score p 0.043). When METs was included in the model, these results did not change (pretest score p 0.0003, exercise score p 0.02, METs p 0.18). Table 3. All-Cause Mortality Deaths (%) All Inpatients Outpatients Diabetics Nondiabetics Beta- No Beta- All 141 (3.0) 26 (3.9) 115 (2.9) 33 (5.6) 108 (2.7)* 25 (3.5) 116 (3.0) 1.1%/yr 1.4%/yr 1.0%/yr 2.0%/yr 0.9%/yr 1.3%/yr 1.1%/yr Pretest group Low 15 (0.8) 2 (0.7) 13 (0.9) 1 (1.0) 14 (0.8) 1 (0.6) 14 (0.9) Intermediate 84 (3.7)* 17 (5.6)* 67 (3.4)* 16 (5.8) 68 (3.4)* 12 (2.9)* 72 (3.9)* High 42 (7.3) 7 (9.2) 35 (7.0) 16 (7.7) 26 (7.1) 12 (8.8) 30 (6.8) Exercise group Low 40 (1.3) 6 (1.3) 34 (1.3) 4 (1.9) 36 (1.3) 3 (0.8) 37 (1.4) Intermediate 78 (5.9)* 17 (10.3)* 61 (5.3)* 19 (6.8) 59 (5.7)* 16 (6.1)* 62 (5.9)* High 23 (9.0) 3 (10) 20 (8.9) 10 (10.8) 13 (8.0) 6 (6.7) 17 (10.2) Duke group Low 53 (1.9) 10 (2.6) 43 (1.8) 9 (3.7) 44 (1.8) 10 (2.7) 43 (1.8) Intermediate 80 (4.4)* 14 (5.2)* 66 (4.2)* 22 (6.7) 58 (3.9)* 11 (3.9) 69 (4.6)* High 8 (9.5) 2 (33) 6 (7.8) 2 (11) 6 (9.1) 4 (15) 4 (7.0) Values are n (%). *p 0.0001, p 0.05 compared to column to the immediate left.

JACC Vol. 42, No. 5, 2003 September 3, 2003:842 50 Morise and Jalisi Scores and Mortality 847 Figure 2. Three Kaplan-Meier survival plots for low- and intermediate-high risk groups using pretest, exercise, and Duke treadmill scores. The ACC/AHA guidelines suggest that the value of exercise testing differs according to pretest probability. They also assigned a Class I indication to the intermediate pretest probability group and only a Class IIb indication to the low and high pretest probability groups. When an analysis like that performed in Table 3 was limited to the intermediate pretest probability subgroup, the patterns of stratification were similar to what was seen on Table 3. Table 4 presents mortality as a function of both the pretest and the new and Duke exercise scores. Whereas there was significant stratification using this approach especially for the intermediate pretest probability group, this display does not completely reflect the incremental value of the respective exercise scores over the pretest score. Table 5 presents the results of our incremental value analysis. The new exercise score demonstrated significant incremental stratifying value over the pretest score given the substantial increase in correctly classified patients and decrease in unclassified patients, as well as a decrease in incorrectly classified patients. The Duke treadmill score demonstrated a significantly smaller percent increase in correctly classified patients and smaller percent decrease in unclassified or intermediate-risk patients. The remaining columns all assessed the incremental value of the new exercise score over the pretest score. Except for two, all subgroups demonstrated significant and substantial incremental value, that is, an increase in correctly classified patients and a decrease in unclassified patients. Compared to the results in men, the use of the new exercise score in women was associated with more modest increase in incremental stratifying. In addition, the use of the new exercise score in diabetics was associated with less incremental value than in nondiabetics. Diabetics had a substantial increase in correctly classified patients, but no change in the unclassified patients. DISCUSSION It is our observation that, in many institutions, ExECG has been replaced by noninvasive imaging because of the perception that it is of less value in clinical decision-making. This is despite the presence of consensus guidelines that clearly advocate its use as the initial evaluation in many clinical situations, including suspected coronary disease. Its jaded reputation in women, patients on beta-blockers, and those with either poor exercise capacity or chronotropic incompetence are familiar to all who utilize exercise testing in any form. The guidelines for ExECG place no such restrictions on its use in these populations. In fact, there are recent studies suggesting that it is valuable in those populations (5,10 13). The present study suggests that the utility of ExECG can be enhanced by the use of multivariable scores. In addition, its use and value in risk assessment can be extended to

848 Morise and Jalisi JACC Vol. 42, No. 5, 2003 Scores and Mortality September 3, 2003:842 50 Figure 3. Kaplan-Meier survival plots for low- and intermediate-high risk groups using the new exercise score in subgroups according to gender and diabetic status. diabetics, women, inpatients, and those on beta-blockers and the designation of low risk extends out to at least three years across all subgroups. The ACC/AHA guidelines for exercise testing (2) assigned a Class I indication to patients with an intermediate pretest probability and a Class IIb indication to those with a low or high pretest probability concerning the diagnosis of coronary disease. From a prognostic perspective, our results as reflected in Table 4 would suggest that these assignments are appropriate. For low pretest probability patients, exercise testing will most often confirm what is already appreciated from the clinical assessment and will sometimes raise a question for further testing (imaging). In other words, if a stress test is considered for low probability patients, ExECG is the appropriate first choice given its strong negative predictive value (11). For high pretest probability patients, only a minority will be reclassified as low risk, so in the majority, the exercise test will confirm what is already appreciated from the clinical evaluation. A more appropriate initial strategy might be to have these patients undergo either angiography or imaging (14,15). For intermediate pretest probability patients, our results suggest that a low-risk ExECG result is associated with a low risk of death. Even though these patients are at low risk of death, they are not necessarily at low risk of having significant coronary disease as a cause of their symptoms (11). Therefore, in selected intermediate pretest probability patients, an initial imaging strategy or follow-up imaging will be needed to clarify what might be causing their symptoms. Clearly more study is needed to determine the incremental value of such strategies and how they might be best applied. Study limitations. The Duke treadmill score was derived using cardiovascular death as its end point. On the other hand, both the pretest score and the new exercise scores were derived using the presence or absence of angiographic coronary disease as their end point. The present study utilized all-cause mortality rather than cardiovascular death or angiography. This would seem to put all of these scores at some degree of disadvantage. This may explain some of the differences seen between the two exercise scores. This study also did not consider other relevant end points such as cardiovascular death, nonfatal myocardial infarction, stroke, and coronary revascularization. We chose all-cause mortality because of its ease of determination and lack of bias (16). We did not consider the results of noninvasive imaging that were available in many of our patients. Our mortality data were not censored for revascularization because these data were not collected in this study.

JACC Vol. 42, No. 5, 2003 September 3, 2003:842 50 Morise and Jalisi Scores and Mortality 849 Figure 4. Kaplan-Meier survival plots for low- and intermediate-high risk groups using the new exercise score in subgroups according to inpatient and beta-blocker status. Exercise capacity as expressed by METs was not included in the new exercise score because, at its derivation, it was not selected as a predictor of angiographic coronary disease. Despite this, the new exercise score stratified our population well and was at least as good and perhaps slightly better than the Duke treadmill score, which does include exercise capacity. Given that the new exercise score does not include exercise capacity, how did it perform as well as a score that did include METs? Two explanations are possible. First, it is possible that other pretest clinical data not included in the Duke treadmill score made up the difference. However, a more likely possibility is that exercise heart rate, a known predictor of death, has sufficient predictive power to negate the absence of exercise capacity (17). We divided our population according to peak METs achieved: 10 and 10 METs. As expected, the group with lower peak METs was larger (3,018 vs. 1,622) and had a higher mortality (3.8% vs. 1.5%; p 0.01). However, the pretest and new exercise scores stratified both of these groups well and in a manner mimicking what was seen in Table 3. In addition, the incremental value of the new exercise test was substantial in each (% increase in corrects: low 57 vs. high 80, and % decrease in unclassifieds: low 25 vs. high 71), with the advantage going to the higher exercise capacity group. Cox analysis also indicated that the predictive power of the exercise score was not negated when METs were included in the analysis. Therefore, although the new exercise score does not contain exercise capacity as Table 4. All-Cause Mortality Using Both Pretest Score and Either the New Exercise Score or the Duke Treadmill Score Exercise Groups New Exercise Score Duke Treadmill Score High 0/0 6/100 17/155 1/9 3/49 4/26 6% 11% 11% 6.1% 15% 2.1%/yr 3.9%/yr 4%/yr 2.2%/yr 5.5%/yr Intermediate 1/48 53/884 24/386 9/566 44/876 27/380 2.1% 6% 6.2% 1.6% 5% 7.1% 0.8%/yr 2.1%/yr 2.2%/yr 0.5%/yr 1.8%/yr 2.6%/yr Low 14/1,755 25/1,278 1/34 5/1,226 37/1,337 11/169 0.8% 2% 2.9% 0.4% 2.8% 6.5% 0.3%/yr 0.8%/yr 1%/yr 0.2%/yr 1%/yr 2.3%/yr Low Intermediate* High Low* Intermediate* High Pretest score subgroups *p 0.05 for stratification by exercise score within respective pretest subgroup.

850 Morise and Jalisi JACC Vol. 42, No. 5, 2003 Scores and Mortality September 3, 2003:842 50 Table 5. Incremental Value of Exercise and Duke Scores Over Pretest Score New Score Duke Score Men Women Inpatients Outpatients Diabetics Nondiabetics BB Classification Pretest score Correct 1,830 1,830 572 1,258 293 1,537 116 1,714 179 1,651 Incorrect 548 548 236 312 71 477 194 354 126 422 Unclassified 2,262 2,262 1,656 606 301 1,961 277 1,985 410 1,852 Exercise score Correct 3,050 2,719 1,547 1,503 467 2,583 222 2,828 365 2,685 Incorrect 272 129 162 110 33 239 87 185 86 186 Unclassified 1,318 1,822 755 563 165 1,153 278 1,040 264 1,054 % change correct 67 49* 170 19* 59 68 91 65* 104 63* % change unclassified 42 19* 54 7* 45 41 1 48* 36 43 *p 0.001 compared to column to the immediate left BB beta-blockers; Correct low risk alive high risk dead; Incorrect low risk dead high risk alive; Unclassified intermediate risk. No BB a predictor variable, it stratifies at least as well as a score that does contain exercise capacity, and performed well in groups with differing exercise capacity. The new exercise score, although simple by design, does not consider many variables. For that reason, it might be less precise in defining risk than a score that considered many more variables. A preliminary report (18) of a more complicated exercise score suggests that such a score is accurate, but comparison to the present new exercise score has not been undertaken to date. Summary. In conclusion, simple pretest and exercise scores risk stratify symptomatic patients with suspected coronary disease well in accordance with published ACC/AHA guidelines. A new exercise score risk stratifies patients at least as well if not better than the Duke treadmill score. These results extend to diabetics, inpatients, women, and patients on beta-blockers. Reprint requests and correspondence: Dr. Anthony P. Morise, Section of Cardiology, HSC - South, WVU, Morgantown, West Virginia 26506. E-mail: amorise@pol.net. REFERENCES 1. Gibbons RJ, Chatterjee K, Daley J, et al. ACC/AHA/ACP-ASIM guidelines for the management of patients with chronic stable angina: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on the Management of Patients with Chronic Stable Angina). J Am Coll Cardiol 1999;33:2092 197. 2. Gibbons RJ, Balady GJ, Beasley JW, et al. ACC/AHA guidelines for exercise testing: a report of the American College of Cardiology/ American Heart Association Task Force on Practice Guidelines (Committee on Exercise Testing). J Am Coll Cardiol 1997;30:260 315. 3. Morise AP, Haddad WJ, Beckner D. Development and validation of a clinical score to estimate the probability of coronary artery disease in men and women presenting with suspected coronary disease. Am J Med 1997;102:350 6. 4. Raxwal VK, Shetler K, Morise AP, et al. Simple validated treadmill score to diagnose coronary disease. Chest 2001;119:1933 40. 5. Morise AP, Lauer MS, Froelicher VF. Development and validation of a simple exercise test score for use in women with symptoms of suspected coronary artery disease. Am Heart J 2002;144:818 25. 6. Diamond GA. A clinically relevant classification of chest discomfort. J Am Coll Cardiol 1983;1:574 5. 7. Morise AP, Dalal JN, Duval RD. Value of a simple measure of estrogen status for improving the diagnosis of coronary artery disease in women. Am J Med 1993;94:491 6. 8. Morise AP, Haddad WJ. Validation of estrogen status as an independent predictor of coronary artery disease presence and extent in women. J Cardiovasc Risk 1997;3:507 11. 9. Mark D, Shaw L, Harrel F, et al. Prognostic value of a treadmill exercise score in outpatients with suspected coronary artery disease. N Engl J Med 1991;325:849 53. 10. Morise AP, Diamond GA, Detrano R, Bobbio M. Incremental value of exercise electrocardiography and thallium-201 testing in men and women for the presence and extent of coronary artery disease. Am Heart J 1995;130:267 76. 11. Morise AP. Are the American College of Cardiology/American Heart Association guidelines for exercise testing for suspected coronary artery disease correct? Chest 2000;118:535 41. 12. Morise AP, Bobbio M, Detrano R, Duval RD. Incremental evaluation of exercise capacity as an independent predictor of coronary artery disease presence and extent. Am Heart J 1994;127:32 8. 13. Gauri AJ, Raxwal VK, Roux L, Fearon WF, Froelicher VF. Effects of chronotropic incompetence and beta-blocker use on the exercise treadmill test in men. Am Heart J 2001;142:136 41. 14. Patterson RE, Eisner RL, Horowitz SF. Comparison of costeffectiveness and utility of exercise ECG, single photon emission computed tomography, positron emission tomography, and coronary angiography for diagnosis of coronary artery disease. Circulation 1995;91:54 65. 15. Hachamovitch R, Berman DS, Kiat H, et al. Exercise myocardial perfusion SPECT in patients without known coronary artery disease: incremental prognostic value and use in risk stratification. Circulation 1996;93:905 14. 16. Lauer MS, Blackstone EH, Young JB, Topol EJ. Cause of death in clinical research: time for a reassessment? J Am Coll Cardiol 1999;34: 618 20. 17. Lauer MS, Okin PM, Larson MG, Evans JC, Levy D. Impaired heart rate responses to grade exercise: prognostic implications of chronotropic incompetence in the Framingham Heart Study. Circulation 1996;93:1520 6. 18. Morise AP, Blackstone EH, Lauer MS. External validation of a sophisticated exercise testing laboratory mortality prediction rule (abstr). J Am Coll Cardiol 2002;39 Suppl A:1039.