A New Technique for Performing a Laparoscopic Hysterectomy Using Microlaparoscopy: Microlaparoscopic Assisted Vaginal Hysterectomy (mlavh)

Similar documents
da Vinci Hysterectomy Overview Hysterectomy Facts

Laparoscopic Assisted Vaginal Hysterectomy, Setting Up a

Laparoscopic approach to hysterectomy

The AAGL Classification System for Laparoscopic Hysterectomy

Index. Note: Page numbers of article titles are in boldface type.

Single-Port Laparoscopic Supracervical Hysterectomy with Transumbilical Morcellation

A Laparoscopic-Assisted Extraperitoneal Bladder Neck Suspension: An Initial Experience

Paravaginal Repair: A Laparoscopic Approach

Special Articles COSTS AND CHARGES ASSOCIATED WITH THREE ALTERNATIVE TECHNIQUES OF HYSTERECTOMY. The New England Journal of Medicine

The benefits of minimally invasive

Hysterectomy. What is a hysterectomy? Why is hysterectomy done? Are there alternatives to hysterectomy?

Index. B Bladder, injury of, Bowel, injury of, , Brachytherapy, for cervical cancer, 357 Burns, electrosurgical,

SCIENTIFIC PAPER ABSTRACT INTRODUCTION MATERIALS AND METHODS

CHAU KHAC TU M.D., Ph.D.

HYSTERECTOMY FOR BENIGN CONDITIONS

Comparison of laparoscopically assisted vaginal hysterectomy and total abdominal hysterectomy

Laparoscopic Salpingectomy for Ectopic Pregnancy Simulation

INGUINAL HERNIA REPAIR PROCEDURE GUIDE

Laparoscopic Hysterectomy Versus Abdominal Hysterectomy: A Controlled Study of Clinical and Functional Outcomes

A 9-year experience of laparoscopic hysterectomy in a UK district general hospital

Minilaparoscopic Versus Single-Port Total Hysterectomy: A Randomized Trial

HYSTERECTOMY FOR BENIGN CONDITIONS

CHALLENGING SITUATIONS IN GYNAECOLOGICAL LAPAROSCOPY - CASE REPORT AND SHORT LITERATURE REVIEW

Single-port Laparoscopic Hysterectomy versus Conventional Laparoscopic Hysterectomy: a Prospective Randomized Trial

Pelvic Prolapse. A Patient Guide to Pelvic Floor Reconstruction

TIME TABLE OF F.MAS PROGRAMME

A COMPARITIVE STUDY BETWEEN VAGINAL HYSTERECTOMY AND LAPAROSCOPICALLY ASSISTED VAGINAL HYSTERECTOMY

Low-cost total laparoscopic hysterectomy by single-incision laparoscopic surgery using only reusable standard laparoscopic instruments

PLACE AND MODALITIES OF LAPAROSCOPY IN SURGICAL MANAGEMENT OF SUSPECTED ADNEXAL MASSES

Clinical Study Single-Port Access Laparoscopy-Assisted Vaginal Hysterectomy: Our Initial Experiences with 100 Cases

Hysterectomy for patients without previous vaginal delivery: results and modalities of laparoscopic surgery

Physician. Patient HYSTERECTOMY HYSTERECTOMY. Treatment Options Risks and Benefits Experience and Skill

A new technique for dissecting the bladder laparoscopically

Characteristics of total laparoscopic hysterectomy among women with or without previous cesarean section: retrospective analysis

RealHand High Dexterity Instruments for the Treatment of Stage I Uterine Malignancy

Facing a Hysterectomy? If you ve been diagnosed with gynecologic cancer, learn about minimally invasive da Vinci Surgery

Definition Endometriosis is the presence of functioning endometrial tissue outside the cavity of the uterus.

International Federation of Gynecology and Obstetrics

Consent Advice No. XX (Joint with BSGE) Peer Review Draft Spring Morcellation for Laparoscopic Myomectomy or Hysterectomy

Clinical Study Laparoscopic Surgery in Elderly Patients Aged 65 Years and Older with Gynecologic Disease

Laparoscopy and Endometriosis: Preventing Complications and Improving Outcomes. Luis C. Paez M.D.

Pancreatic pseudocysts (PP) are chronic collections of

Single-port laparoscopy for treatment of concomitant adnexal masses and chole-cystectomy or appendectomy.

Outcomes of Laparoscopic Hysterectomy in Glangwili Hospital

Management of Ovarian Dermoid Cysts by Laparoscopy

Introduction to GYN Specialties

OPERATIVE SKILLS. INTRODUCTION Hysterectomy is frequently performed gynecologic and obstetric procedure worldwide, second only to cesarean delivery.

Port Site Hernia after Laparoscopic Cholecystectomy

Robotic Hysterectomy Strategies in the Morbidly Obese Patient

Stop Coping. Start Living. Talk to your doctor about pelvic organ prolapse and sacrocolpopexy

Twenty-first century laparoscopic hysterectomy: should we not leave the vaginal step out?

Laparoscopic approach to severe endometriosis

Laparoscopic Morcellation of Didelphic Uterus With Cervical and Renal Aplasia

Replacement of Expensive, Disposable Instruments With Old-fashioned Surgical Techniques for Improved Cost-effectiveness in Laparoscopic Hysterectomy

Secondary hemorrhage after different modes of hysterectomy

Clinical and financial analyses of laparoscopically assisted vaginal hysterectomy versus abdominal hysterectomy Hidlebaugh D, O'Mara P, Conboy E

LOG BOOK WITH MINUTE TO MINUTE PROGRAM

ARTIFICIAL MESH REPAIR FOR TREATMENT OF PELVIC ORGAN PROLAPSE

Gregory Eads MD Women s Centre for Well Being

단일공법복강경하질식자궁절제술 110 예의고찰및다공법과의비교

Tips, Tricks & Controversies in Laparoscopic Hysterectomy. No disclosures. Keys to success. Learning Objectives

Laparoscopic Right Colectomy

Las Vegas Urogynecology

Comparison of Robotic-Assisted Hysterectomy to Other Minimally Invasive Approaches

LAPARASCOPIC ASSISTED VAGINAL HYSTERECTOMY VERSUS TOTAL LAPAROSCOPIC HYSTERECTOMY

yechniques,!nd Instrumentation

7/11/17. The Surgeon s Operative Report: Tools and Tips to Enhance Abstraction. Stopwoundinfection.com. Impact to Healthcare

Cystoscopy after total or subtotal laparoscopic hysterectomy: the value of a routine procedure

Having a hysterectomy

Cover Page. The handle holds various files of this Leiden University dissertation.

AGENDA. OR Equipment Entery Anatomy Videos Trics and Tips Closure Limitations to endoscopy 2012??

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

Laparoscopy. Department of Gynaecology. Patient information

Laparoscopy in Gynecology. Course title, description. Basic hands on gynecologic laparoscopy training

Gross and histologic characteristics of laparoscopic injuries with four different energy sources

Perioperative outcomes of three-port robotically assisted hysterectomy: a continuous series of 53 cases. DAELLENBACH, Patrick Peter, PETIGNAT, Patrick

Clinical Study Converting Potential Abdominal Hysterectomy to Vaginal One: Laparoscopic Assisted Vaginal Hysterectomy

An analysis of the impact of previous laparoscopic hysterectomy experience on the learning curve for robotic hysterectomy

Laparoscopy-Hysteroscopy

Surgical technique for single-port laparoscopy in huge ovarian tumors: SW Kim s technique and comparison to laparotomy

This information is intended as an overview only

Information leaflet on. Laparoscopic Treatment of Endometriosis

Log Title: OBRES Gynecologic Case Log

LAPAROSCOPICALLY ASSISTED VAGINAL HYSTERECTOMY FOLLOWING PREVIOUS KIDNEY TRANSPLANTATION

Robotic-Assisted Laparoscopic Treatment of Bowel, Bladder, and Ureteral Endometriosis

Hysterectomy Fact versus fiction. Richard Dover Specialist Gynaecologist

Single Surgeon Single Incision Laparoscopic Gynaecological Surgery (Solo SILS): Can This Be The Future Approach In Laparoscopic Surgery?

Laparoscopic Management of Early Stage Endometrial Cancer. B. Rabischong, M. Canis, G. Le Bouedec, C. Pomel, J.L Achard, J. Dauplat, G.

Adnexectomy for benign pathology at vaginal hysterectomy without laparoscopic assistance

Considering Surgery for Vaginal or Uterine Prolapse? Learn why da Vinci Surgery may be your best treatment option.

Facing Gynecologic Surgery?

Minimally Invasive Hysterectomies: A Survey of Current Practices. amongst members of the International Society for Gynaecologic Endoscopy

Uterine fibroids occur in at least 20% of women. Pierce and Push: A Simplified Method to Facilitate Laparoscopic Myomectomy

Surgery without incisions; experiences in single incision laparoscopic surgery (SILS) for infants and children

Laparoscopic Radical Hysterectomy with Pelvic Lymphadenectomy for Early, lnvasive Cervical Carcinoma

SURGICAL PROCEDURES OPERATIONS ON THE FEMALE GENITAL SYSTEM

Breast Carcinoma The Hard Way

Comparative Study Of Laparoscopic Versus Open Peptic Perforation Closure

Transcription:

A New Technique for Performing a Laparoscopic Hysterectomy Using Microlaparoscopy: Microlaparoscopic Assisted Vaginal Hysterectomy (mlavh) ABSTRACT In an effort to further decrease patient postoperative scarring and discomfort, a new technique of microlaparoscopic assisted vaginal hysterectomy is employed. Using a 2-mm lateral port, a single infraumbilical port for the power source, and a 3-mm or 5-mm suprapubic port for aid in manipulation, seven consecutive patients underwent hysterectomy without complication and had rapid return to their daily activities. Key Words: Laparoscopy, Laparoscopic hysterectomy, Microlaparoscopy. John D. Paulson, MD, Kari A. Oliver, MD INTRODUCTION SCIENTIFIC PAPERS The techniques of performing laparoscopic assisted vaginal hysterectomy (LAVH), laparoscopic hysterectomy and laparoscopic supracervical hysterectomy are well established in the literature. 1-10 These methods have utilized laparoscopes greater than 5 mm in diameter, usually 10 mm or larger. When this surgery is accomplished, multiple trocar sites of 5 mm, 10 mm and 12 mm are necessary in order to place the various instruments and power sources within the abdominal cavity. If the infraumbilical incision is made within the umbilicus in a semicircular fashion for insertion of the trocar and sleeve, the resulting scar is not seen upon healing. The majority of diagnostic laparoscopic procedures utilize a port in the umbilical area and a midline suprapubic 5-mm port for a probe or suction-irrigation device. Additional ports in the abdominal wall (5 mm to 12 mm) are usually lateral to the inferior epigastric vessels and cause additional discomfort postoperatively. It was felt that if it were possible to have only two working ports when performing a hysterectomy by laparoscopic means (one infraumbilical and one suprapubic midline), the discomfort level would be decreased in comparison to the normally performed procedure. In addition to this reduced postoperative pain, there would hopefully be a quicker recovery time, reduced abdominal wall scarring and a lower risk of trocar-site herniation. This new technique utilizes an infraumbilical port for the power source (mechanical stapling device, harmonic scalpel or bipolar cautery/scissor device), a suprapubic port for grasping instruments or suction/irrigation devices and a small port through an incision approximately 3 cm lateral and 3 cm below the level of the umbilicus for a 2-mm microlaparoscope. MATERIALS AND METHODS Department of Obstetrics and Gynecology, St. Louis University School of Medicine, St. Louis, Missouri, USA (all authors). Address reprint request to: John D. Paulson, MD, 6 Stratton Drive, Westborough, MA 01581, USA. Telephone: (508) 795-0854, E-mail: endodoc11@aol.com 2000 by JSLS, Journal of the Society of Laparoendoscopic Surgeons. Published by the Society of Laparoendoscopic Surgeons, Inc. Patient selection for this study was similar to that of any patient selected for a LAVH (Table 1). Candidates for treatment were initially given a thorough preoperative evaluation for their presenting symptoms, and preoperative physical examinations were performed. Seven consecutive patients requiring a hysterectomy were selected without regard to weight or preoperative diagnosis. JSLS (2000)4:91-95 91

A New Technique for Performing a Laparoscopic Hysterectomy Using Microlaparoscopy: Microlaparoscopic Assisted Vaginal Hysterectomy (mlavh), Paulson JD et al. Table 1. Characteristics of the patients who underwent a mlavh. Patient Age G / P Weight Height Indications Prior Rx Length of Size of surgery uterus (minutes) 1 26 3/3 127 lbs 5 4 Pain, menorrhagia D+C, hysteroscopy, 78 110 gms medical rx., laparoscopy 2 37 4/4 217 lbs 5 4 Dysmenorrhea, Medical treatment 92 120 gms menorrhagia, stress incontinence 3 42 2/2 111 lbs 5 3 Pain, dyspareunia, Medical treatment 57 140 gms metrarrhagia 4 32 2/1 168 lbs 5 9 Pain, dyspareunia, Medical treatment, 81 110 gms menometrarrhagia D+C, laparoscopy 5 65 3/3 170 lbs 5 5 Prolapse, stress None 108 200 gms incontinence 6 44 1/1 231 lbs 5 7 Leiomyomata Medical treatment 94 310 gms uteri, menometrarrhagia, anemia 7 59 5/4 129 lbs 5 2.5 Pain, cystocele, None 62 75 gms stress incontinence The special laparoscopic instrumentation involved a 2- mm fiberoptic microlaparoscope (50,000-pixel scope, Imagyn Surgical), 3-mm suprapubic instruments (probe, graspers and suction/irrigation), 12-mm mechanical staplers (Articulator 35 TM, Imagyn Surgical) and a harmonic scalpel. For the first six patients, the protocol involved placing a 12-mm port infraumbilically. A 10-mm rod lens scope was introduced into the 12-mm port for an initial pelvic diagnosis. As with the traditional LAVH, visualization of the pelvic adnexal structures was accomplished. Care was taken to identify the location of both ureters. The ureters were traced from the sacral promontory to their positions past the uterine arteries. At the level of 3 cm below the umbilicus and 3 cm lateral on the patient s right side, a Veress needle with a sleeve was inserted; the needle was removed, and the 2-mm minilaparoscope was inserted. The suprapubic trocar and sleeve were inserted to serve as a port for the grasping and suction/irrigation instruments as they were used to facilitate exploration of the pelvic cavity. This was followed by the severance of either the utero-ovarian ligaments or tubes or the infundibulopelvic ligament by the articulating mechanical stapling device, which was placed through the umbilical port (Figure 1). The articulating stapler provided the ability to hug the uterus when the stapler was introduced via the umbilicus, thus avoiding utereral injury (Figure 2). The infundibulopelvic, broad and round ligaments were stapled and ligated using the Articulator 35 surgical stapler. If the ovaries were to be left in situ, then the stapling device was placed across the utero-ovarian ligament, the round ligament and uterine vessels were then cut (Figure 3). The removal of the 92 JSLS (2000)4:91-95

Figure 1. The articulated stapling device being placed over the left tube and utero-ovarian ligament. Figure 3. The staple line on the right adnexa after the articulated stapling device has been fired. uterus was then performed vaginally. The vaginal cuff was closed. The seventh patient s procedure differed in that the infraumbilical port was 5 mm, and the ligaments were cut hemostatically using the harmonic scalpel coagulating shears (5 mm). This technically more difficult procedure was performed with this new modality in an attempt to see if the visualization through the small scope was adequate. The remainder of the procedure was similar. Figure 2. The articulated stapling device on the right tube and utero-ovarian ligament, ready to be fired. After the vagina was closed and any other necessary vaginal surgery was performed, the peritoneal cavity was inspected endoscopically and irrigated to insure complete hemostasis. The 12-mm umbilical port-site was closed with fascial stitches in addition to the skin closure in order to reduce the risk of postoperative hernia formation. Each patient was observed overnight and given a regular diet. Pain medications included narcotics and non-steroidal pain medications. All patients were discharged within 24 hours. A follow-up office visit was scheduled one week after discharge. No postoperative infections were noted. JSLS (2000)4:91-95 93

A New Technique for Performing a Laparoscopic Hysterectomy Using Microlaparoscopy: Microlaparoscopic Assisted Vaginal Hysterectomy (mlavh), Paulson JD et al. The instrumentation used for the procedure differed from routine laparoscopic procedures in that the sizes of selected instruments were of smaller caliper. The smaller diameter instruments (3 mm) enable a less invasive procedure while they provided a sturdiness that was not available in preceding 2 mm instrumentation. Table 2 shows instrumentation that may be necessary to perform this scarless procedure. Table 2. Instrumentation for scarless procedure. 3-mm Grasper (1) 2-mm monopolar electrode 2-mm high resolution (50,000 pixel) scope 10-mm rod-lens scope 12-mm articulating stapler Uterine Manipulator 5-mm harmonic scalpel (L.C.S. laparoscopic coagulating shears) RESULTS Postoperative recovery time varied from 4 to 14 days, with most patients being back to normal from the procedure within one week. Several factors affecting this variability were age, the patient s home situation and other ancillary procedures performed, such as bladder sling procedures and pelvic vault reconstruction. Of the seven patients undergoing this minilaparoscopic procedure, no surgical complications were experienced. The average blood loss from the laparoscopic portion of the procedure was less than 20 cc. Minimal, if any, bleeding occurred during the procedure, so no transfusions were necessary. At eight weeks follow-up, the patients had experienced no complications. Patients were back to full activity within one week from the laparoscopic hysterectomy (recuperation from additional procedures was slightly additive), compared to our patient average up to two weeks recuperation for the traditional LAVH. During the study, no patients were converted to open laparotomy or the traditional laparoscopic approach for completion of their hysterectomy. DISCUSSION This initial series does not appear to be accompanied by a learning curve, as this technique does not change significantly the traditional approach of the LAVH. It is not, therefore, associated with a higher potential complication rate. The major concern is with orientation. One has the position of the much smaller laparoscope lateral to the midline. A power source (stapling device, harmonic scalpel, electrical devices, etc.) coming through the infraumbilical port would, in certain instances, cross over the field of visualization of the laparoscope. Placing these devices through the midline port onto the uterus and ligaments, also, requires a re-orientation process. These difficulties are quickly overcome during the initial procedure. Although, theoretically, the smaller diameter laparoscopes might render the field more difficult to evaluate and not allow one to perform the surgical procedure as readily as a larger scope, the field of view appears sufficient and lucent enough for this type of endoscopic surgery. If the surgery is complex, it may be necessary to use larger diameter laparoscopes. We estimate that over 50 percent of currently performed LAVH procedures can be completed using the above described technique. Patients prefer this approach because of the possible reduced postoperative pain and scarring that this procedure affords. Additional potential benefits of the procedure are the potential for reduced risk of port-site herniation (which is more common with traditional 12-mm lateral trocars, 11 but not unheard of with 5-mm ports). It may also diminish patient discomfort, as the numbers of punctures are fewer, and the sizes of the trocar sites are less than those performed during a usual LAVH case. This may lead to a potentially shorter recuperation time and the ability to return to normal activities quicker, partially due to decreased discomfort 2-mm port Area=π 10-mm port Area=25 π 12-mm port Area=36 π Figure 4. Comparison in area of the different port sizes. 94 JSLS (2000)4:91-95

secondary to the much smaller area of the port site (Figure 4). The advantage of using a harmonic scalpel or bipolar cautery with scissors is that the port site is 5 mm. The main disadvantage with these power sources for the inexperienced operators is the concern about hemostasis. The advantages of a stapling devices is that it is quicker, it is hemostatic, and it allows the operator to feel more comfortable. The articulation involved in this device allows the stapler to hug the uterus, providing an increased security for avoiding lateral wall injury. The operating room time may also be decreased because it is not necessary to close fascia on extra 10-mm and 12- mm ports that are present laterally when performing a regular technique for a laparoscopic hysterectomy (Table 1). References: 1. Reich H, DeCaprio J, McGlynn F. Laparoscopic hysterectomy. J Gynecol Surg. 1989;5:213-217. 2. Kovac SR, Crikshank SH, Retto WF. Laparoscopic assisted vaginal hysterectomy. J Gynecol Surg. 1990;6:185-189. 3. Nezhat C, Nezhat F, Silfen SL. Laparoscopic hysterectomy and bilateral salpingo-oophorectomy using multifire GIA surgical stapler. J Gynecol Surg. 1990;6:287-290. 4. Semm K. Hysterektomie per laparotomiam oder per pelviskopiam. Geburstsh Frauenheilkd. 1991;51:996-1003. 5. Liu CY. Laparoscopic hysterectomy: report of 215 cases. Gynecol Endosc. 1992;1:73-79. 6. Pelosi MA, Pelosi MA 3rd. Laparoscopic supracervical hysterectomy using a single-umbilical puncture (mini-laparoscopy). J Reprod Med. 1992;37:777-784. 7. Lyons TL. Laparoscopic supracervical hysterectomy. A comparison of morbidity and mortality results with laparoscopically assisted hysterectomy. J Reprod Med. 1993;38:763-767. 8. Vietz PF, Ahn TS. A new approach to hysterectomy without colpotomy: pelviscopic intrafascial hysterectomy. Am J Obstet Gynecol. 1994;170:609-613. 9. Pelosi MA, Ortega I. Histerectomia laparoscopica minimamente: tecnica de pelosi de puncion unica. Rev Chil Obstet Gynecol. 1994;59;366-371. 10. Paulson JD. Laparoscopically assisted vaginal hysterectomy: a protocol for reducing urinary tract complications. J Reprod Med. 1996;41:623-628. 11. Nezhat C, Nezhat F, Seidman DS and Nezhat C. Incisional hernias after laparoscopy. J Laparosc Advanced Surg Tech. 1997;7:111-115. JSLS (2000)4:91-95 95