Back out of Locking Pin with Hinge Fracture after High Tibial Osteotomy

Similar documents
High Tibial Osteotomy Using the Tomofix Plating System: Short Term Outcomes in Young Adults

Choice of spacer material for HTO! P. Landreau, MD Chief of Surgery Aspetar, Orthopaedic and Sports Medicine Hospital Doha, Qatar

Biplanar Open Wedge High Tibial Osteotomy in the Medial Compartment Osteoarthritis of the Knee Joint: Comparison between the Aescula and TomoFix Plate

Does Coronal Knee and Ankle Alignment Affect Recurrence of the Varus Deformity after High Tibial Osteotomy?

FlexitSystem EFFICIENT MOBILITY. High Tibial Opening Wedge Osteotomy (HTO)

Product EFFICIENT MOBILITY. FlexitSystem. Opening Wedge High Tibial Osteotomy Solution

Opening Wedge Osteotomy System using PEEKPower HTO Plate. 2 nd Generation Surgical Technique

Flexitsystem. - Description Flexitsystem solution - Ancillaries, instruments. Surgical technique for HTO lateral external closing wedge

Technique Guide. TomoFix Osteotomy System. A comprehensive plating system for stable fixation of osteotomies around the knee.

The effect of closed- and open-wedge high tibial osteotomy on tibial slope

Tibial & Femoral Opening Wedge Osteotomy System. Surgical Technique

Arthrex Open Wedge Osteotomy Technique Designed in conjunction with:

The Learning Curve for Biplane Medial Open Wedge High Tibial Osteotomy in 100 Consecutive Cases Assessed Using the Cumulative Summation Method

21/01/10. Disclosures. Results of High Tibial Osteotomy Osteotomy: Review of the Literature. Introduction. OW osteotomy and bone graft

Opening Wedge Osteotomy

Risk Factors for Hinge Fracture Associated with Surgery Following Cervical Open-Door Laminoplasty

Variable Angle LCP Forefoot/Midfoot System 2.4/2.7. Procedure specific plates for osteotomies, arthrodeses and fractures of the foot.

Jin Wan Kim, Youn Soo Hwang, Kyu Pill Moon, Kyung Taek Kim, Joon Yeon Song

Clinical. Solutions. Synthes Solutions. Foot and Ankle.

Open-wedge HTO with a locking plate (TomoFix ) for treatment of medial monocompartment osteoarthritis

HTO SYSTEM. Innovative Solutions for Varus Knee Realignment. Guided instrumentation, a step-by-step technique, and proven leading-edge PEEK implants

Axial and torsional stability of an improved single-plane and a new bi-plane osteotomy technique for supracondylar femur osteotomies

TomoFix. Application Notes. This publication is not intended for distribution in the USA. Instruments and implants approved by the AO Foundation.

The KineSpring Knee Implant System Product Information

Technique Guide. TomoFix Medial Distal Femur (MDF). For closed-wedge varus femoral osteotomies.

Periarticular knee osteotomy

LCP Anterior Ankle Arthrodesis Plates. Part of the Synthes Locking Compression Plate (LCP) System.

TomoFix Medial High Tibial Plate (MHT). For Medial High Tibial Osteotomies.

TomoFix Medial High Tibial Plate (MHT)

Original Article. Introduction

Return to work and clinical outcome after open wedge HTO

The use of unidirectional porous β-tricarcium phosphate in surgery for calcaneal fractures: A report of four cases

TomoFix Medial Distal Femur (MDF). For closed-wedge varus femoral osteotomies.

Original Article. Seong-Dae Yoon, MD 1, GuoFeng Zhang, MD 2, Hee-June Kim, MD 1, Byoung-Joo Lee, MD 1, and Hee-Soo Kyung, MD, PhD 1 1.

The coronal hypomochlion

Relationship between Lateral Femoral Bowing and Varus Knee Deformity Based on Two-Dimensional Assessment of Side-to-Side Differences

LCP Metaphyseal Plate for distal medial tibia. Anatomically precontoured metaphyseal plate.

Technique Guide. 3.5 mm LCP Proximal Tibia Plate. Part of the Synthes Small Fragment LCP System.

Case Report. Antegrade Femur Lengthening with the PRECICE Limb Lengthening Technology

DARCO. Bow 2 Plate SURGIC AL TECHNIQUE

Surgical Technique. Cannulated Angled Blade Plate 3.5 and 4.5, 90

Comparison of high-flex and conventional implants for bilateral total knee arthroplasty

Factors Affecting the Union of Opening Wedge High Tibial Osteotomy Using a Titanium Wedge Plate

Biomechanical testing of distal femur osteotomy plate fixation techniques: the role of simulated physiological loading

Technique Guide. TomoFix Medial Distal Femur (MDF). For closed-wedge varus distal femoral osteotomies.

LCP Medial Proximal Tibial Plate 3.5. Part of the Synthes small fragment Locking Compression Plate (LCP) system.

Proximal Tibia Medial Open Wedge Osteotomy Using Puddu Plate for Treatment of Genu Varum in Adolescent and Young Patients

TOMOFIX Medial Distal Femur Plate

LCP Medial Proximal Tibial Plate 4.5/5.0. Part of the Synthes LCP periarticular plating system.

Limb Alignment After Open-wedge High Tibial Osteotomy and Its Effect on the Clinical Outcome

LCP Anterolateral Distal Tibia Plate 3.5. The low profile anatomic fixation system with optimal plate placement and angular stability.

2017 Resident Advanced Trauma Techniques Course COMPLICATIONS / CHALLENGES MALUNIONS/DEFORMITY

Duration of Follow-up (mo)

Prospective 5-year survival rate data following open-wedge valgus high tibial osteotomy

Osteotomy at the distal third of tibial tuberosity with LCP L-buttress plate for correction of tibia vara

Investigation of the factors to affect the duration to return sports after the surgery of anterior talofibular ligament repair with arthroscopy

AO / Synthes Proximal Posterior Medial Tibia Plate. Tibial Plateau Fx. Osteosynthesis

A TIBIAL VALGUS OSTEOTOMY

Stefan Rahm MD University Hospital Balgrist

Gentle Guided Growth to Correct Knock Knees and Bowed Legs in Children

Mædica - a Journal of Clinical Medicine

Mid Term Outcome of Open Wedge High Tibial Osteotomy

Advantage and limitations of a minimally-invasive approach and early weight bearing in the treatment of tibial shaft fractures with locking plates

Tibial deformity correction by Ilizarov method

LCP Anterolateral Distal Tibia Plate 3.5. The low profile anatomic fixation system with optimal plate placement and angular stability.

IMPLANT REMOVAL: AN UNSOLVED CHALLENGE TO ORTHOPAEDICIAN Varunjikar M. D 1, S. C. Joshi 2, Bejoy E Jayan 3, A. M. Varunjikar 4, C. R.

Clinical Outcome of Medial Opening Wedge Osteotomy with T-Locking Plate : Two Years Follow-Up

Technique Guide. 2.4 mm Variable Angle LCP Distal Radius System. For fragment-specific fracture fixation with variable angle locking technology.

Adverse events and survival after closing and opening wedge high tibial osteotomy: a comparative study of 412 patients

INVISION Total Ankle Replacement System with PROPHECY Preoperative Navigation Revision of a Failed Agility Total Ankle Replacement

A locking plate system that expands a surgeon s options in trauma surgery. Zimmer NCB Plating System

Technique Guide. 3.5 mm LCP Low Bend Medial Distal Tibia Plate Aiming Instruments. Part of the 3.5 mm LCP Percutaneous Instrument System.

Multiapical Deformities p. 97 Osteotomy Concepts and Frontal Plane Realignment p. 99 Angulation Correction Axis (ACA) p. 99 Bisector Lines p.

Jail Technique for the Fixation of Unicondylar Tibial Plateau Fractures

High Tibial Osteotomy

3.5 mm Locking Attachment Plate

Life. Uncompromised. The KineSpring Knee Implant System Surgeon Handout

Unstable Focally Arthritic Knee DeBerardino 8/18/2016. Current Management Options for the Unstable Focally Arthritic Middle-aged Knee.

REPAIR OF THE DISPLACED AUSTIN OSTEOTOMY

Osteosynthesis involving a joint Thomas P Rüedi

Reliability of computer-assisted surgery as an intraoperative ruler in navigated high tibial osteotomy

Merete PlantarMAX Lapidus Plate Surgical Technique. Description of Plate

High tibial osteotomy (HTO), distal femoral. Rates of Deep Vein Thrombosis Occurring After Osteotomy About the Knee.

3.5 MM VA-LCP PROXIMAL TIBIA PLATE SYSTEM

Osteotomies for Cartilage Protections. Jeffrey Halbrecht,, MD San Francisco, Ca

Implants that Do More

Results of tibia nailing with Angular Stable Locking Screws (ASLS); A retrospective study of 107 patients with distal tibia fracture.

Transtibial PCL Reconstruction. Surgical Technique. Transtibial PCL Reconstruction

PROXIMAL TIBIAL PLATE

LCP Distal Tibia Plate

Periarticular Aiming Arm Instruments for LCP Proximal Tibial Plate 4.5/5.0. Part of the LCP Periarticular Aiming Arm Instrument System (large).

Humerus Block. Discontinued December 2016 DSEM/TRM/0115/0296(1) Surgical Technique. This publication is not intended for distribution in the USA.

Despite the expanding indications for knee arthroplasty,

Cannulated Screw System. Product Overview

Cheng Jin 1, Eun-Kyoo Song 2, Quan-He Jin 2, Nam-Hun Lee 2 and Jong-Keun Seon 2*

The Flower Straight Fibula Plate

Tibial Opening Wedge Osteotomy System with Titanium Plates and Screws and OSferion B-TCP Osteotomy Wedge. Surgical Technique

MetaFix Ludloff Plate

Correction of Traumatic Ankle Valgus and Procurvatum using the Taylor Spatial Frame: A Case Report

Transcription:

Case Report Knee Surg Relat Res 2018;30(2):171-175 https://doi.org/10.5792/ksrr.17.034 pissn 2234-0726 eissn 2234-2451 Knee Surgery & Related Research Back out of Locking Pin with Hinge Fracture after High Tibial Osteotomy Shuhei Otsuki, MD, Tomohiko Murakami, MD, Rei Morikura, MD, Kosuke Nakagawa, MD, Yoshinori Okamoto, MD, and Masashi Neo, MD Department of Orthopedic Surgery, Osaka Medical College, Osaka, Japan Low-profile fixation devices for medial opening wedge high tibial osteotomy (OWHTO) were developed in order to avoid skin irritation and additional invasion. However, the low-profile system is associated with additional risks. We report three cases of locking pin back out with the lowprofile locking plate system for medial OWHTO. Keywords: Knee, Osteotomy, Hinge fracture, Locking plate Medial opening wedge high tibial osteotomy (OWHTO) is a well-established treatment for varus malalignment with medial compartment osteoarthritis 1), and advancements in the lockingplate system have further improved the clinical outcome especially in the case of TomoFix (DePuy Synthes, Solothurn, Switzerland) 2-4). FlexitSystem (Neosteo, Nantes, France), which has been used especially in Europe, has the advantage of an anatomical low-profile design with the locking screw-pin system. We performed 15 consecutive OWHTO using this plate from July 2014 to March 2015; however, back out of the pin at the proximal tibia was seen in three patients. The objectives of this report were to introduce the locking pin back out after OWHTO and elucidate the failure mechanism. Received June 4, 2017; Revised July 6, 2017; Accepted July 11, 2017 Correspondence to: Shuhei Otsuki, MD Department of Orthopedic Surgery, Osaka Medical College, 2-7 Daigakumachi Takatsuki, Osaka 569-8686, Japan Tel: +81-72-683-1221, Fax: +81-72-683-8553 E-mail: ort182@osaka-med.ac.jp Case Reports 1. Case 1 A 74-year-old female with a history of medial knee joint pain for 5 years underwent OWHTO using FlexitSystem. OWHTO was performed with a 9-mm opening biplane osteotomy 2) filling with β-tricalcium phosphate (Olympus, Tokyo, Japan) and placing the FlexitSystem plate anteromedial to the tibia for fixation per the manufacturer s protocol. According to the radiographic analysis, the preoperative hip-knee-ankle angle (HKA) improved from 5 of varus to 4 of valgus. The percentage of mechanical axis (%MA) and medial proximal tibial angle (MPTA) were altered between the preoperative and postoperative examinations from 30% to 63% and from 87 to 95, respectively. Posterior tibial slope (PTS) was 5, which showed no change after OWHTO (Fig. 1A D). Rehabilitation was started with 50% of weight bearing from postoperative day 1. Following the initiation of rehabilitation program, a type III hinge fracture with back out of the locking pin at the proximal tibia was detected 2 weeks after surgery (Fig. 1C F). A second surgery was performed to replace the locking pins with screws at the proximal tibia and to fix the type III fracture with cannulated screws from the lateral tibia (Fig. 1G I). No correction loss was detected at the final follow-up. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright 2018 KOREAN KNEE SOCIETY 171 www.jksrr.org

172 Otsuki et al. Back out of Locking Pin after HTO A B C D E F G H I Fig. 1. (A, B) Preoperative X-rays of a 74-year-old female (case 1). (C, D) X-rays at postoperative week 2. (E, F) Type III hinge fracture in computed tomography. (G) Arthroscopic detection of type III hinge fracture. (H, I) Hinge fracture fixation performed in second surgery. 2. Case 2 A 65-year-old female with a prolonged history of medial knee pain underwent OWHTO with FlexitSystem. OWHTO was performed with a 9-mm opening biplane osteotomy filling with β- tricalcium phosphate. HKA improved from 4 of varus to 5 of valgus. The %MA and MPTA were altered from 30% to 65% and from 83 to 91, respectively. The PTS was 8, which showed no change after OWHTO (Fig. 2A D). Rehabilitation was initiated from postoperative day 1 with 50% of weight bearing and then full weight bearing from day 14. A type III hinge fracture with back out of the proximal locking pin was detected at 3 weeks after surgery (Fig. 2E G). Type III fracture was treated with low intensity pulsed ultrasound to accelerate bone healing without weight bearing. Locking pin deviation progressed at 6 weeks after surgery. Finally, the backed out pin was removed without any correction loss. 3. Case 3 A 68-year-old male underwent OWHTO with a type I fracture (Fig. 3A and B). One month after surgery, the locking pin did not seem to have backed out, and he could walk with full-weight bearing without pain (Fig. 3C). Two months after surgery, the center pin at the proximal plate backed out (Fig. 3D), and the proximal posterior screw had also backed out at 15 months after surgery (Fig. 3E and F). Discussion Although there has been a continual evolution in the hardware, OWHTO has a relatively high rate of fixation failure 5-7). Martin et al. 8) reported the rates of adverse events after OWHTO in a sample of more than 300 cases. Of these, 83% were with a non-locking plate and 17% with a locking plate. Hardware failure occurred in 4% of cases, including 2.7% with a broken screw and 1.3% with back out of the pin, with no loss of correction and additional surgery. We experienced three cases of locking pin back out among 15 cases (20%) after OWHTO performed using FlexitSystem. All three cases of pin back out were detected in hinge fractures; otherwise, no significant differences were detected on X-ray imaging parameters, such as correction angle, pre- and postoperative %MA, MPTA, and PTS, regardless of the occurrence of back out (Table 1). Moreover, these 15 surgeries were not performed by

Knee Surg Relat Res, Vol. 30, No. 2, Jun. 2018 173 A B C D E F G Fig. 2. (A, B) Preoperative X-rays of a 65-year-old female (case 2). (C, D) Postoperative X-rays. (E, F) X-rays at postoperative week 2 showing locking pin back out. (G) Type III hinge fracture in computed tomography (arrow). B C A D E F Fig. 3. (A, B) A 68-year-old male who underwent opening wedge high tibial osteotomy with a type I fracture. (C) One month after surgery, the locking pin seemed not to have backed out and he could walk with full weight bearing without pain. (D) Two months after surgery, the center pin at the proximal plate backed out. (E, F) The proximal posterior screw was also detected to have backed out without correction loss at 15 months after surgery.

174 Otsuki et al. Back out of Locking Pin after HTO A 11 4 Back out B C TomoFix FlexitSystem Mechanical axis after HTO Fig. 4. (A) Comparison of locking plate systems: TomoFix (DePuy Synthes) and FlexitSystem (Neosteo). The number of threads at the plate and the screw head for the locking system is over 5 in TomoFix, which is larger than that in FlexitSystem. (B) The angle between the plate and the proximal screw was 11 in TomoFix, which was larger than 4 in FlexitSystem. (C) Mechanism of screw deviation with FlexitSystem. The mechanical axis after opening wedge high tibial osteotomy (HTO) passes the lateral eminence of the tibia, which is close to the tip of the locking pin. The large tibial plateau and proximal screw angle (PPSA) with FlexitSystem causes more stress than the small PPSA at the tip of the pin area. Moreover, hinge fracture may induce instability and pin back out. the same surgeon, indicating that this specific complication was not due to a specific surgeon. Lateral cortex fractures are known to induce instability during osteotomy 9), and a proximal locking system places additional mechanical stress in case of hinge fracture. No hinge fractures may prevent locking pin back out. On the other hand, the plate system may be associated with the complication. First, the plate thickness of this low-profile locking system is 2.8 mm. This implant is minimally invasive under the skin; however, this thin plate may cause some issues in the locking system because the number of threads at the screw head is two in FlexitSystem, compared to 5 threads in TomoFix (Fig. 4A). Second, the angle between the plate and the proximal screw might be a critical factor for screw back out. The tibial plateau and proximal screw angle (PPSA) in cases with locking pin back out was larger than that in cases without back out (p<0.001) (Table 1); this negatively correlated with the screw-plate angle, which was 11 in TomoFix, larger than 4 in FlexitSystem (Fig. 4B). Large PPSA might be associated with locking pin back out. When the correction angle was increased, PPSA became larger and proximal pins could not reach the lateral tibia. The weight bearing line passes close to the tip of the proximal pin and a hinge fracture may receive additional stress at the tip of the proximal pin, which accelerates locking pin back out (Fig. 4C). In addition, FlexitSystem was made using TA6V titanium, which is a more solid and strong material than TomoFix using pure titanium. A very strong locking plate system might induce additional force around the locking plate system because the solid plate may not be bended under mechanical stress and not work as a shock absorber. In conclusion, care should be taken when selecting a locking plate system, and a low-profile system can cause additional complications.

Knee Surg Relat Res, Vol. 30, No. 2, Jun. 2018 175 Table 1. Correction with Opening Wedge High Tibial Osteotomy, Type of Hinge Fracture, and Plateau Proximal Screw Angle Compared with and without Screw Pin Back out Locking pin back out ( ) (+) p-value Correction angle ( ) 8.2±2.5 8.3±1.5 N/S %MA Preop 27.6±4.1 20.1±8.6 N/S Postop 62.4±6.1 61.7±1.5 N/S MPTA ( ) Preop 83.8±1.7 83.7±3.1 N/S Postop 92.6±1.6 92.0±2.6 N/S PTS ( ) Preop 9.6±3.0 7.0±3.0 Postop 9.2±4.0 7.7±2.5 Type of hinge fracture no: 7, I: 5 I: 1, III: 2 PPSA ( ) 10.2±1.5 16.2±2.1 <0.001 N/S: no significance, %MA: percentage of mechanical axis, Preop: preoperative, Postop: postoperative, MPTA: medial proximal tibial angle, PTS: posterior tibial slope, PPSA: plateau and proximal screw angle. Conflict of Interest No potential conflict of interest relevant to this article was reported. References 1. Lee DC, Byun SJ. High tibial osteotomy. Knee Surg Relat Res. 2012;24:61-9. 2. Lobenhoffer P, Agneskirchner JD. Improvements in surgical technique of valgus high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc. 2003;11:132-8. 3. Stoffel K, Stachowiak G, Kuster M. Open wedge high tibial osteotomy: biomechanical investigation of the modified Arthrex Osteotomy Plate (Puddu Plate) and the TomoFix Plate. Clin Biomech (Bristol, Avon). 2004;19:944-50. 4. Staubli AE, De Simoni C, Babst R, Lobenhoffer P. TomoFix: a new LCP-concept for open wedge osteotomy of the medial proximal tibia: early results in 92 cases. Injury. 2003;34 Suppl 2:B55-62. 5. Miller BS, Downie B, McDonough EB, Wojtys EM. Complications after medial opening wedge high tibial osteotomy. Arthroscopy. 2009;25:639-46. 6. Kim KJ, Song EK, Seon JK, Seol JH. Biomechanical study of the fixation plates for opening wedge high tibial osteotomy. Knee Surg Relat Res. 2015;27:181-6. 7. Schroter S, Gonser CE, Konstantinidis L, Helwig P, Albrecht D. High complication rate after biplanar open wedge high tibial osteotomy stabilized with a new spacer plate (Position HTO plate) without bone substitute. Arthroscopy. 2011;27: 644-52. 8. Martin R, Birmingham TB, Willits K, Litchfield R, Lebel ME, Giffin JR. Adverse event rates and classifications in medial opening wedge high tibial osteotomy. Am J Sports Med. 2014;142:1118-26. 9. Takeuchi R, Ishikawa H, Kumagai K, Yamaguchi Y, Chiba N, Akamatsu Y, Saito T. Fractures around the lateral cortical hinge after a medial opening-wedge high tibial osteotomy: a new classification of lateral hinge fracture. Arthroscopy. 2012;28:85-94.