mirna Biomarkers Seena K. Ajit PhD Pharmacology & Physiology Drexel University College of Medicine October 12, 2017

Similar documents
The Role of micrornas in Pain. Phd Work of: Rehman Qureshi Advisor: Ahmet Sacan

Utility of Circulating micrornas in Cardiovascular Disease

Serum exosomes: A liquid biopsy for neurological disease. Michael Buckland RPAH Neuropathology Sydney, Australia

Extracellular Vesicle RNA isolation Kits

A two-microrna signature in urinary exosomes for diagnosis of prostate cancer

MicroRNA and Male Infertility: A Potential for Diagnosis

Production of Exosomes in a Hollow Fiber Bioreactor

micro-rnas as biomarkers in children who underwent surgery for CHD

Insight into cancer research from discovery to validation

Serum microrna biomarkers for human DILI

SUPPLEMENTARY INFORMATION

USE OF EXOSOMES IN TRANSLATIONAL AND CLINICAL RESEARCH. Eva Colás Ortega Postdoc researcher IRBLleida

EXOSOMES & MICROVESICLES

Profiling of the Exosomal Cargo of Bovine Milk Reveals the Presence of Immune- and Growthmodulatory Non-coding RNAs (ncrna)

Paternal exposure and effects on microrna and mrna expression in developing embryo. Department of Chemical and Radiation Nur Duale

Assaying micrornas in biofluids for detection of drug induced cardiac injury. HESI Annual Meeting State of the Science Session June 8, 2011

Alcoholic hepatitis is a drug-induced disorder

MicroRNAs: a new source of biomarkers in radiation response. Simone Moertl, Helmholtz Centre Munich

vol.3 Highlight Product: ExoCap Product Research tools for extracellular vesicles - Exhibition booth at Taiwan on November

Journal Club Semmler Lorenz

MagCapture Exosome Isolation Kit PS Q&A

Mesenchymal stem cells release exosomes that transfer mirnas to endothelial cells and promote angiogenesis

Opportunities in Pain Research with the NIH HEAL Initiative

National Surgical Adjuvant Breast and Bowel Project (NSABP) Foundation Annual Progress Report: 2009 Formula Grant

Relevant Disclosures

National Surgical Adjuvant Breast and Bowel Project (NSABP) Foundation Annual Progress Report: 2009 Formula Grant

Screening for novel oncology biomarker panels using both DNA and protein microarrays. John Anson, PhD VP Biomarker Discovery

Exosome DNA Extraction Kits

ExoQuick Exosome Isolation and RNA Purification Kits

Can melanoma treatment be guided by a panel of predictive and prognostic microrna Biomarkers?

Supplementary Figures

ARTICLE IN PRESS. Critical Reviews in Oncology/Hematology xxx (2010) xxx xxx

Morphogens: What are they and why should we care?

Supplementary Figure 1

Products for cfdna and mirna isolation. Subhead Circulating Cover nucleic acids from plasma

Use of Archived Tissues in the Development and Validation of Prognostic & Predictive Biomarkers

2013 OTS Annual Meeting Pre-clinical Development of ALN-AS1 RNAi Therapeutic for the Treatment of Acute Intermittent Porphyria.

Title page. Title: MicroRNA-155 Controls Exosome Synthesis and Promotes Gemcitabine Resistance in

Patnaik SK, et al. MicroRNAs to accurately histotype NSCLC biopsies

AVENIO ctdna Analysis Kits The complete NGS liquid biopsy solution EMPOWER YOUR LAB

microrna Presented for: Presented by: Date:

CONTRACTING ORGANIZATION: Southern Illinois University School of Medicine, Springfield, IL

Supplementary Material

Janet E. Dancey NCIC CTG NEW INVESTIGATOR CLINICAL TRIALS COURSE. August 9-12, 2011 Donald Gordon Centre, Queen s University, Kingston, Ontario

Cellecta Overview. Started Operations in 2007 Headquarters: Mountain View, CA

MicroRNA Biomarkers Released by Platelet Activation. Jie Wang. A thesis. submitted in partial fulfillment of the. requirements for the degree of

Impact of Prognostic Factors

Talk list. Definition: open questions. Functions: manyfold. The road ahead: GMP, open questions. From discovery. To basic science


Circulating Microrna Expression As A Biomarker For Early Diagnosis Of Severity In Spinal Cord Injury

ccfdna Webinar Series: The Basics and Beyond

Gene expression profiling in pediatric septic shock: biomarker and therapeutic target discovery

Clinical Development of ABX464, drug candidate for HIV Functional Cure. Chief Medical Officer ABIVAX

Supplementary. properties of. network types. randomly sampled. subsets (75%

The Microscopic World of Cells. The Microscopic World of Cells. The Microscopic World of Cells 9/21/2012

Deciphering the Role of micrornas in BRD4-NUT Fusion Gene Induced NUT Midline Carcinoma

Musculoskeletal Diseases

ALOPECIA AREATA RESEARCH SUMMIT Forging the Future

chapter 1 - fig. 2 Mechanism of transcriptional control by ppar agonists.

Translatability of cytokine data: from animals to humans. Marie-Soleil Piche, PhD Associate Scientific Director of Immunology Charles River, Montreal

MOLECULAR EPIDEMIOLOGY Afiono Agung Prasetyo Faculty of Medicine Sebelas Maret University Indonesia

On the Reproducibility of TCGA Ovarian Cancer MicroRNA Profiles

Protein Biomarker Biomarker Discover y y in Organ Organ Transplantation A A Proteomics Proteomics Approach Tara r Sig del, Sig PhD 9/26/2011

Intrinsic cellular defenses against virus infection

Cardiovascular. Diseases. a simple and standardized kit qpcr analysis of circulating platelet-derived micrornas

DIA Oligonucleotide-Based Therapeutics Conference

IVC History, Cancer Research

A new approach to characterize exosomes and study their interactions with biomolecules. Silvia Picciolini PhD student 30 th May 2016

EPIGENOMICS PROFILING SERVICES

MicroRNAs, RNA Modifications, RNA Editing. Bora E. Baysal MD, PhD Oncology for Scientists Lecture Tue, Oct 17, 2017, 3:30 PM - 5:00 PM

Selective filtering defect at the axon initial segment in Alzheimer s disease mouse models. Yu Wu

Zool 3200: Cell Biology Exam 4 Part I 2/3/15

mirna Whole Transcriptome Assay

Plasma membranes. Plasmodesmata between plant cells. Gap junctions between animal cells Cell junctions. Cell-cell recognition

microrna Therapeutics Harnessing the power of micrornas to target multiple pathways of disease

EXO-DNAc Circulating and EV-associated DNA extraction kit

Chapter 17. Nervous System Nervous systems receive sensory input, interpret it, and send out appropriate commands. !

ncounter TM Analysis System

Biomarker Discovery: Prognosis and Management of Chronic Diabetic Foot Ulcers

SCIRF Award #2016 I-03 PI: Azizul Haque, PhD Grant Title: Neuron-specific Enolase and SCI

kidney disease VISHAL S. VAIDYA, PH.D. ASSISTANT PROFESSOR OF MEDICINE & ENVIRONMENTAL HEALTH Harvard School of Public Health

Potential Best-In-Class Potent, Selective & Orally Active S1P 1 Agonists for Multiple Sclerosis

X P. Supplementary Figure 1. Nature Medicine: doi: /nm Nilotinib LSK LT-HSC. Cytoplasm. Cytoplasm. Nucleus. Nucleus

Piastrine: genoma e trascrittoma. Paolo Gresele Department of Medicine Section of Internal and Cardiovascular Medicine University of Perugia

April 5, :45 AM 1:45 PM MARRIOTT MARQUIS HOTEL & MARINA, MIRAMAR VIGNETTE 1 VIGNETTE 2 VIGNETTE 3* VIGNETTE 4* VIGNETTE 5*

Set the stage: Genomics technology. Jos Kleinjans Dept of Toxicogenomics Maastricht University, the Netherlands

BCM 226 LECTURE SALEMCITY, A.J

Human breast milk mirna, maternal probiotic supplementation and atopic dermatitis in offsrping

NOVEL FUNCTION OF mirnas IN REGULATING GENE EXPRESSION. Ana M. Martinez

EXOTESTTM. ELISA assay for exosome capture, quantification and characterization from cell culture supernatants and biological fluids

NIH HEAL Initiative: Program Update and Funding Opportunities for Pain Research Available through NIH

Benchmark study: Exiqon mircury LNA microrna arrays vs. Supplier A s DNA based capture probes. Includes comparison of:

Modulation of TRP channels by resolvins in mouse and human

Cell Quality Control. Peter Takizawa Department of Cell Biology

Cardiovascular Division, Brigham and Women s Hospital, Harvard Medical School

Milk micro-rna information and lactation

Chapter 2. Investigation into mir-346 Regulation of the nachr α5 Subunit

mirna in Plasma Exosome is Stable under Different Storage Conditions

The clinical relevance of circulating, cell-free and exosomal micrornas as biomarkers for gynecological tumors

Rheumatoid Arthritis. Immunology and Inflammatory Disease. In pursuit of your success. Autoimmune Arthritis Animal Models Available:

Transcription:

mirna Biomarkers Seena K. Ajit PhD Pharmacology & Physiology Drexel University College of Medicine October 12, 2017

Outline Introduction Circulating mirnas as potential biomarkers for pain Complex regional pain syndrome (CRPS) & rodent models Pharmacological intervention induced mirna modulation Ketamine treatment for CRPS & celecoxib in rodent model Source of circulating mirnas Exosomes Perspectives on possibilities.....

Circulating micrornas as biomarkers MicroRNAs (mirnas) are a class of small non-coding RNAs ~ 22 nucleotides Aberrant mirna expression and mirna-mediated gene regulation observed in human diseases Extracellular mirnas in serum, plasma, saliva, and urine are associated with various pathological conditions mirna expression patterns capable of classifying tumors according to type and tissue of origin, poorly differentiated tumors Circulating mirnas are novel, noninvasive biomarkers amenable to clinical diagnosis in translational medicine

What attributes make circulating mirnas feasible as biomarkers? Abundant in circulation (non-invasive) Can be measured by qpcr (specific, sensitive, accurate) Stable (robust, translatable) Associated with diseases (predictive) The subjective nature of pain scoring and assessment in humans highlights the need for the development of objective measures to assess pain

mirna modulation in complex regional pain syndrome CRPS is a progressive neurological disease with sensory, autonomic and motor disturbances Compared expression of ~750 mirnas in whole blood from CRPS patients (n=40) and controls (n=20) Scores recorded for different types of pain 18 mirnas were differentially expressed in CRPS patients Three different groups emerged from mirna profiling. One group was composed of 60% CRPS patients and contained no control subjects mirna profiling of whole blood can be a novel, clinically relevant approach for patient stratification Figure adapted from Katz and Melzack (1999) Orlova et al., 2011

mirna Fold change p value hsa-mir-939-4.59358 5.55E-06 hsa-mir-25# -3.92328 1.09E-06 hsa-let-7c -2.53502 2.07E-05 hsa-let-7a -2.45923 0.002308 hsa-let-7b -2.40344 5.49E-05 hsa-mir-320b -2.0527 6.91E-06 hsa-mir-126-2.02362 0.002469 hsa-mir-629.a -1.71231 0.000653 hsa-mir-664-1.54881 0.001487 hsa-mir-320-1.44273 7.28E-05 hsa-mir-1285-1.41594 0.003077 hsa-mir-625# -1.33174 0.003542 hsa-mir-532-3p -1.27226 0.001226 hsa-mir-181a-2# -1.25927 0.000229 RNU48 1.348125 0.000391 hsa-mir-720 1.476853 0.003243 RNU44 1.854213 0.000904 hsa-mir-1201 2.14584 3.17E-05 Orlova et al., 2011 Differentially expressed mirnas and cytokines in CRPS 18 differentially expressed mirnas VEGF, ILR1a and MCP1 significantly elevated CRPS n=40 and control n=20 Circos diagram showing the correlation of selected parameters and mirnas negative correlation positive correlation The nodes along the circle are colored by the total strength of correlation of the corresponding variable

Biomarkers rodent models of pain Bridging preclinical and clinical studies Identify changes in mirna expression in blood samples from rodent models of neuropathic and inflammatory pain Identify mirnas common to different models Alternatively, different pain conditions/models may have unique profile Species difference and mirna signature (rats vs mice) Models Neuropathic pain Spared Nerve Injury (SNI) (mice) 4 weeks Spared Nerve Injury (SNI) (rats) 5 weeks Spinal Nerve Ligation (SNL) (rats) 5 weeks Inflammatory pain (mice) Complete Freund s Adjuvant (CFA) 3 days post-cfa 10 days post-cfa Qureshi et al., 2015

Circulating mirnas in rodent models of pain - summary Differential expression of mirnas in rodent blood mirna signature in whole blood differed from those reported from spinal cord and DRG None of the differentially regulated mirnas were common between mouse and rat SNI models, suggesting species-specific differences Temporal regulation of mirna expression 3 and 10 days after CFA administration Two mirnas in common with CRPS patients (backward translation) Computational mirna target prediction and enrichment of predicted targets showed modulation of Wnt signaling Qureshi et al., 2015

Pharmacological intervention induced mirna modulation Biomarker mirnas Therapeutics Predictive validity of mirna signature in determining the treatment outcome

Pharmacological intervention induced mirna modulation CRPS patients Ketamine treatment induced mirna changes in CRPS patients (n=13) Sub-anesthetic continuous intravenous administration for 5 days Determine differential mirna expression before and after treatment Blood samples collected before and after treatment Responders (average pain score decreased by at least 50%) & Poor responders Can we distinguish responders vs poor responders prior to treatment? Predictive validity of mirna signature in determining the treatment outcome Douglas et al., 2015

mirna changes in ketamine responders and poor responders Comparison of mirna profiles before and after ketamine treatment showed differential expression of 14 mirnas in both responders and poor responders mirnas were not identical between the two groups ketamine-induced molecular changes differ between responders and poor responders Comparison of mirnas before treatment showed differential expression of 33 mirnas mirna signatures can be used as biomarkers for predicting treatment response Douglas et al., 2015

Pharmacological intervention induced mirna modulation - rodents Celecoxib Inflammatory pain (mice); 10 days post CFA Celecoxib administered post CFA injection (30 mg/kg for 7 days) 1) CFA + vehicle 2) CFA + Celecoxib 3) Saline + vehicle 4) Saline + Celecoxib Across the six possible pairwise comparisons, 74 differentially expressed mirnas were identified Qureshi et al., 2015

Can differentially expressed mirnas provide insight on the disease? Biomarker mirnas Mechanistic basis for disease Which genes are targeted by mir-939 and what is their relevance in pain and inflammation?

Functional consequences of hsa-mir-939 down regulation in CRPS patients mirna Fold change p-value hsa-mir-939-4.6 5.55E-06 Genes targeted by mir-939 and their relevance in pain & inflammation NOS2A VEGFA IL-6 NFκB2 Nitric oxide synthase (inducible) Vascular endothelial growth factor A Interleukin-6 Nuclear factor kappa beta Modulating the levels of one mirna capable of targeting several genes can amplify a pro-inflammatory signal transduction cascade McDonald, et al., 2016

mirna export from the cell and its stability Cells employ multiple distinct processes to release mirna Enclosed within membranous vesicles (exosomes, shedding vesicles and apoptotic bodies) In association with high-density lipoprotein Bound by RNA-binding proteins (Argonaute 2) Once in the extracellular space, mirnas could be degraded by RNases, excreted, or taken up by other cells Exosomes deliver mirnas to recipient cells with functional targeting capabilities

Exosomes a novel method of intercellular communication Small vesicles (30-100 nm) secreted by cells Exosomes from mouse blood (unpublished) Found in all body fluids 100 nm Carry mirna, mrna, proteins & lipids long distances Mediate communication between cells Exosomal composition depends on the physiological state of the parent cells Potential biomarkers and therapeutics Gutiérrez-Vázquez et al., 2013

mirna profiling of exosomes from CRPS patients Exosomes purified by ultracentrifugation from the serum log10fc (red:high,black:avg,green:low) 6 control, 6 CRPS patients 127 of 503 detected mirnas in human serum exosomes with significant alterations in CRPS patients 16 of the 18 mirnas dysregulated in patients with CRPS from our previous study detected in exosomes 2 1.5 1 0.5 0-0.5-1 -1.5-2 C4 C5 C1 C2 C6 C3 P4 P6 P5 P3 Benjamini-Hochberg false discovery rate correction to the results of a 2-tailed t-test P1 P2 Study 1 Study 2 Source Whole blood Exosomes # of significantly altered mirna Sample procurement 18 127 Easy (blood in RNA stabilization solution, PAXgene blood RNA tubes) Exosome purification is labor intensive (ultracentrifugation) Exosomes are stable in serum and so retrospective studies are feasible McDonald, et al., 2014

Conclusions CRPS, rodent models of pain Biomarkers Cox inhibitor in rodents CRPS - Ketamine therapy mirnas e.g. mir-939 Therapy Disease mechanisms Responders vs poor responders in ketamine therapy Ketamine pharmacokinetics Exosome-mediated information transfer

Summary Circulating mirnas can be viable potential biomarkers, and links to previously unrecognized mechanisms of disease Larger patient cohorts needed to reach firm conclusions regarding the diagnostic and prognostic power of extracellular mirnas Reasonable to assume that different painful conditions may have unique mirna signature Exosomal mirna profiles showed larger number of significantly altered mirnas Identifying several mirnas as biomarkers (molecular signature), rather than relying on one specific molecule or parameter, may increase the chances of successful treatment in an extremely heterogeneous group of patients suffering from pain Circulating mirnas can play a major role in finding the right molecules, targets, doses and patients

Retrospective studies should be performed Some perspectives Serum or plasma samples from failed clinical trials should be used to investigate mirna signatures Since the therapeutic outcome is known, patient stratification based on mirnas will help determine if the drug is efficacious in a subset of patients with defined molecular signature Biomarker discovery in clinical trials mirna profiles should be obtained starting from Phase I Efficacy trials could be conducted in defined patient groups, guided by information obtained in preclinical and human volunteer models Naïve control mirna profiles should be made available in a centralized database along with clinical parameters Guidelines to reduce variability Analytical variability (sample collection, storage, isolation methods, platform (qpcr, NGS), data normalization) Biological variability (duration of disease, sex, comorbidities, medications)

Acknowledgements Pharmacology & Physiology Sujay Ramanathan PhD Renee Jean-Tousaint Ayush Parikh Neurology Guillermo Alexander PhD Robert Schwartzman MD Enrique Aradillas MD Former lab members Botros Shenoda MD PhD Marguerite McDonald PhD Melissa Manners PhD Sabrina Douglas Andrew Touati Irina Orlova Pain Group James Barrett PhD Huijuan Hu PhD Yuzhen Tian Rheumatology Arthur Huppert MD Funding Sources Rita Allen Foundation NINDS R21NS082991 Drexel Clinical & Translational Research Institute NINDS R01 NS102836 School of Biomedical Engineering Ahmet Sacan PhD Rehman Qureshi PhD