Dyslipidemia and hypertension are common medical

Similar documents
Clustering of cardiovascular risk factors is common

The Framingham Coronary Heart Disease Risk Score

Disclosures. Background 1 What is Known MENOPAUSE, ESTROGENS, AND LIPOPROTEIN PARTICLES. Background 2 What is Not Known 10/2/2017

ORIGINAL INVESTIGATION. C-Reactive Protein Concentration and Incident Hypertension in Young Adults

Behind LDL: The Metabolism of ApoB, the Essential Apolipoprotein in LDL and VLDL

2.5% of all deaths globally each year. 7th leading cause of death by % of people with diabetes live in low and middle income countries

A Common Genetic Mechanism Determines Plasma Apolipoprotein B Levels and Dense LDL Subfraction Distribution in Familial Combined Hyperlipidemia

Lipoprotein particles of differing sizes play distinct roles

Metabolism and Atherogenic Properties of LDL

The apolipoprotein story

Hypertriglyceridemia and the Related Factors in Middle-aged Adults in Taiwan

Effect of TAK-085 on Low-density Lipoprotein Particle Size in Patients with Hypertriglyceridemia: A Double-blind Randomized Clinical Study

THE CLINICAL BIOCHEMISTRY OF LIPID DISORDERS

Atherosclerosis, the major cause of coronary artery disease

What Else Do You Need to Know? Presenter Disclosure Information. Case 1: Cardiovascular Risk Assessment in a 53-Year-Old Man. Learning Objectives

LIPOPROTEIN PROFILING

Effect of pravastatin on LDL particle concentration as determined by NMR spectroscopy: a substudy of a randomized placebo controlled trial

The New Gold Standard for Lipoprotein Analysis. Advanced Testing for Cardiovascular Risk

Measurement of Small Dense Low-density Lipoprotein Particles

Role of Small Dense Low-Density Lipoprotein in Coronary Artery Disease Patients With Normal Plasma Cholesterol Levels. Small Dense KATAGIRI, MD, FJCC

REAGENTS. RANDOX sdldl CHOLESTEROL (sdldl-c) SIZE MATTERS: THE TRUE WEIGHT OF RISK IN LIPID PROFILING

review Genetics of LDL particle heterogeneity: from genetic epidemiology to DNA-based variations

High density lipoprotein metabolism

Nature Genetics: doi: /ng.3561

CONTRIBUTING FACTORS FOR STROKE:

The Effects of Statin and Fibrate on Lowering Small Dense LDL- Cholesterol in Hyperlipidemic Patients with Type 2 Diabetes

Genome-wide scan for quantitative trait loci influencing LDL size and plasma triglyceride in familial hypertriglyceridemia

Relationship of Apolipoprotein B Levels to the Number of Risk Factors for Metabolic Syndrome

Chapter (5) Etiology of Low HDL- Cholesterol

Marshall Tulloch-Reid, MD, MPhil, DSc, FACE Epidemiology Research Unit Tropical Medicine Research Institute The University of the West Indies, Mona,

Apolipoprotein B in the Risk Assessment and Management of Cardiovascular Disease. Original Policy Date

The inhibition of CETP: From simply raising HDL-c to promoting cholesterol efflux and lowering of atherogenic lipoproteins Prof Dr J Wouter Jukema

A comparison of statistical methods for adjusting the treatment effects in genetic association studies of quantitative traits

JMSCR Vol 05 Issue 05 Page May 2017

Metabolic Syndrome. Bill Roberts, M.D., Ph.D. Professor of Pathology University of Utah

Supplementary Online Content

Elevated Incidence of Type 2 Diabetes in San Antonio, Texas, Compared With That of Mexico City, Mexico

During the hyperinsulinemic-euglycemic clamp [1], a priming dose of human insulin (Novolin,

Hae Sun Suh, B.Pharm., Ph.D. Jason N. Doctor, Ph.D.

Effects of Increasing Particle Size of Low-Density Lipoprotein on Restenosis After Coronary Stent Implantation

Update On Diabetic Dyslipidemia: Who Should Be Treated With A Fibrate After ACCORD-LIPID?

I conducted an internship at the Texas Biomedical Research Institute in the

Normal VLDL IDL LDL 1-2 HDL. Abnormal VLDL IDL LDL 1-7 HDL. Figure 1. Normal (Pattern A) and abnormal (Pattern B) lipoprotein profiles

Familial combined hyperlipidemia (FCH) was first described

Fasting or non fasting?

A: Epidemiology update. Evidence that LDL-C and CRP identify different high-risk groups

Effects of a dietary intervention to reduce saturated fat on markers of inflammation and cardiovascular disease.

Katsuyuki Nakajima, PhD. Member of JCCLS International Committee

Unit IV Problem 3 Biochemistry: Cholesterol Metabolism and Lipoproteins

THE EFFECT OF VITAMIN-C THERAPY ON HYPERGLYCEMIA, HYPERLIPIDEMIA AND NON HIGH DENSITY LIPOPROTEIN LEVEL IN TYPE 2 DIABETES

Walter B. Bayubay CLS (ASCP), AMT, MA Ed, CPI

Estimation of Genetic Model Parameters: Variables Correlated With a Quantitative Phenotype Exhibiting Major Locus Inheritance

Reducing low-density lipoprotein cholesterol treating to target and meeting new European goals

Joslin Diabetes Center Advances in Diabetes and Thyroid Disease 2013 Consensus and Controversy in Diabetic Dyslipidemia

Page 1. Disclosures. Background. No disclosures

sad EFFECTIVE DATE: POLICY LAST UPDATED:

Journal of the American College of Cardiology Vol. 48, No. 2, by the American College of Cardiology Foundation ISSN /06/$32.

Lipoprotein (a) Disclosures 2/20/2013. Lipoprotein (a): Should We Measure? Should We Treat? Health Diagnostic Laboratory, Inc. No other disclosures

HDL-C. J Jpn Coll Angiol, 2008, 48: NIPPON DATA80, MEGA study, JELIS, dyslipidemia, risk assessment chart

Metabolic Syndrome: What s in a name?

There are many ways to lower triglycerides in humans: Which are the most relevant for pancreatitis and for CV risk?

Global Coronary Heart Disease Risk Assessment of U.S. Persons With the Metabolic. Syndrome. and Nathan D. Wong, PhD, MPH

Asian Indians have been consistently shown to have

On May 2001, the Third Adult

The American Diabetes Association estimates

The new guidelines issued in PRESENTATIONS... Future Outlook: Changing Perspectives on Best Practice

LIPIDS AND CHOLESTEROL - RISK FACTORS TO A POLICE UNIT FROM BRASOV

Atherosclerosis is a complex cardiovascular disorder that

The leading cause of death in the United States is coronary

Cascade Screening for FH: the U.S. experience

Optimizing risk assessment of total cardiovascular risk What are the tools? Lars Rydén Professor Karolinska Institutet Stockholm, Sweden

Smaller Mean LDL Particle Size and Higher Proportion of Small Dense LDL in Korean Type 2 Diabetic Patients

Measurement of Serum Intermediate Density Lipoproteins (Remnant-like Particles) Original Policy Date

Rosuvastatin: An Effective Lipid Lowering Drug against Hypercholesterolemia

Lipid Profile in Uncomplicated Non-Diabetic Hypertensives

Elevated Risk of Cardiovascular Disease Prior to Clinical Diagnosis of Type 2 Diabetes

Current Cholesterol Guidelines and Treatment of Residual Risk COPYRIGHT. J. Peter Oettgen, MD

Separation of HDL Particles by Immunoprecipitation

The importance of both low-density lipoprotein

Low-density lipoprotein as the key factor in atherogenesis too high, too long, or both

Plasma fibrinogen level, BMI and lipid profile in type 2 diabetes mellitus with hypertension

Asubstantial minority of adults and adolescents

Know Your Number Aggregate Report Single Analysis Compared to National Averages

Total risk management of Cardiovascular diseases Nobuhiro Yamada

High-Density Lipoprotein Subclass Testing in the Diagnosis and Management of Cardiovascular Disease. Original Policy Date

Lipids, Lipoproteins and Cardiovascular Risk: Getting the Most out of New and Old Biomarkers. New and Old Biomarkers. Disclosures

Autonomic nervous system, inflammation and preclinical carotid atherosclerosis in depressed subjects with coronary risk factors

Genetics of LDL Particle Heterogeneity : From Genetic Epidemiology to DNA-Based Variations.

Comprehensive Treatment for Dyslipidemias. Eric L. Pacini, MD Oregon Cardiology 2012 Cardiovascular Symposium

Impact of Chronicity on Lipid Profile of Type 2 Diabetics

Report. Broad and Narrow Heritabilities of Quantitative Traits in a Founder Population. Mark Abney, 1,2 Mary Sara McPeek, 1,2 and Carole Ober 1

SMALL-SIZE LOW-DENSITY LIPOPROtein

Soo LIM, MD, PHD Internal Medicine Seoul National University Bundang Hospital

ORIGINAL INVESTIGATION. Relation of Triglyceride Levels, Fasting and Nonfasting, to Fatal and Nonfatal Coronary Heart Disease

Society for Behavioral Medicine 33 rd Annual Meeting New Orleans, LA

Lipoprotein Particle Profile

SCIENTIFIC STUDY REPORT

Macrovascular Management. What s next beyond standard treatment?

Research Article Discordance of Non-HDL and Directly Measured LDL Cholesterol: Which Lipid Measure is Preferred When Calculated LDL Is Inaccurate?

Hypertension and Associated Cardiovascular Risk Factors in Kelantan

Transcription:

AJH 2005; 18:99 103 Pleiotropic Genetic Effects Contribute to the Correlation between HDL Cholesterol, Triglycerides, and LDL Particle Size in Hypertensive Sibships Iftikhar J. Kullo, Mariza de Andrade, Eric Boerwinkle, Joseph P. McConnell, Sharon L.R. Kardia, and Stephen T. Turner Objective: Abnormalities of HDL cholesterol (HDL- C), triglycerides, and LDL particle size are present in familial dyslipidemic hypertension. We investigated heritability of these three lipid traits and the extent to which shared effects of genes (pleiotropy) contribute to the additive genetic variation in each trait in hypertensive sibships. Methods: Subjects included 788 individuals (60% women) ascertained through sibships with 2 members diagnosed with hypertension before age 60 years. The LDL particle size was measured by polyacrylamide gel electrophoresis. Triglycerides were log transformed to reduce skewness, and age- and sex-adjusted lipid traits were used in the analyses. Heritability and pairwise genetic correlations were computed using a variance components approach. The genetic correlation between a pair of traits was squared to yield genetic covariance, a measure of pleiotropic effects of genes influencing both traits concomitantly. Results: Heritability estimates indicated significant genetic effects on HDL-C (0.58), log triglycerides (0.47), and LDL particle size (0.71). Genetic correlation was strongest between HDL-C and log triglycerides ( 0.642), followed by log triglycerides and LDL particle size ( 0.493), and HDL-C and LDL particle size (0.334). HDL-C and log triglycerides showed the strongest genetic covariance (41%), followed by LDL particle size and log triglycerides (24%), and HDL-C and LDL particle size (11%). Conclusions: Multivariate quantitative genetic analyses in hypertensive sibships reveal that pleiotropy contributes to the additive genetic variation in HDL-C, triglycerides, and LDL particle size. These findings provide the rationale for multivariate linkage analyses to identify novel genetic loci with pleiotropic effects on the traits. Am J Hypertens 2005;18:99 103 2005 American Journal of Hypertension, Ltd. Key Words: Multivariate analysis, genetic correlation, HDL cholesterol, LDL particle size, triglycerides. Dyslipidemia and hypertension are common medical problems and up to 27 million American adults have both hypertension and dyslipidemia. 1,2 The co-existence of the two disorders may be due to a shared genetic background. 3 Abnormalities in HDL cholesterol (HDL-C) and triglycerides were found to be present in nearly half of the members of hypertensive families. 3 More recently, abnormalities in LDL particle size have been found in patients with high triglyceride low HDL-C dyslipidemia, and the three lipid traits appear to be correlated. 4 The genetic basis of the correlations between these lipid traits is not well understood. In families ascertained on the basis of hyperlipidemia, Edwards et al 5 demonstrated that the correlations between these lipid traits were in part due to effects of shared genes. Elucidating the genetic architecture of these lipid traits in the context of hypertension may provide insight into the increased coronary heart disease (CHD) risk of hyperten- Received May 1, 2004. First decision August 24, 2004. Accepted September 7, 2004. From the Divisions of Cardiovascular Diseases (IJK), Biostatistics (MA), and Nephrology & Hypertension (STT), Department of Laboratory Medicine and Pathology (JPM), Mayo Clinic and Foundation, Rochester, Minnesota; Human Genetics Center and Institute of Molecular Medicine, University of Texas-Houston Health Science Center (EB), Houston, Texas; and Department of Epidemiology (SLRK), University of Michigan, Ann Arbor, Michigan. This work was supported by a Mentored Patient-Oriented Research Career Development Award (K-23, RR17720) from the National Center for Research Resources to IJK; and by grants HL-75794, U01-HL54464, HL-71917 and the General Clinical Research Center Grant M01 RR00585 from the National Institutes of Health. Address correspondence and reprint requests to Dr. Iftikhar J. Kullo, Division of Cardiovascular Diseases, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905; e-mail: kullo.iftikhar@mayo.edu 2005 by the American Journal of Hypertension, Ltd. Published by Elsevier Inc. 0895-7061/05/$30.00 doi:10.1016/j.amjhyper.2004.09.002

100 QUANTITATIVE GENETICS OF CORRELATED LIPID TRAITS AJH January 2005 VOL. 18, NO. 1 sive individuals, 6 as well as a better understanding of the genetic basis of alterations of metabolic pathways common to blood pressure (BP) control and lipoprotein metabolism. A step in this direction is to determine to what extent shared genes (or pleiotropy) are responsible for the genetic correlation between HDL-C, triglycerides, and LDL particle size in hypertensive families. We therefore investigated heritability of HDL-C, triglycerides, and LDL particle size and the extent to which pleiotropy contributes to the phenotypic and genetic correlation between these traits in a cohort of hypertensive sibships. Methods Study Participants The study was approved by the Institutional Review Board of the Mayo Clinic and written informed consent was obtained from participants in the Genetic Epidemiology Network of Arteriopathy (GENOA) study, a multicenter community-based study of hypertensive sibships that aims to identify genes influencing BP. 7 In the initial phase of the GENOA study (9/1995 to 6/2001), sibships containing at least two individuals with essential hypertension diagnosed before age 60 years (non-hispanic white subjects) were enrolled in Rochester, MN. In phase II of GENOA, participants underwent measurement of novel cardiovascular risk factors including LDL particle size, and assessment of target organ damage due to hypertension. Through October 2002, 815 of the original 1583 GENOA participants had completed the phase II study protocol. We excluded 27 subjects with missing data. Resting systolic BP and diastolic BP levels were measured in the right arm with a random-zero sphygmomanometer (Hawksley and Sons, West Sussex, UK). Three measures at least 2 min apart were taken and the average of the second and third measurements was used in the analysis. The diagnosis of hypertension was confirmed based on BP levels measured at the study visit (systolic BP 140 mm Hg or diastolic BP 90 mm Hg) or report of a prior diagnosis of hypertension and current treatment with antihypertensive medications. Information about the use of lipid-lowering medications was obtained from a questionnaire administered to the participants. Measurement of Lipid Variables Blood samples were obtained by venipuncture after an overnight fast. Standard enzymatic methods were used to measure total cholesterol, HDL-C, and triglycerides. 8 The LDL particle size was measured by polyacrylamide gel electrophoresis as follows. 9 Plasma (25 L) was mixed with 200 L of loading gel (containing Sudan black-b dye and riboflavin) and added to the top of a precast 3% polyacrylamide gel tube (Quantimetrix Corporation, Redondo Beach, CA). After photopolymerization for 30 min, specimens were electrophoresed for 1 h. The dye preferentially binds to lipoprotein particles and remains with them during electrophoresis. Separation is based primarily on particle size due to the sieving action of the polyacrylamide gel. The separated lipoprotein particles were scanned with an ArtixScan 1100 (Microtek, Carson, CA). The electrophoretograms were quantitatively analyzed using the public domain National Institutes of Health Image program (http://rsb.info.nih.gov/nih-image/). The program divides the electrophoretogram at designated electrophoretic mobility values and calculates the area under the curve for each mobility fraction. Particle diameter for each fraction was calculated as previously described 10 and weighted based on the percent area under the curve for each fraction in relation to the area occupied by the entire LDL band. The mean LDL particle size was then determined by averaging weighted diameters for each fraction. Two controls (mean particle diameter 264 Å and 254 Å) were analyzed with every 10 study samples. Interassay coefficients of variation were 0.77% (standard deviation 2.0 Å), and 1.46% (standard deviation 3.7 Å), respectively. Statistical Analyses Triglyceride values were log transformed to reduce skewness. Age- and sex-adjusted HDL-C, log triglycerides, and LDL particle size were used in the analyses. Multivariate quantitative genetic analyses using a variance components approach was performed with the Expectation Maximization Variance Components (EMVC) software. 11 An extension of the variance components approach to multivariate quantitative genetic analyses has been described by Lange and Boehnke. 12 The variance covariance matrix of m traits for a particular sibship s (V s ) was partitioned into additive genetic effects and random environmental effects. The additive genetic effects were represented by the direct product of the matrix A, whose off-diagonal elements g.lj represent the genetic covariance of traits l and j, and the 2 diagonal elements g.l represent the genetic variance of trait l, for l 1, 2,..., m, and the matrix of the coefficients of relationship for the sibship G s. The environmental effects were represented by the direct product of the matrix B, whose off-diagonal elements e.lj, represent the environmental covariance of traits l and j, and the diagonal elements 2 e.l represent the environmental variance of trait l, for l 1, 2,..., m, and the identity matrix Is, such that V s A R G s B R I s. The symbol R represents the direct product of two matrices, which consists of all possible products of an element of first matrix multiplied by an element of the second matrix. For each trait, the heritability (h 2 l ) was calculated as the proportion of the total phenotypic variance due to additive genetic effects. The following three pairwise combination of traits were included in the multivariate genetic analyses: 1) HDL-C and log triglycerides, 2) HDL-C and LDL particle size, and 3) log triglycerides and LDL particle size. Pairwise genetic and environmental correlations were

AJH January 2005 VOL. 18, NO. 1 QUANTITATIVE GENETICS OF CORRELATED LIPID TRAITS 101 Table 1. Subject characteristics (n 788) Characteristic Age (y) 62.0 8.5 Women (%) 60.0 Hypertension (%) 76.4 HDL-C (mg/dl) 51.9 15.4 Triglycerides (mg/dl) 158.9 94.3 LDL particle size (Å) 270.9 4.9 Total cholesterol (mg/dl) 201.4 33.7 Lipid-lowering medication (%) 31.4 Table entries are means standard deviations for quantitative traits or percentages for categorical traits. calculated as g.lj e.lm 2. g.lm 2 g.l, and e.lj 2 g.j 2 e.l e.j Phenotypic correlations between two traits were calculated based on the pairwise genetic and environmental correlations. An estimate of the phenotypic correlation ( P ) between two traits was obtained using the following equation: p.lj g.lm h 2 2 1h j e.lj 1 h 12 1 h j2, where h 2 1 and h 2 2 represent the heritability of each trait in the pair (l and j). 13 This method provides an estimate similar to Pearson s correlation estimate, but it has the advantages of yielding an unbiased estimate of phenotypic correlation. The squared genetic correlation between two traits provides an estimate of the additive genetic variance in the traits that is due to effects of shared genes and can be interpreted as a measure of pleiotropic effects of genes influencing both traits simultaneously. 14 The significance of each of the estimated parameters (eg, h 2 l, g.lj, and e.lj) was evaluated by likelihood-ratio tests by comparing the log likelihood of a model in which the parameter was estimated to the log likelihood of a more restricted model in which the same parameter was set to zero. The likelihood-ratio test yields a statistic that is asymptotically distributed approximately as a 2 with degrees of freedom equal to the difference in the number of parameters estimated in the two models and is calculated as 2(log likelihood restricted model loglikelihood general model ). Pleiotropy due to shared genes is indicated by a G value that is significantly different from zero. Finally, to estimate the percentage of residual phenotypic variation in a particular trait due to genes shared with another trait, we multiplied the heritability of the trait by the square of the genetic correlation between the two traits. Results Subjects (n 788) belonged to 324 sibships, mean age was 62 years, 60% were women, 77% were hypertensive, and 30% were on statins (Table 1). The heritability estimates for the age- and sex-adjusted measures of HDL-C, log triglycerides, and LDL particle size were 0.58, 0.47, and 0.71, respectively. The standard error of mean was 0.08 for all three estimates and the estimates were significantly different from zero (P.0001). In the multivariate analysis, all genetic correlations were significantly different from zero (P.001) based on likelihood-ratio tests (Table 2). There were relatively strong negative genetic correlations between HDL-C and log triglycerides and between log triglycerides and LDL particle size, suggesting that shared genes that increase triglycerides, decrease HDL-C and LDL particle size. A modest positive genetic correlation between HDL-C and LDL particle size suggests that shared genes increase HDL-C and LDL particle size together (Table 2). The strongest genetic covariance was noted between HDL-C and log triglycerides, indicating that almost 41% of the additive genetic variation in each trait was due to genes shared between the two traits (Table 2). Eleven percent of the additive genetic variation in LDL particle size was attributable to genes shared with HDL-C and 24% of the additive genetic variation in LDL particle size could be attributed to genes shared with log triglycerides (Table 2). The percentages of (age and sex adjusted) phenotypic variation in each trait due to shared additive genetic effects are shown in Table 3. Pleiotropy made the greatest contribution to the phenotypic variances in the trait pair of HDL-C and log triglycerides. Genes shared between HDL-C and log triglycerides accounted for 24% and 19% of the phenotypic variation in HDL-C and log triglycer- Table 2. Maximum likelihood estimates of the additive genetic, environmental, and phenotypic correlations of HDL-cholesterol, log triglycerides, and LDL particle size HDL-C & log triglycerides Bivariate Phenotype Pairs HDL-C & LDL size Log triglycerides & LDL size Genetic correlation ( G ) 0.64 0.33 0.49 Environmental correlation ( E ) 0.29 0.25 0.59 Phenotypic correlation ( P ) 0.47 0.30 0.52 Genetic correlation squared ( 2 G ) 0.41 0.11 0.24 All genetic and environmental correlations are statistically significant at P.0001.

102 QUANTITATIVE GENETICS OF CORRELATED LIPID TRAITS AJH January 2005 VOL. 18, NO. 1 Table 3. Percentage of phenotypic variation in a trait due to additive genetic effects shared with the other trait of a trait pair ides, respectively. The trait pair for which pleiotropy had the least influence on phenotypic variances was the HDL-C and LDL particle size combination. Discussion Percentage of Phenotypic Variation due to Pleiotropy HDL-C 23.8 Log triglycerides 19.3 HDL-C 6.4 LDL size 7.8 Log triglycerides 11.3 LDL size 17.0 Using multivariate quantitative genetic analysis in hypertensive sibships, we confirm significant genetic correlation between HDL-C, triglycerides, and LDL particle size, abnormalities of which are prevalent in familial dyslipidemic hypertension. In addition, a significant genetic covariance was noted between each possible pair of these traits, indicating that shared genes explain varying proportions (0.11 to 0.41) of the additive genetic variation in each trait. A previous study by Edwards et al 5 demonstrated pleiotropic genetic effects on these lipid measures in families with hyperlipidemia. However, to our knowledge, the present study is the first to report on multivariate quantitative genetic analyses of HDL-C, triglycerides, and LDL particle size in hypertensive sibships and is a step toward identifying genetic loci/genes with pleiotropic effects on lipid traits that contribute to the increased CHD risk in these sibships. Univariate residual heritability estimates for HDL-C have varied from 0.38 13 to 0.55 15 and for triglycerides from 0.35 16 to 0.54, 13 values similar to the heritabilities reported in the present study for these two lipid phenotraits. However, the heritability for LDL particle size in our study was higher than previously reported by Edwards et al 5 (0.34) or by Bosse et al 17 (0.59). It is possible that in hypertensive sibships the genetic influence on LDL particle size is greater than in these other populations. Alternatively, the differences in the heritability estimates may be due to differences in study design (sibships in the present study versus pedigrees in the studies of Edwards et al 5 and Bosse et al 17 ), different methods of measuring LDL particle size (polyacrylamide gel electrophoresis in the present study versus gradient gel electrophoresis in the other two studies), as well as the compact distribution of LDL particle size with less phenotypic variation in the present study (standard deviation of 4.19 Å versus 9.13 Å in the study by Edwards et al 5 ). Genetic correlation between HDL-C and triglycerides have been reported in several studies, whereas correlations between the HDL-C, triglycerides, and LDL particle size have been reported only in the family-based study of Edwards et al, 5 in which subjects were ascertained based on the presence of hyperlipidemia. The results of the current study extend this previous report by demonstrating common genetic influences between HDL-C and both triglycerides and LDL size particle size in hypertensive sibships. Pleiotropic effects contributed in varying degrees to the phenotypic variation in each trait. Shared genetic effects accounted for a significant proportion of the phenotypic variation in the trait pair of HDL-C and log triglycerides, suggesting the possibility of one or more loci with pleiotropic effects on both traits. Shared genetic effects accounted for only a modest proportion of the phenotypic variation of the HDL-C and LDL particle size trait pair. Therefore, a large proportion of the phenotypic variation in this trait pair can be attributed to nonshared genes and environmental effects. Lipid abnormalities in hypertensive subjects are associated with other features of the insulin resistance syndrome. 18 The pathophysiologic mechanisms that link insulin resistance and lipid abnormalities are unclear. It is likely that there are common metabolic pathways that influence components of the atherogenic lipoprotein profile. Thus, pathways that are known to lower plasma HDL-C concentrations are also involved in triglyceride metabolism and determination of LDL particle size. For example, concurrent changes in HDL-C and triglycerides may occur due to the exchange of cholesterol between HDL-C and triglyceride-rich particles mediated by lipid transfer proteins such as phospholipid transfer protein and cholesterol ester transfer protein (CETP) 19,20 or due to hepatic lipase activity. 21 Thirty percent of subjects in the present study were on lipid-lowering medications (statins constituted 90% of the lipid-lowering medications). Statins do not have a significant effect on LDL particle size 22 and the effect on HDL-C is relatively modest (ranging from 5% to 15% increase in levels). 23 The effect of statins on triglycerides depends on the baseline triglyceride level and a decrease ranging from 7% to 30% can occur. 23 Inclusion of statinuse in the statistical models did not significantly alter estimates of heritability (analyses not shown). Detecting pleiotropic genetic effects is an important step toward understanding the phenotypic variation in the lipid traits associated with familial dyslipidemic hypertension. The results of our multivariate analyses suggest that a proportion of the additive genetic variation in HDL-C, log triglycerides, and LDL particle size in hypertensive sibships may be due to the pleiotropic effects of shared genes. Elucidating the underlying genetic architecture of these traits will facilitate mapping of genes contributing to familial dyslipidemic hypertension and CHD susceptibility. The present multivariate approach, by providing insights into the patterns of genetic relationships between

AJH January 2005 VOL. 18, NO. 1 QUANTITATIVE GENETICS OF CORRELATED LIPID TRAITS 103 HDL-C, log triglycerides, and LDL particle size, also provides the rationale for multivariate linkage analyses to identify novel genetic loci with pleiotropic effects on the traits. Acknowledgment We thank Curtis Oswold for help with statistical analyses. References 1. Association Heart Association: Heart disease and stroke statistics 2003 update. Dallas, TX: American Heart Association, 2003. 2. O Meara JG, Kardia SL, Armon JJ, Brown CA, Boerwinkle E, Turner ST: Ethnic and sex differences in the prevalence, treatment, and control of dyslipidemia among hypertensive adults in the GENOA study. Arch Intern Med 2004;164:1313 1318. 3. Williams RR, Hunt SC, Hopkins PN, Stults BM, Wu LL, Hasstedt SJ, Barlow GK, Stephenson SH, Lalouel JM, Kuida H: Familial dyslipidemic hypertension. Evidence from 58 Utah families for a syndrome present in approximately 12% of patients with essential hypertension. JAMA 1988;259:3579 3586. 4. Austin MA, Brunzell JD, Fitch WL, Krauss RM: Inheritance of low density lipoprotein subclass patterns in familial combined hyperlipidemia. Arteriosclerosis 1990;10:520 530. 5. Edwards KL, Mahaney MC, Motulsky AG, Austin MA: Pleiotropic genetic effects on LDL size, plasma triglyceride, and HDL cholesterol in families. Arterioscler Thromb Vasc Biol 1999;19:2456 2464. 6. Williams RR, Hopkins PN, Hunt SC, Wu LL, Hasstedt SJ, Lalouel JM, Ash KO, Stults BM, Kuida H: Population-based frequency of dyslipidemia syndromes in coronary-prone families in Utah. Arch Intern Med 1990;150:582 588. 7. Boerwinkle E: Multi-center genetic study of hypertension: the Family Blood Pressure Program (FBPP). Hypertension 2002;39:3 9. 8. Kottke BA, Moll PP, Michels VV, Weidman WH: Levels of lipids, lipoproteins, and apolipoproteins in a defined population. Mayo Clin Proc 1991;66:1198 1208. 9. Hoefner DM, Hodel SD, O Brien JF, Branum EL, Sun D, Meissner I, McConnell JP: Development of a rapid, quantitative method for LDL subfractionation with use of the Quantimetrix Lipoprint LDL System. Clin Chem 2001;47:266 274. 10. Kazumi T, Kawaguchi A, Hozumi T, Nagao M, Iwahashi M, Hayakawa M, Ishihara K, Yoshino G: Low density lipoprotein particle diameter in young, nonobese, normolipidemic Japanese men. Atherosclerosis 1999;142:113 119. 11. Iturria SJ, Blangero J: An EM algorithm for obtaining maximum likelihood estimates in the multi-phenotype variance components linkage model. Ann Hum Genet 2000;64:349 362. 12. Lange K, Boehnke M: Extensions to pedigree analysis. IV. Covariance components models for multivariate traits. Am J Med Genet 1983;14:513 524. 13. Jaquish CE, Mahaney MC, Blangero J, Haffner SM, Stern MP, MacCluer JW: Genetic correlations between lipoprotein phenotypes and indicators of sex hormone levels in Mexican Americans. Atherosclerosis 1996;122:117 125. 14. Boehnke M, Moll PP, Lange K, Weidman WH, Kottke BA: Univariate and bivariate analyses of cholesterol and triglyceride levels in pedigrees. Am J Med Genet 1986;23:775 792. 15. Mahaney MC, Blangero J, Comuzzie AG, VandeBerg JL, Stern MP, MacCluer JW: Plasma HDL cholesterol, triglycerides, and adiposity: a quantitative genetic test of the conjoint trait hypothesis in the San Antonio Family Heart Study. Circulation 1995;92:3240 3248. 16. Hokanson JE, Langefeld CD, Mitchell BD, Lange LA, Goff DC Jr, Haffner SM, Saad MF, Rotter JI: Pleiotropy and heterogeneity in the expression of atherogenic lipoproteins: the IRAS Family Study. Hum Hered 2003;55:46 50. 17. Bosse Y, Vohl MC, Despres JP, Lamarche B, Rice T, Rao DC, Bouchard C, Perusse L: Heritability of LDL peak particle diameter in the Quebec Family Study. Genet Epidemiol 2003;25:375 381. 18. Reaven GM, Chen YD, Jeppesen J, Maheux P, Krauss RM: Insulin resistance and hyperinsulinemia in individuals with small, dense low density lipoprotein particles. J Clin Invest 1993;92:141 146. 19. Quinet E, Tall A, Ramakrishnan R, Rudel L: Plasma lipid transfer protein as a determinant of the atherogenicity of monkey plasma lipoproteins. J Clin Invest 1991;87:1559 1566. 20. Deckelbaum RJ, Eisenberg S, Oschry Y, Butbul E, Sharon I, Olivecrona T: Reversible modification of human plasma low density lipoproteins toward triglyceride-rich precursors. A mechanism for losing excess cholesterol esters. J Biol Chem 1982;257:6509 6517. 21. Zambon A, Hokanson JE, Brown BG, Brunzell JD: Evidence for a new pathophysiological mechanism for coronary artery disease regression: hepatic lipase-mediated changes in LDL density. Circulation 1999;99:1959 1964. 22. Gaw A: Can the clinical efficacy of the HMG CoA reductase inhibitors be explained solely by their effects on LDL-cholesterol? Atherosclerosis 1996;125:267 269. 23. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults: Executive Summary of the Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001;285:2486 2497.