(multidrug-resistant Pseudomonas aeruginosa; MDRP)

Similar documents
1) 1) 1) 2) 2) (ICU) Key words: (ICU), ( ) 1 30 TEL: FAX: Vol. 17 No

Received 30 March 2005; returned 16 June 2005; revised 8 September 2005; accepted 12 September 2005

Why some tests are no longer recommended

Cefotaxime Rationale for the EUCAST clinical breakpoints, version th September 2010

Author: Souha Kanj Andrew Whitelaw Michael J. Dowzicky. To appear in: International Journal of Antimicrobial Agents

Determining the Optimal Carbapenem MIC that Distinguishes Carbapenemase-Producing

Discussion points CLSI M100 S19 Update. #1 format of tables has changed. #2 non susceptible category

In vitro and in vivo Pharmacodynamics of Colistin and Aztreonam Alone and in Combination against Multidrug-Resistant Pseudomonas aeruginosa

University of Alberta Hospital Antibiogram for 2007 and 2008 Division of Medical Microbiology Department of Laboratory Medicine and Pathology

Sep Oct Nov Dec Total

Expert rules in antimicrobial susceptibility testing: State of the art

Detection of NDM-1, VIM-1, KPC, OXA-48, and OXA-162 carbapenemases by MALDI- TOF mass spectrometry

/01/$ DOI: /JCM Copyright 2001, American Society for Microbiology. All Rights Reserved.

Affinity of Doripenem and Comparators to Penicillin-Binding Proteins in Escherichia coli and ACCEPTED

Healthcare-associated infections acquired in intensive care units

Consultation on the Revision of Carbapenem Breakpoints

Carbapenem Disks on MacConkey agar as screening methods for the detection of. Carbapenem-Resistant Gram negative rods in stools.

DISEASE OUTBREAKS SUMMARY

Translocation Studies Mid-Term Review (MTR) Meeting Marseille, France

Received 31 January 2011/Returned for modification 2 March 2011/Accepted 15 March 2011

Against Aerobic Gram-Negative Bacilli

Reduction in Workload and Reporting Time of MRSA Screening with MRSASelect. Medium versus Mannitol-Salt Medium Supplemented with Oxacillin ACCEPTED

This material is supported in part by unrestricted educational grants from: Abbott, Bayer HealthCare, Merck Frosst, Roche Diagnostics, and Wyeth Inc.

ALERT. Clinical microbiology considerations related to the emergence of. New Delhi metallo beta lactamases (NDM 1) and Klebsiella

Cefuroxime iv Rationale for the EUCAST clinical breakpoints, version th September 2010

AAC Accepts, published online ahead of print on 13 October 2008 Antimicrob. Agents Chemother. doi: /aac

MHSAL Guidelines for the Prevention and Control of Antimicrobial Resistant Organisms (AROs) - Response to Questions

Recommendations for the Management of Carbapenem- Resistant Enterobacteriaceae (CRE) in Acute and Long-term Acute Care Hospitals

Laboratory CLSI M100-S18 update. Paul D. Fey, Ph.D. Associate Professor/Associate Director Josh Rowland, M.T. (ASCP) State Training Coordinator

Adenium Biotech. Management: - Peter Nordkild, MD, CEO, ex Novo Nordisk, Ferring, Egalet - Søren Neve, PhD, project director, ex Lundbeck, Novozymes

Evaluation of CHROMagar msupercarba for the detection of carbapenemaseproducing Gram-negative organisms

Surveillance of antimicrobial susceptibility of Enterobacteriaceae pathogens isolated from intensive care units and surgical units in Russia

Screening and detection of carbapenemases

Evaluation of Antibacterial Effect of Odor Eliminating Compounds

Outbreak investigation of nosocomial infections

In-House Standardization of Carba NP Test for Carbapenemase Detection in Gram Negative Bacteria

Diagnosis of CPE: time to throw away those agar plates? Jon Otter, PhD FRCPath Guy s and St. Thomas NHS Foundation Trust / King s College London

Antibiotic Resistance Pattern of Blood and CSF Culture Isolates At NHLS Academic Laboratories (2005)

Comparison of CPS ID 3 and CHROMagar Orientation chromogenic agars with standard biplate technique for culture of clinical urine samples

Emergence of non-kpc carbapenemases: NDM and more

Aminoglycoside Resistance in Gram-negative Bacilli

Roula M. Abdel-Massih Dept. of Biology, University of Balamand, Lebanon

Update on CLSI and EUCAST

ARTICLE IN PRESS International Journal of Antimicrobial Agents xxx (2010) xxx xxx

In Vitro Activity of Ceftazidime-Avibactam Against Isolates. in a Phase 3 Open-label Clinical Trial for Complicated

Phenotypic Detection Methods of Carbapenemase Production in Enterobacteriaceae

Spread of carbapenems resistant Enterobacteriaceae in South Africa; report from National Antimicrobial Resistance Reference Laboratory

#Corresponding author: Pathology Department, Singapore General Hospital, 20 College. Road, Academia, Level 7, Diagnostics Tower, , Singapore

Guidance on screening and confirmation of carbapenem resistant Enterobacteriacae (CRE) December 12, 2011

Burns outbreaks - the UHB experience

Rapid identification of emerging resistance in Gram negatives. Prof. Patrice Nordmann

Efficacy Data. Disinfectant Cleaner & Odor Counteractant EPA REG. #

Urinary Tract Infection and Pattern of Antibiotic Sensitivity in Hospitalized Patients with Diabetes Mellitus in Myanmar

Analysis of the common opportunistic pathogens

Klebsiella pneumoniae 21 PCR

Medical School, University of East Anglia, Norwich NR4 7TJ, UK

Activity of tigecycline alone and in combination with colistin and meropenem against carbapenemase

KENNEL KARE SC DISINFECTANT / CLEANER / DEODORIZER Efficacy Data EPA Reg. #

Sensitive and specific Modified Hodge Test for KPC and metallo-beta-lactamase

Journal of Infectious Diseases and

Tigecycline activity tested against 26, 474 bloodstream infection isolates: a collection from 6 continents

ORIGINAL ARTICLE SUSCEPTIBILITY PATTERNS IN GRAM NEGATIVE URINARY ISOLATES TO CIPROFLOXACIN, CO-TRIMOXAZOLE AND NITROFURANTOIN

An evaluation of 2.0 McFarland Etest method for detection of heterogeneous vancomycin-intermediate Staphylococcus aureus

Escherichia coli b- Extended spectrum b-lactamase (ESBL) 8 (6.5 ), Cephalosporinase (Amp- Amp-C 2. IncF (FIA,FIB) group ESBL 6 Amp-C 4

Veerle Compernolle, Gerda Verschraegen, and Geert Claeys* Department of Microbiology, Ghent University Hospital, Ghent, Belgium

Original Article Clinical Microbiology

Ueli von Ah, Dieter Wirz, and A. U. Daniels*

KENNEL KARE SC DISINFECTANT / CLEANER / DEODORIZER Efficacy Data EPA Reg. #

K. Lee, Y. S. Lim, D. Yong, J. H. Yum, and Y. Chong*

Burns outbreaks - the UHB experience

Prevalence of Extended Spectrum -Lactamases In E.coli and Klebsiella spp. in a Tertiary Care Hospital

Activity of Ceftolozane/Tazobactam Against a Broad Spectrum of Recent Clinical Anaerobic Isolates

Standardisation of testing for Carbapenemase Producing Organisms (CPO) in Scotland

Spectrum of vancomycin and susceptibility testing

Abstract. Introduction

INFECTIOUS DISEASE. Page 2

CAVIWIPES1. Technical Bulletin

Carbapenemases in Enterobacteriaceae: Prof P. Nordmann Bicêtre hospital, South-Paris Med School

RAPID COMMUNICATION. Maura S. de Oliveira, I Silvia Figueiredo Costa, II Ewerton de Pedri, II Inneke van der Heijden, II Anna Sara S.

Received 21 April 1997/Returned for modification 30 June 1997/Accepted 28 August 1997

EUCAST Frequently Asked Questions. by author. Rafael Cantón Hospital Universitario Ramón y Cajal, Madrid, Spain EUCAST Clinical Data Coordinator

Successful treatment of pan - resistant pseudomonas Aerugınosa menıngıtıs wıth ıntrathecal polymyxın b therapy

Evaluation of Six Phenotypic Methods for the Detection of Carbapenemases in Gram-Negative Bacteria With Characterized Resistance Mechanisms

Prof George Dimopoulos MD,PhD,FCCP

Antimicrobial Activity and Spectrum of PPI-0903M (T-91825), a Novel Cephalosporin, Tested against a Worldwide Collection of Clinical Strains

Surveillance of Healthcare Associated Infections in Scottish Intensive Care Units

ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS

Emergence of Klebsiella pneumoniae ST258 with KPC-2 in Hong Kong. Title. Ho, PL; Tse, CWS; Lai, EL; Lo, WU; Chow, KH

International transfer of NDM-1-producing Klebsiella. pneumoniae from Iraq to France

Resistance to Polymyxins in France

molecules ISSN Article

Research Article PhenotypicDetectionofMetallo-β-Lactamase in Imipenem-Resistant Pseudomonas aeruginosa

What is new in EUCAST South Africa, May, Gunnar Kahlmeter EUCAST Technical Data Coordinator and Webmaster Sweden

Expert rules. for Gram-negatives

Biofilms: Álvaro Pascual MD, PhD Department of Microbiology

320 MBIO Microbial Diagnosis. Aljawharah F. Alabbad Noorah A. Alkubaisi 2017

Below is an overview of the oral and poster presentations featuring cefiderocol and S at IDWeek 2017:

Hetero- and adaptive resistance to polymyxin B in OXA-23-producing carbapenem-resistant Acinetobacter baumannii isolates

Carbapenemase Producing Enterobacteriaceae: Screening

Transcription:

220 2009 (multidrug-resistant Pseudomonas aeruginosa; MDRP) 21 4 1 21 10 4 amikacin (AMK), imipenem/cilastatin (IPM), ciprofloxacin (CPFX) multidrug-resistant Pseudomonas aeruginosa (MDRP) CHROMagar TM Pseudomonas CHROMagar NAC agar 3 CHROM agar AMK 1 mg/ml, CPFX 1 mg/ml, IPM 4, 6 8 mg/ml 3 96.3 100 92.6 NAC agar AMK 12 mg/ml, CPFX 1 mg/ml, IPM 12 24 mg/ml 2 88.9 96.3 100 5 CHROMagar AMK 1 mg/ml, CPFX 1 mg/ml, IPM 4 6 mg/ml MDRP Key words: MDRP, (Pseudomonas aeruginosa) 1) 1) 2 4) ( 461-8673) 1 1 20 TEL: 052 719 3116 FAX: 052 719 1506 E-mail: kumiko@met.nagoya-u.ac.jp 3 (multidrug-resistant P. aeruginosa; MDRP) 5) MDRP amikacin, imipenem/cilastatin ciprofloxacin MIC 32 mg/ml, 16 mg/ml 4 mg/ml 3) 1990 6) MDRP 2001 7) MDRP 1 1 3 8) MDRP MDRP 3 4 22 Vol. 19 No. 4 2009.

MDRP 221 MDRP PCR 9, 10) methicillin-resistant Staphylococcus aureus (MRSA) vancomycinresistant Enterococcus 11 13) MDRP MDRP 3 MDRP 1. MDRP 29 2007 12 2008 2 7 P. aeruginosa 93 Pseudomonas putida 3 Stenotrophomonas maltophilia 3 Burkholderia cepacia 3 Achromobacter xylosoxidans 3 Acinetobacter baumannii 3 Serratia marcescens 3 Providencia rettgeri 3 Enterobacter cloacae 3 Klebsiella oxytoca 3 Escherichia coli 3 API20E API20NE 37, 41, 44 P. aeruginosa PAO-1 PAO-1 2. MIC Clinical Laboratory Standards Institute (CLSI) 14) Mueller Hinton (M-H) amikacin (AMK) imipenem/cilastatin (IPM) ciprofloxacin (CPFX) 3 3. MDRP MDRP NAC agar CHROM agar TM Pseudomonas CHROM agar 11 McFarland No. 0.5 (1 9 10 8 CFU/ml) 10 ml 2 37, McFarland No. 0.5 10 2 10 6 CFU/ml 5 2 M-H 50 ml 37 3 MDRP 5 48 48 2 4. Break-point Checkerboard Plate MDRP 3 Break-point Checkerboard Plate MDRP 4 PAO-1 AMK, IPM, CPFX 3 Tateda 15) MIC MIC M-H 4 (1/4MIC 1/2MIC 1 MIC 2 MIC) M-H 96 100 ml 2 IPM AMK, AMK CPFX, CPFX IPM Checkerboard Plate 1 9 10 7 CFU/ml 10 ml 37 MIC Vol. 19 No. 4 2009. 23

222 2 48 48 2 5. 3 receiver operating characteristic curve; ROC 16 18) 1 AMK 0.5 64 mg/ml, IPM 0.5 32 mg/ ml, CPFX 0.5 8 mg/ml 2 NAC agar CHROM agar 280 1 27 non-mdrp 90 27 MDRP 29 27 1 9 10 7 CFU/ml 10 ml 18 40 2 /MDRP 27 /non-mdrp 27 1 0.7 70 2 NAC agar AMK 4, 8, 12, 16 mg/ml, IPM 12, 24, 36, 48, 64 mg/ml, CPFX 1, 2 mg/ ml 40 CHROM agar AMK 0.5, 1, 1.5, 2 mg/ml, IPM 2, 4, 6, 8, 12 mg/ml, CPFX 1, 2 mg/ml 40 non-mdrp 27 MDRP 27 2 0.5 50 1 ROC 1.0 100 0 0 MDRP 1 1 2 2 3 6. MDRP ROC NAC agar 2 CHROM agar 3 93 MDRP29 5 M-H 10 2 10 6 CFU/ml 5 50 ml 37 1 9 10 7 CFU/ ml 93 5 10 ml 5 1 1, 2, 3, 4 4 1 9 10 7 CFU/ml non- MDRP 27 MDRP 27 10 ml 37 MDRP 5 48 48 2 1. non-mdrp 93 IPM, AMK CPFX MIC 3 53 (57.0 ) 1 IPM 17 CPFX 2 19 (20.5 ) 2 IPM AMK 1 IPM CPFX 17 18 (19.4 ) (Table 1) (population) non-mdrp 93 3 24 Vol. 19 No. 4 2009.

MDRP 223 Table 1. Resistant rate of 93 clinically isolated P. aeruginosa for three antimicrobial agents Antimicrobial agents Number Resistant of isolates rate ( ) Susceptibility 53 57.0 AMK 0 0.0 1 drug-resistance IPM 17 18.3 CPFX 2 2.2 AMK, IPM 1 1.1 2 drug-resistance AMK, CPFX 0 0.0 IPM, CPFX 17 18.3 3 drug-resistance AMK, IPM, CPFX 3 3.2 15 1 6 2 6 27 non-mdrp MDRP 93 3 (3.2 ) non-mdrp 27 2. 5 6 2 Table 2 CHROM agar P. putida, S. maltophilia, S. marcescens, P. rettgeri, E. cloacae, E. coli NAC agar B. cepacia, S. marcescens, E. cloacae CHROM agar (Table 2) 2 NAC Table 2. Selective ability of two selective media for detecting P. aeruginosa Bacteria a) CHROM agar NAC agar Pseudomonas aeruginosa (3) Pseudomonas putida (3) Stenotrophomonas maltophilia (3) Burkholderia cepacia (3) b) Achromobacter xylosoxidans (3) Acinetobacter baumannii (3) Serratia marcescens (3) Providencia rettgeri (3) Enterobacter cloacae (3) Klebsiella oxytoca (3) Escherichia coli (3), All of three isolates grew on the selective media;, None of three isolates grew on the selective media. a) Values in parentheses indicate number of isolates tested. b) Plus minus ( ) indicates that one of three isolates was positive and the other isolates were negative. agar 10 3 CFU/ml CHROM agar 100 CFU/ml (Table 3) 3. Break-point Checkerboard Plate MDRP Break-point Checkerboard Plate 1 MIC 2 1 2 3 Table 3. The detection limit of non-mdrp isolates on two selective media for detecting P. aeruginosa (n 5) Medium Growth of following dilution (No. of colonies) a) : 10 2 10 3 10 4 10 5 10 6 Mueller Hinton agar (80) CHROM agar (680) (60) NAC agar (570) (76) (2), no growth;, less than 99 colonies;, 100 999 colonies;, more than 1,000 colonies. a) Values in parentheses indicate mean number of colonies calculated from the results of five isolates. Vol. 19 No. 4 2009. 25

224 4. MDRP ROC NAC agar AMK 12 mg/ ml, CPFX 1 mg/ml IPM 12 24 mg/ml 2 88.9 96.3 100 CHROM agar AMK 1 mg/ml, CPFX 1 mg/ml IPM 4, 6 8 mg/ml 3 96.3 100 92.6 (Fig. 1) MDRP CHROM agar 5. MDRP 5.1. MDRP ROC 5 MDRP CHROM agar 300 CFU/ml AMK 1 mg/ml, CPFX 1 mg/ml IPM 4 mg/ml 6 mg/ml NAC agar MDRP 10 3 CFU/ml (Table 4) 5.2. 5 MDRP MDRP 29 93 MDRP 3 non- Fig. 1. Analysis of the optimal concentrations of the antimicrobial agents by ROC curve. MDRP screening media were prepared by adding various combinations of antimicrobial agents into the CHROM or NAC agar. Then, the optimal concentrations of the three antimicrobial agents added to the media were determined using a ROC curve. Abbreviations: ROC, receiver operating characteristic; IPM, imipenem/cilastatin; AMK, amikacin; CPFX, ciprofloxacin. 26 Vol. 19 No. 4 2009.

MDRP 225 MDRP 90 MDRP MDRP CHROM agar 97.8 NAC agar 98.9 100 NAC agar 90.6 CHROM agar 96.9 100 (Table 5) 5.3. 1 1, 2, 3, 4 MDRP 4 (Table 6) Table 4. Detection limit of MDRP isolates on each MDRP screening medium (n 5) Medium Antimicrobial agents (mg/ml) Growth of following dilution (No. of colonies) b) : AMK IPM CPFX 10 4 10 5 10 6 0 0 0 (280) Mueller Hinton agar 1 4 1 (30 250) 1 6 1 (20 250) CHROM agar a) 1 8 1 (400 950) (20 90) 12 12 1 (50 410) (2 50) NAC agar a) 12 24 1 (200 700) (0 40), no growth;, less than 99 colonies;, 100 999 colonies;, more than 1,000 colonies. a) The MDRP screening medium was prepared by adding various combinations of three antimicrobial agents into the CHROM agar or NAC agar. b) Values in parentheses indicate number of colonies calculated from the results of five isolates. Table 5. Sensitivity and specificity of each MDRP screening medium in 32 MDRP and 90 non-mdrp isolates Medium Antimicrobial agents (mg/ml) Positive culture/mdpr a) AMK IPM CPFX ( Sensitivity) Negative culture/non- MDRP ( Specificity) 1 4 1 32/32 (100) 88/90 (97.8) CHROM agar 1 6 1 31/32 (96.9) 88/90 (97.8) 1 8 1 31/32 (96.9) 88/90 (97.8) NAC agar 12 12 1 29/32 (90.6) 90/90 (100) 12 24 1 29/32 (90.6) 89/90 (98.9) a) MDRP isolates include 29 MDRP isolates distributed from National Institute of Infectious Diseases and 3 MDRP isolates selected from 93 clinical isolates collected in the present study. Table 6. Examination of the stability of each MDRP screening medium (a) NAC agar Preserved period Medium 1 Medium 2 Sensitivity ( ) Specificity ( ) Sensitivity ( ) Specificity ( ) 1 day 88.9 100 85.2 100 1 week 92.6 88.5 88.9 100 2 weeks 96.3 100 88.9 100 3 weeks 92.3 100 85.2 100 4 weeks 96.3 100 88.9 100 Medium 1, AMK 12 mg/ml, IPM 12 mg/ml, CPFX 1 mg/ml; Medium 2, AMK 12 mg/ml, IPM 24 mg/ml, CPFX 1 mg/ml. Vol. 19 No. 4 2009. 27

226 (b) CHROM agar Preserved period Medium 1 Medium 2 Medium 3 Sensitivity ( ) Specificity ( ) Sensitivity ( ) Specificity ( ) Sensitivity ( ) Specificity ( ) 1 day 92.6 92.3 96.3 92.3 96.3 92.3 1 week 96.3 100 96.3 100 85.2 100 2 weeks 96.3 92.6 88.9 88.9 88.9 88.9 3 weeks 96.3 96.3 96.3 92.6 96.3 96.3 4 weeks 92.6 96.3 92.6 92.6 92.6 92.6 Medium 1, AMK 1 mg/ml, IPM 4 mg/ml, CPFX 1 mg/ml; Medium 2, AMK 1 mg/ml, IPM 6 mg/ml, CPFX 1 mg/ml; Medium 3, AMK 1 mg/ml, IPM 8 mg/ml, CPFX 1 mg/ml. MDRP MDRP MDRP 12) MDRP CHROM agar NAC agar NAC agar CHROM agar NAC agar Ike 16) MDRP ROC CHROM agar AMK 1 mg/ml, CPFX 1 mg/ml, IPM 4, 6 8 mg/ml 3 NAC agar AMK 12 mg/ml, CPFX 1 mg/ml, IPM 12 24 mg/ml 2 CHROM agar MDRP (AMK 32 mg/ml, IPM 16 mg/ml, CPFX 4 mg/ml) Break-point Checkerboard Plate AMK, IPM, CPFX 3 Tateda 15) Cappelletty 20) CHROM agar ROC 5 MDRP MDRP 29 93 MDRP3 non-mdrp 90 MDRP 90 97.8 4 MRSA 11 13) NAC agar 2 10 3 CFU/ml MDRP 28 Vol. 19 No. 4 2009.

MDRP 227 CHROM agar 100 CFU/ml MDRP CHROM agar 125 / NAC agar 23 /1 1 5 AMK 1 mg/ml, IPM 4 6 mg/ml, CPFX 1 mg/ml ROC 17 19) ROC 3 MDRP MDRP MDRP MIC (golden standard) MRSA PCR meca golden standard MDRP AMK, IPM CPFX MIC MDRP 7 A. baumannii CHROMagar 21) OXA-23, -24, -51-like, -58-like MDRP MDRP ROC population population S. marcescens Pseudomonas population MDRP MDRP active surveillance MDRP 18 10 MDRP 2.7 MDRP MDRP 1) Gomez, M. I., A. Prince. 2007. Opportunistic infections in lung disease: Pseudomonas infections in cystic fibrosis. Curr. Opin. Pharmacol. 7: 244 251. 2) Kikuchi, T., G. Nagashima, K. Taguchi, et al. 2007. Contaminated oral incubation equipment associated with an outbreak of carbapenem-resistant Pseudomonas in an intensive care unit. J. Hosp. Infect. 65: 54 57. 3) Sekiguchi, J., T. Asagi, T. Miyoshi-Akiyama, et al. 2007. Outbreaks of multidrug-resistant Pseudomonas aeruginosa in community hospitals in Japan. J. Clin. Microbiol. 45: 979 989. 4) Galanos, C., M. A. Freudenberg, W. Reutter. 1979. Galactosamine-induced sensitization to the lethal e#ects of endotoxin. Proc. Natl. Acad. Sci. U.S.A. 76: 5939 5943. 5) Tsuji, A., I. Kobayashi, T. Oguri, et al. 2005. An Vol. 19 No. 4 2009. 29

228 epidemiological study of the susceptibility and frequency of multiple-drug-resistant strains of Pseudomonas aeruginosa isolated at medical institutes nationwide in Japan. J. Infect. Chemother. 11: 64 70. 6) Livermore, D. M. 2002. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: Our worst nightmare? Clin. Infect. Dis. 34: 634 640. 7) Sekiguchi, J., T. Asagi, T. Miyoshi-Akiyama, et al. 2005. Multidrug-resistant Pseudomonas aeruginosa strain that caused an outbreak in a neurosurgery ward and its aac(6 )-Iae gene cassette encoding a novel aminoglycoside acetyltransferase. Antimicrob. Agents Chemother. 49: 3734 3742. 8) Kirikae, T., Y. Mizuguchi, Y. Arakawa. 2008. Investigation of isolation rates of Pseudomonas aeruginosa with and without multidrug resistance in medical facilities and clinical laboratories in Japan. J. Antimicrob. Chemother. 61: 612 615. 9) Ohara, M., S. Kouda, M. Onodera, et al. 2007. Molecular characterization of imipenem-resistant Pseudomonas aeruginosa in Hiroshima, Japan. Microbiol. Immunol. 51: 271 277. 10) Shibata, N., Y. Doi, K. Yamane, et al. 2003. PCR typing of genetic determinants for metallobeta-lactamases and integrases carried by gram-negative bacteria isolated in Japan, with focus on the class 3 integron. J. Clin. Microbiol. 41: 5407 5413. 11) Kluytmans, J., A. van Griethuysen, P. Willemse, et al. 2002. Performance of CHROM agar selective medium and oxacillin resistance screening agar base for identifying Staphylococcus aureus and detecting methicillin resistance. J. Clin. Microbiol. 40: 2480 2482. 12) Nahimana, I., P. Francioli, D. S. Blanc. 2006. Evaluation of three chromogenic media (MRSA-ID, MRSA-Select and CHROM agar MRSA) and ORSAB for surveillance cultures of methicillin-resistant Staphylococcus aureus. Clin. Microbiol. Infect. 12: 1168 1174. 13) Flayhart, D., J. F. Hindler, D. A. Bruckner, et al. 2005. Multicenter evaluation of BBL CHROM agar MRSA medium for direct detection of methicillin-resistant Staphylococcus aureus from surveillance cultures of the anterior nares. J. Clin. Microbiol. 43: 5536 5540. 14) Clinical and Laboratory Standards Institute. 2007. Performance and standards for antimicrobial susceptibility testing. Seventeen informational supplement. Document M100-S17. Clinical and Laboratory Standards Institute, Wayne, PA. 15) Tateda, K., Y. Ishii, T. Matsumoto. 2006. Breakpoint Checkerboard Plate for screening of appropriate antibiotic combinations against multidrug-resistant Pseudomonas aeruginosa. Scand. J. Infect. Dis. 38: 268 272. 16) Ike, Y., Y. Arakawa, X. Ma, et al. 2001. Nationwide survey shows that methicillin-resistant Staphylococcus aureus strains heterogeneously and intermediately resistant to vancomycin are not disseminated throughout Japanese hospitals. J. Clin. Microbiol. 39: 4445 4451. 17) 2007 p. 56 58, 2 18) 2001 ROC (Vol. 1) 18: 93 103 19) 2001 ROC (Vol. 2) 18: 154 167 20) Cappelletty, D. M., M. J. Rybak. 1996. Comparison of methodologies for synergism testing of drug combinations against resistant strains of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 40: 677 683. 21) Gordon, N. C., D. W. Wareham. 2009. Evaluation of CHROMagar Acinetobacter for the detection of enteric carriage of multi-drug resistant Acinetobacter baumannii in critically III patients. J. Clin. Microbiol. 47: 2249 2251. 30 Vol. 19 No. 4 2009.

MDRP 229 New Screening Medium Developed for Detecting Multidrug-resistant Pseudomonas aeruginosa Kumiko Kawamura Department of Medical Technology, Nagoya University School of Health Science Multidrug-resistant Pseudomonas aeruginosa (MDRP) is responsible for severe nosocomial infections, and rapid and accurate methods to detect such strains are needed. We developed a new MDRP screening medium by incorporation of three antimicrobial agents, amikacin (AMK), imipenem/cilastatin (IPM) and ciprofloxacin (CPFX), into selective mediums for the detection of Pseudomonas species such as CHROMagar TM Pseudomonas (CHROMagar) and NAC agar. The optimal concentrations of the three antimicrobial agents added to the selective mediums were determined using a receiver operating characteristic (ROC) curve. As the result, three kinds of CHROMagar with 1 mmg/ml of AMK, 4, 6 or 8 mg/ml of IPM and 1 mg/ml of CPFX (sensitivity of 88.9 and specificity of 96.3 100, respectively), and two kinds of NAC agar with 12 mg/ml of AMK, 12 or 24 mg/ml of IPM and 1 mg/ml of CPFX (sensitivity of 96.3 100, respectively, and specificity of 92.6 ), were selected as the optimal conditions for the detection of clinical MDRP isolates. The MDRP screening mediums based on the five conditions selected by ROC analysis were evaluated, and CHROMagar with 1 mmg/ml of AMK, 4 and 6 mg/ml of IPM and 1 mg/ml of CPFX showed the best detection limit (10 3 cfu/ml), sensitivity and specificity among the five conditions. Additionally, the stability of the medium was confirmed until four weeks at 4. The MDRP screening medium is a simple, rapid and cost-e#ective method compared to the conventional methods described in the literature. Thus, the use of the MDRP screening medium would make it possible to detect e$ciently MDRP isolates in clinical material. Vol. 19 No. 4 2009. 31