Within-Consonant Perceptual Differences in the Hearing Impaired Ear

Similar documents
Individual Variability of Hearing-Impaired Consonant Perception

Perceptual Effects of Nasal Cue Modification

Within-consonant perceptual differences in the hearing impaired ear

Assessing the efficacy of hearing-aid amplification using a phoneme test

Enrique A. Lopez-Poveda Alan R. Palmer Ray Meddis Editors. The Neurophysiological Bases of Auditory Perception

A psychoacoustic method for studying the necessary and sufficient perceptual cues of American English fricative consonants in noise

The identification and modification of consonant perceptual cues in natural speech Part I

METHODS FOR ROBUST CHARACTERIZATION OF CONSONANT PERCEPTION IN HEARING-IMPAIRED LISTENERS

Sources of decoding errors of the perceptual cues, in normal and hearing impaired ears

(Received 4 October 2012; revised 4 March 2013; accepted 23 April 2013)

A Relationship of Tone, Consonant, and Speech Perception in Audiological Diagnosis

Categorical Perception

Aging and Hearing Loss: Why does it Matter?

Fitting Frequency Compression Hearing Aids to Kids: The Basics

Consonant Perception test

2/25/2013. Context Effect on Suprasegmental Cues. Supresegmental Cues. Pitch Contour Identification (PCI) Context Effect with Cochlear Implants

Consonant recognition loss in hearing impaired listeners

SPEECH PERCEPTION IN A 3-D WORLD

HCS 7367 Speech Perception

Role of F0 differences in source segregation

Lateralized speech perception in normal-hearing and hearing-impaired listeners and its relationship to temporal processing

The functional importance of age-related differences in temporal processing

Auditory model for the speech audiogram from audibility to intelligibility for words (work in progress)

Speech perception of hearing aid users versus cochlear implantees

HCS 7367 Speech Perception

WIDEXPRESS. no.30. Background

Effects of slow- and fast-acting compression on hearing impaired listeners consonantvowel identification in interrupted noise

What Is the Difference between db HL and db SPL?

Effect of Consonant Duration Modifications on Speech Perception in Noise-II

THE ROLE OF VISUAL SPEECH CUES IN THE AUDITORY PERCEPTION OF SYNTHETIC STIMULI BY CHILDREN USING A COCHLEAR IMPLANT AND CHILDREN WITH NORMAL HEARING

ABSTRACT INTRODUCTION

Prelude Envelope and temporal fine. What's all the fuss? Modulating a wave. Decomposing waveforms. The psychophysics of cochlear

Best Practice Protocols

Baker, A., M.Cl.Sc (AUD) Candidate University of Western Ontario: School of Communication Sciences and Disorders

Speech intelligibility in simulated acoustic conditions for normal hearing and hearing-impaired listeners

BINAURAL DICHOTIC PRESENTATION FOR MODERATE BILATERAL SENSORINEURAL HEARING-IMPAIRED

The effect of wearing conventional and level-dependent hearing protectors on speech production in noise and quiet

Audibility, discrimination and hearing comfort at a new level: SoundRecover2

ACOUSTIC AND PERCEPTUAL PROPERTIES OF ENGLISH FRICATIVES

Effects of Setting Thresholds for the MED- EL Cochlear Implant System in Children

Effects of speaker's and listener's environments on speech intelligibili annoyance. Author(s)Kubo, Rieko; Morikawa, Daisuke; Akag

Infant Hearing Development: Translating Research Findings into Clinical Practice. Auditory Development. Overview

Acoustics, signals & systems for audiology. Psychoacoustics of hearing impairment

Simulations of high-frequency vocoder on Mandarin speech recognition for acoustic hearing preserved cochlear implant

Prescribe hearing aids to:

Who are cochlear implants for?

Computational Perception /785. Auditory Scene Analysis

Why directional microphone technology for young children?

Spatial processing in adults with hearing loss

Assessing Hearing and Speech Recognition

Acoustic and Electric Same Ear Hearing in Patients with a Standard Electrode Array

Multimodal Assessment and Speech Perception Outcomes in Children with Cochlear Implants or Hearing Aids

Ambiguity in the recognition of phonetic vowels when using a bone conduction microphone

SECTION 6: DIAGNOSTIC CLASSIFICATION TERMS AND NORMATIVE DATA

FALSE POSITIVE DP GRAMS

The role of periodicity in the perception of masked speech with simulated and real cochlear implants

Intelligibility of clear speech at normal rates for older adults with hearing loss

Voice Detection using Speech Energy Maximization and Silence Feature Normalization

ACOUSTIC ANALYSIS AND PERCEPTION OF CANTONESE VOWELS PRODUCED BY PROFOUNDLY HEARING IMPAIRED ADOLESCENTS

AUDL GS08/GAV1 Signals, systems, acoustics and the ear. Pitch & Binaural listening

FREQUENCY COMPRESSION AND FREQUENCY SHIFTING FOR THE HEARING IMPAIRED

Recognition of Multiply Degraded Speech by Young and Elderly Listeners

Providing Effective Communication Access

Effects of Presentation Level on Phoneme and Sentence Recognition in Quiet by Cochlear Implant Listeners

Evaluating the role of spectral and envelope characteristics in the intelligibility advantage of clear speech

Sound localization psychophysics

Building Skills to Optimize Achievement for Students with Hearing Loss

Study of perceptual balance for binaural dichotic presentation

Bilateral Cochlear Implant Guidelines Gavin Morrison St Thomas Hearing Implant Centre London, UK

Speech perception in individuals with dementia of the Alzheimer s type (DAT) Mitchell S. Sommers Department of Psychology Washington University

Speech Reading Training and Audio-Visual Integration in a Child with Autism Spectrum Disorder

Auditory and Auditory-Visual Lombard Speech Perception by Younger and Older Adults

Group Delay or Processing Delay

Limited available evidence suggests that the perceptual salience of

Spatial unmasking in aided hearing-impaired listeners and the need for training

Peter S Roland M.D. UTSouthwestern Medical Center Dallas, Texas Developments

Fitting of the Hearing System Affects Partial Deafness Cochlear Implant Performance

Effect of Energy Equalization on the Intelligibility of Speech in Fluctuating Background Interference for Listeners With Hearing Impairment

INTRODUCTION J. Acoust. Soc. Am. 103 (2), February /98/103(2)/1080/5/$ Acoustical Society of America 1080

Why? Speech in Noise + Hearing Aids = Problems in Noise. Recall: Two things we must do for hearing loss: Directional Mics & Digital Noise Reduction

Spraak verstaan in fluctuerend achtergrond geluid bij normaal en slechthorenden als functie van ruis niveau

TOLERABLE DELAY FOR SPEECH PROCESSING: EFFECTS OF HEARING ABILITY AND ACCLIMATISATION

Issues faced by people with a Sensorineural Hearing Loss

Although the majority of older listeners with hearing loss perform

INTRODUCTION J. Acoust. Soc. Am. 104 (6), December /98/104(6)/3597/11/$ Acoustical Society of America 3597

Signals, systems, acoustics and the ear. Week 1. Laboratory session: Measuring thresholds

Refining a model of hearing impairment using speech psychophysics

Amplitude Compression: Timing is Everything

Adapting bilateral directional processing to individual and situational influences

Basic Audiogram Interpretation

What Parents Should Know About Hearing Aids: What s Inside, How They Work, & What s Best for Kids

Diagnosis and Management of ANSD: Outcomes of Cochlear Implants versus Hearing Aids

Ting Zhang, 1 Michael F. Dorman, 2 and Anthony J. Spahr 2

An Introduction to Hearing Loss: Examining Conductive & Sensorineural Loss

EXPERIMENTAL EVALUATION OF IMPROVEMENT IN CONSONANT RECOGNITION FOR THE HEARING- IMPAIRED LISTENERS: ROLE OF CONSONANT-VOWEL INTENSITY RATIO

Effects of Multi-Channel Compression on Speech Intelligibility at the Patients with Loudness-Recruitment

NIH Public Access Author Manuscript J Hear Sci. Author manuscript; available in PMC 2013 December 04.

Analysis of the Audio Home Environment of Children with Normal vs. Impaired Hearing

Essential feature. Who are cochlear implants for? People with little or no hearing. substitute for faulty or missing inner hair

Best practices in A few favorite resources: Clear areas of agreement: How about these features? The bottom line:

Transcription:

Within-Consonant Perceptual Differences in the Hearing Imired Ear Andrea Trevino* and Jont Allen HSR Research Group University of Illinois Urbana-Chamign

Objective: Undersnd how hearing imired (HI) ears perceive the acoustic cues in speech. Methods: 4 Consonant Vowel stimuli ( zero-error, unambiguous) /b, d, f, g, k, m, n, p, s,, t, v, ʒ, z/+/ɑ/ (in plots: Z= ʒ, S= ) 2 lkers for each consonant ( le, fele) Speech Weighted Noise at 4 SNRs (, 6, 2 db, Q) Token - lker & consonant Results: ) HI errors can be conined to a sll subset--- --- --- --------- of tokens ----------2) Tokens of the same consonant can be perceptually-- ------ ---different for HI listeners (noise-robustness/confusions) ----------3) Consistencies are observed across NH and HI ears in ------ ---terms of noise robustness and confusion groups

Audiogram and Average Error - 7 HI ears Threshold db HL Pure Tone Audiograms 2 4 6 8 2.25.25.5.5 2 3 4 6 8 Frequency khz g Avg P log P error error Average Probability of Error over all Stimuli 44L 44R 46L.5 46R 4L.25 NH 4R 36L 36R. 32L.5 32R 3L 3R 34L 34R. L R 22 6 2 6 4R SNR 2 Q 44L 44R 46L 46R 4L 4R 36L 36R 32L 32R 3L 3R 34L 34R L R 4R 4 Miller-Nicely Consonant Vowel stimuli, 2 lkers per consonant ( le, fele) /b, d, f, g, k, m, n, p, s,, t, v, ʒ, z/+/ɑ/, Speech Weighted Noise (SWN)

Audiogram and Average Error - 7 HI ears Threshold db HL 2 4 6 8 Pure Tone Audiograms 4L 2.25.25.5.5 2 3 4 6 8 Frequency khz g Avg Avg P log error P log error P error error Average Probability of Error over all Stimuli Average Probability of Error over all Stimuli 44L 44R 46L.5.5 46R 4L.25 NH 4R 36L 36R. 4L 32L 4L.5 32R 3L 3R 34L 34R.. L R 22 4R 22 6 6 2 2 6 2 2 Q SNR SNR L 44L R 44R 4R 46L 3L 46R 3R 4L 32L 4R 32R 36L 34L 36R 34R 32L 36L 32R 36R 3L 4L 3R 4R 34L 44L 34R 44R L 46L R 46R 4R Avg 4 Miller-Nicely Consonant Vowel stimuli 2 lkers per consonant ( le, fele) /b, d, f, g, k, m, n, p, s,, t, v, ʒ, z/+/ɑ/, Speech Weighted Noise (SWN)

Error Overview Probability of Error Probability of Error.8.6.4.2.8.6.4.2 Overview of Token Errors, Quiet, Listener 4L 6 db Quiet b b d d f g g k k mm n n p p s s t t v v S S Z Z z z Overview of Tokens, Errors, No Sorting Quiet, Listener 4L 6 db Quiet db d gd kg mg pk sk mm s t n t vn Sp Sp Zs zs kt p t Z v vz Sn Sn Zg m Z zb zv b f Sorted Tokens

Error Overview Probability of Error Probability of Error.8.6.4.2.8.6.4.2 Overview of Token Errors, Quiet, Listener 4L 6 db Quiet Probability of Error.8.6 b b d d f g g k k mm n n p p s s t t v v S S Z Z z z Overview of Tokens, Sorted Errors, No Tokens Sorting Quiet, Listener 4L.4 6 db Quiet.2 db d gd kg mg pk sk mm s t n t vn Sp Sp Zs zs kt p t Z v vz Sn Sn Zg m Z zb zv b f Sorted Tokens Overview of Token Errors, Listener 4L db 6 db 2 db Quiet Sorted Tokens

Probability of Error.8.6.4.2 Error Overview - 6 HI ears Overview of Token Errors, Listener 4L db 6 db 2 db Quiet Probability of Error.8.6.4.2 Overview of Token Errors, Listener 44L db 6 db 2 db Quiet Probability of Error.8.6.4.2 Overview of Token Errors, Listener 32R db 6 db 2 db Quiet Implications for undersnding an average. Or planning a training program. Sorted Tokens Sorted Tokens Sorted Tokens Probability of Error.8.6.4 Overview of Token Errors, Listener 36R db 6 db 2 db Quiet Probability of Error.8.6.4 Overview of Token Errors, Listener 46L db 6 db 2 db Quiet Probability of Error.8.6.4 Overview of Token Errors, Listener 34L db 6 db 2 db Quiet.2.2.2 Sorted Tokens Sorted Tokens Concentration of error to a subset of tokens observed across HI ears, in both Quiet and Noise Sorted Tokens

HI Within-Consonant Differences: Noise Robustness

.75.5.25 ba Probability of Error, Listener: 4L da ga fa Avg P error.75.5.25.75.5.25 va 62 Q na sa Sa Za za 62 Q 6 2 Q 62 Q SNR 62 Q N=4-8 per consonant 2 tokens per consonant

.75.5.25 ba Probability of Error, Listener: 4L da ga fa P error.75.5.25.75.5.25 va 62 Q na sa Sa 62 Q 62 Q SNR 62 Q Individual token differences in noise robustness Za za 62 Q Fele Male Avg Trevino, Allen, JASA 23 (In Review)

HI Within-Consonant Differences: Noise Robustness Average Error Difference, HI 4L.5 P e P e.5 g m t k S z p s n d v b Z Consonant Trevino, Allen, JASA 23 (In Review)

HI Within-Consonant Differences: Noise Robustness Average Error Difference, 7 HI Ears Mean Average Error Difference, HI 4L.5.5 P e P e.5.5 g m t k S z p s n d v b Z g m t k S z p s n d v b Z Consonant Consonant Differences in noise-robustness are observable across 7 HI ears Consistencies across HI ears suggest that each token's acoustic cues play a role Trevino, Allen, JASA 23 (In Review)

Characterizing Token Variability with Norl-Hearing (NH) psychoacoustic da Norl-hearing da SNR 9 Difference between tokens, NH Listeners NH SNR 9 [db] 5 5 g m t k S z p s n d v b Z Consonant The psychoacoustic noise-sked threshold (NH SNR9) is correlated with the intensity of the token s acoustic cue region (Régnier, 28). Comre the 2 tokens of each consonant. Trevino, Allen, JASA 23 (In Review)

HI vs. NH Noise Robustness Average Error Difference, 7 HI Ears Mean SNR 9 Difference between tokens, NH Listeners P e.5.5 NH SNR 9 [db] 5 5 g m t k S z p s n d v b Z Consonant g m t k S z p s n d v b Z Consonant Hearing Imired da Norl Hearing da Trevino, Allen, JASA 23 (In Review)

HI vs. NH Noise Robustness Implies that natural variability of cue intensity, characterized by Average Error Difference, 7 HI Ears SNR Difference between tokens, NH Listeners the 9 NH-listener noise-sking da, is strongly related to the Mean HI within-consonant differences in noise-robustness. P e.5.5 p-value<. NH SNR 9 [db] 5 5 g m t k S z p s n d v b Z Consonant g m t k S z p s n d v b Z Consonant Trevino, Allen, JASA 23 (In Review)

Conclusion There is a correlation between HI and NH consonant perception. Supports the hypothesis that the HI and NH listeners are using the same priry cues.

HI Within-Consonant Differences: Confusion groups

Token-Specific Confusions /bɑ/ Probability [%] Avg Recognition Da, all 7 HI ears, Fele /ba/ Token Avg Recognition Da, all 7 HI ears, Male /ba/ Token 8 b b 8 b d b d 6 f 6 f 5 g 5 g 4 k 4 k 3 m m n 3 v n 2 d p p s 2 s t t v v v sh sh g zh f zh z z p 5 6 2 Q SNR Probability [%] 5 6 2 Q SNR

Sumry Multiple tokens of the same consonant can be perceptually different for HI listeners in terms of noise-robustness and confusion groups Systetic behavior on a token basis: - HI and NH listeners show agreement in noise-robustness - Different HI listeners share token-dependent confusions Systetic responses suggest that common cues are being used Consistent (low-entropy) token-specific confusions imply that the HI ears are not guessing

Conclusions - The average error can have large amounts of underlying individual token error - Analysis at the token level reveals systetic tterns in the HI confusions - NH psychoacoustic da can characterize the cue variability of individual tokens, providing tools for undersnding HI perception - The role of naturally-occurring conflicting acoustic cues reins unknown (Li et al. 2, 22)

Thank you

All listeners, Prob of confusion for CV: ba Token-Specific Confusions /bɑ/ ll listeners, Prob of confusion for CV: ba f confusion for CV: ba Talker Talker All listeners, Prob of confusion for CV: ba All ba All listeners, da ba 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q da 6 2Q 6 2Q fa 6 2Q 6 R.8 Uttera 4R 3L 3R 32L 32R.8 34L 34R 36L 36Rfa 4L 4R ga 44L 44 ga.6.6 na 2L6 2Q32R 6 2Q34L 6 2Q34R 6 2Q36L 6 2Q36R 6 2Q4L 6 2Q4R 6 2Q 44L 6 2Q44R 46L 46R.4.4 na 34R 36L 36R 4L 4R 44L 44R 46L 46R sa.2.2 Talker sa 2 va Talker 2 6 2Q 6 2Q 6 2Q 6 2Q va 6 2Q 6 2QSa 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 Za 2Q 6 Sa 3R 32L Listener: L R 32R 34LListener: 34R L 4R 3L 3R 32L 36L R 36R 4R 4L 3L 4R 3R 44L 32L 44R za 32R Za 34 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 za SNR and Listener Error Probability Probability F Utter 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q M Utter M Utter.8.8 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q SNR and Listener d Listener 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q.6.6 Trevino, Allen, JASA 23 (In Review) Utter

All listeners, Prob of confusion for CV: ba ll listeners, Prob of confusion for CV: ba f confusion for CV: ba Talker Talker All listeners, Prob of confusion for CV: ba All ba All listeners, Prob of confusion for CV: ba All listeners, da ba 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q da Utterance 6 2Q 6 2Q fa 6 2Q 6 R 4R 3L 3R 32L 32R.8.8 34L 34R 36L 36Rfa 4L 4R ga ba 44L 44 da ga fa.6 ga.6 na 2L6 2Q32R 6 2Q34L 6 2Q34R 6 2Q36L 6 2Q36R 6 2Q4L 6 2Q4R 6 2Q 44L 6 2Q44R 46L 46R na Listener: L R 4R 3L 3R 32L.4 32R.4 34L 34R 36L 36R 4L 4R 44L na 44R 46L 46R 34R 36L 36R 4L 4R 44L 44R 46L 46R sa.2.8.2 Utterance 2 Talker sa 2 va.6 va xsa Talker 2 xza.4 6 2Q 6 2Q 6 2Q 6 2Q va 6 2Q 6 2QSa za 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6.2 Sa Za Listener: L R 4R 3L 3R 32L 32R Probability F Utter Probability M Utter Token-Specific Confusions /bɑ/ Error Probability Probability F Utter 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q Uttera 3R 32L 6 2Q 6 2Q32R 6 6 2Q34L 6 6 2Q34R 6 6 2Q36L 6 6 2Q36R 6 6 2Q4L 6 6 2Q Za4R 6 2Q 6 2Q44L 6 44R za 4 Listener: L R 4R 3L 3R 32L 3 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q SNR and 6 2Q Listener 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 za M Utter M Utter.8.8.6.6 SNR and Listener 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q SNR and Listener d Listener 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q Trevino, Allen, JASA 23 (In Review) Utter

All listeners, Prob of confusion for CV: ba ll listeners, Prob of confusion for CV: ba f confusion for CV: ba Talker Talker All listeners, Prob of confusion for CV: ba All listeners, Prob ba of c All listeners, Prob of confusion for CV: ba All ba listeners, Prob of da confu 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q da Utterance 6 2Q 6 2Q fa 6 2Q 6 R 4R 3L.8 3R 32L 32R 34L 34R 36L 36Rfa 4L 4R ga ba.8 44L 44 da ga fa ga.6 6 2Q 6 2Q 6 2Q.6 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 62Q 6 2Q s, Prob of confusion for CV: ba na 2L6 2Q32R 6 2Q34L 6 2Q34R 6 2Q36L 6 2Q36R 6 2Q4L 6 2Q4R 6 2Q 44L 6 2Q44R 46L 46R na Listener: L R.4 4R.43L 3R 32L 32R 34L 34R 36L 36R 4L 4R 44L na 44R 46L 46R 34R 36L 36R 4L 4R 44L Talker 44R 46L 46R sa.8.2.2 ba Utterance 2 Talker sa 2 va.6 da va xsa Talker 2 fa xza.4 va Sa za b of 6confusion 2Q 6for 2Q CV: ba 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 62Q 6 2Q 6 2Q ga6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6.2 Sa Za onfusion for CV: Listener: ba L R 4R 3L 3R 32L 32R 34L 34R Probability F Utter Probability M Utter Token-Specific Confusions /bɑ/ Error Probability Probability F Utter 3R 32L 6 2Q 6 2Q32R 6 6 2Q34L 6 6 2Q34R Talker 6 6 2Q 36L 6 2Q 6 2Q36R 6 6 2Q4L 6 6 2Q Za4R 6 2Q 6 2Q44L 6 44R za 4 Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q SNR and Listener 34L 34R 36L 36R 4L 4R 44L 44R 46L 46R M Utter Utter.8.8 SNR and Listener d Listener.6.6 Uttera Listener: L R 4R 3L 3R 32L 32R 34L 3 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 na 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 za Talker SNR and Listener ba Large proportion of /da, baga, fa va/ confusions 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6Talker 2Q 26 2Q 6 2Q 6 2Q 6 2Q 6 2Q da ga va 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6fa 2Q 6 2Q Sa ga Za 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q da sa Trevino, Allen, JASA 23 (In Review) Utter

Token-Specific Confusions /bɑ/ onfusion for CV: ba va 7% Probability [%] Talker Avg Recognition Da, all 7 HI ears, Fele /ba/ Token 8 b b d 6 f 5 g 4 k m 3 n p s t v v sh g Talker 2 zh z 4R 36L 36R 4L 2 4R 44L 44Rd 46L 46R 5 6 2 Q SNR ba da fa ga na sa va Sa Za za Talker : Large proportion of /da, ga, va/ confusions overall 7% ba 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q Listener Trevino, Allen, JASA 23 (In Review)

ga 6 2Q 6 2Q Token-Specific 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q Confusions 6 2Q 6 2Q ll listeners, Prob of confusion for CV: ba na /bɑ/ 4R 36L 36R 4L 4R 44L 44R 46L 46R Talker sa 3R 32L 32R 34L 34R Talker 36L 2 36R 4L va 4R 44L 44R ba 4 All listeners, Prob of confusion for CV: ba All listeners, All Sa da 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6Za 2Q 6 2Q 6 2Q fa 6 2Q 6 za R 4R 3L 3R 32L 32R.8.8 34L 34R 36L 36R 4L 4R ga 44L Uttera 44 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q.6.6 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 na 2L 2Q 32R 6 2Q 34L 6 2Q 34R 6 2Q 36L 6 2Q 36R 6 2Q 4L 6 2Q 4R 6 2Q 44L 6 2Q 44R 46L 46R Listener.4.4 sa.2.2 Talker 2 va 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2QSa 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 Za 2Q 6 SNR Listener: and Listener L R 4R 3L 3R 32L za 32R Uttera 3R 32L 32R 34LListener: 34R L 36L R 36R 4R 4L 3L 4R 3R 44L 32L 44R 34 SNR and Listener 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q SNR and Listener All listeners, Prob of confusion for CV: ba Error Probability Probability F Utter 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 M Utter M Utter.8.8.6.6 Trevino, Allen, JASA 23 (In Review) Uttera

ga 6 2Q 6 2Q Token-Specific 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q Confusions 6 2Q 6 2Q ll listeners, Prob of confusion for CV: ba na /bɑ/ 4R 36L 36R 4L 4R 44L 44R 46L 46R Talker sa 3R 32L 32R 34L 34R Talker 36L 2 36R 4L va 4R 44L 44R ba 4 All listeners, Prob of confusion for CV: ba All All listeners, Prob of c Salisteners, Prob of confu da 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6Za 2Q 6 2Q 6 2Q fa 6 2Q 6 za R 4R 3L.8.8 3R 32L 32R 34L 34R 36L 36R 4L 4R ga 44L Uttera 44 6 2Q 6 2Q 6 2Q.6 6 2Q.6 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 na 2L 2Q 32R 6 2Q 34L 6 2Q 34R 6 2Q 36L 6 2Q 36R 6 2Q 4L 6 2Q 4R 6 2Q 44L 6 2Q 44R 46L 46R Listener.4.4 sa.2.2 Talker 2 va 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2QSa 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 Za2Q 6 Listener: SNR L and RListener 4R 3L 3R 32L 32R 34L za34r Error Probability Probability F Utter Talker 2: Large proportion of /fa, va/ confusions overall Uttera 3R 32LListener: 32R L 34L R 34R 4R 36L 3L 36R 3R 4L 4R 32L 32R 44L 34L 44R 34 SNR and Listener M Utter M Utter.8.8 SNR and Listener.6.6 All listeners, Prob of confusion for CV: ba 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q Trevino, Allen, JASA 23 (In Review) Uttera

36L 36R 4L 4R 44L 44R 46L 46R Avg Recognition Da, all 7 HI ears, Male /ba/ Token Za 8 b b za d 6 f 5 g 4 k 6 2Q 6 2Q 6 2Q 63 2Q 6 2Q 6 2Q 6 2Q 6 2Q m v n p 2 s t v sh f zh z p ener Token-Specific Confusions /bɑ/ Probability [%] Talker 2 5 6 2 Q SNR ga na sa va Talker 2: Large proportion of /fa, va/ confusions overall Sa Trevino, Allen, JASA 23 (In Review)

All listeners, Prob of confusion for CV: ba ga Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q Token-Specific Confusions /bɑ/ na ll listeners, 32R 34L Prob 34R of confusion 36L for 36RCV: 4L ba 4R 44L 44R 46L 46R CV: ba sa Talker 4R 3L 3R 32L Talker 32R 34L 34R Talker 36L 236R 4L 4R 4 isteners, Prob of confusion All listeners, for CV: Prob ba of confusion for All CV: listeners, All listeners, ba Prob vaprob baof conf of ba Sa da 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q da 6 2Q 6 2Q 6 2Q 6 2QZa 6 2Q 6 Utterance fa R za 4R 3L 3R.8.8 32L 32R 34L 34Rfa.836L 36R 4L 4R ga 44L 44 ga.6.6.6 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 6 2Q 6 2Q 6 2Q 6.4 2Q 6 2Q 6 2Q 6 2Q 2Q 6 2Q 6 2Q 6 2Q na 2L 32R SNR 34L and Listener 34R.4 36L 36R 4L 4R na44l.4 44R 46L 46R 36R 4L 4R 44L 44R 46L 46R.2 sa.2 sa.2 Talker 2 6 2Q Talker 6 2Q 2 va 6 2Q 6 2Q Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 62Q 2Q 6 62Q 2Q 6 62Q va 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 62Q 6 62Q 2Q 6 62Q 2Q 6 62Q 2Q 6 Sa 62Q 2Q 6 Listener: L R 4R 32R 3L 34LListener: 3R 34R 32L L 36L 32R R 36RSNR 4R 34L 4R 4L Listener: and 3L Sa 34R Listener 3R 32L 32R 34LZa 34R 3L 4R L 36L 3R 44L R 36R 32L 44R 4R 4L 32R 46L 3L 4R 34L 46R Za 34 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q za 6 2Q 6 za SNR and Listener Error Probability Probability F Utter M Utter M Utter.8.8 SNR and Listener.6.6 Probability F Utter Analysis must be done at the token level 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q 6 2Q M Utter.8.6 Utterance 2 Trevino, Allen, JASA 23 (In Review)