Myocardial lipid accumulation and lipotoxicity in heart failure

Similar documents
Metabolism of cardiac muscle. Dr. Mamoun Ahram Cardiovascular system, 2013

Cover Page. The handle holds various files of this Leiden University dissertation.

FOCUS ON CARDIOVASCULAR DISEASE

In Vivo Animal Models of Heart Disease. Why Animal Models of Disease? Timothy A Hacker, PhD Department of Medicine University of Wisconsin-Madison

Index. Note: Page numbers of article titles are in boldface type.

Role of fatty acids in the development of insulin resistance and type 2 diabetes mellitus

Chronic Benefit Application Form Cardiovascular Disease and Diabetes

A Central Role of MG53 in Metabolic Syndrome. and Type-2 Diabetes

Metabolic Syndrome. DOPE amines COGS 163

Fatty Acid Oxidation and Its Relation with Insulin Resistance and Associated Disorders

Metabolic integration and Regulation

When Should I Order a Stress Test or an Echocardiogram

Imaging. Cardiac Steatosis in Diabetes Mellitus A 1 H-Magnetic Resonance Spectroscopy Study

Current Cholesterol Guidelines and Treatment of Residual Risk COPYRIGHT. J. Peter Oettgen, MD

12 Lead EKG Chapter 4 Worksheet

Summary HTA. HTA-Report Summary

Integrating Multiple Data using Syngene s Virtual Liver

Effects of sitagliptin on cardiac metabolism in mice

Early Career Investigator Awards. 84 Lipid and Lipoprotein Metabolism: Clinical Lifestyle & Behavioral Medicine

1Why lipids cannot be transported in blood alone? 2How we transport Fatty acids and steroid hormones?

Eicosapentaenoic Acid and Docosahexaenoic Acid: Are They Different?

Lipotoxicity in myocardial infarction and heart failure. Importance of endogenous lipoproteins for cardiac function, structure and arrhythmias.

Steven S. Saliterman, MD, FACP

HEART CONDITIONS IN SPORT

Progressive caloric restriction induces dose-dependent changes in myocardial triglyceride content and diastolic function in healthy men

In the name of GOD. Animal models of cardiovascular diseases: myocardial infarction & hypertension

Earlier studies, mainly in rodents, have shown that diabetic

Update on Lipid Management in Cardiovascular Disease: How to Understand and Implement the New ACC/AHA Guidelines

Metabolic Syndrome and Chronic Kidney Disease

1. Cardiomyocytes and nonmyocyte. 2. Extracellular Matrix 3. Vessels שאלה 1. Pathobiology of Heart Failure Molecular and Cellular Mechanism

Pathophysiology of Lipid Disorders

Paracrine Mechanisms in Adult Stem Cell Signaling and Therapy

Cell Injury MECHANISMS OF CELL INJURY

Non alcoholic fatty liver and Non alcoholic Steatohepatitis. By Dr. Seham Seif

Specific Basic Standards for Osteopathic Fellowship Training in Cardiology

Grant support Novo Nordisk (Investigator-Initiated-Study Grant) Kellogg (Investigator-Initiated-Study Grant)

Congestive Heart Failure: The Complication that Gets No Respect Richard J. Katz, MD Saturday, February 18, :30 a.m. 10:15 a.m.

Comparison of clinical trials evaluating cardiac resynchronization therapy in mild to moderate heart failure

Improving Access to Quality Medical Care Webinar Series

THE EFFECT OF VITAMIN-C THERAPY ON HYPERGLYCEMIA, HYPERLIPIDEMIA AND NON HIGH DENSITY LIPOPROTEIN LEVEL IN TYPE 2 DIABETES

Medical Biochemistry and Molecular Biology department

Term-End Examination December, 2009 MCC-006 : CARDIOVASCULAR EPIDEMIOLOGY

Cardiovascular Complications of Diabetes

Frequency of Dyslipidemia and IHD in IGT Patients

Biochemistry 7/11/ Bio-Energetics & ATP. 5.1) ADP, ATP and Cellular Respiration OVERVIEW OF ENERGY AND METABOLISM

Agrowing literature suggests that impaired cardiac

Companion to Biosynthesis of Ketones & Cholesterols, Regulation of Lipid Metabolism Lecture Notes

Arteriosclerosis & Atherosclerosis

Biol 219 Lec 7 Fall 2016

OVERVIEW OF ENERGY AND METABOLISM

β adrenergic blockade, a renal perspective Prof S O McLigeyo

Andrew Cohen, MD and Neil S. Skolnik, MD INTRODUCTION

Rotation: Echocardiography: Transthoracic Echocardiography (TTE)

שינויים מולקולאריים ומבניים באי ספיקת לב אפשרויות לטיפול עתידני

UNIVERSITY OF BOLTON SCHOOL OF SPORT AND BIOMEDICAL SCIENCES SPORT PATHWAYS WITH FOUNDATION YEAR SEMESTER TWO EXAMINATIONS 2015/2016

Cardiovascular Disease Risk Factors:

In glycolysis, glucose is converted to pyruvate. If the pyruvate is reduced to lactate, the pathway does not require O 2 and is called anaerobic

Health and Disease of the Cardiovascular system

Cardiovascular Research Advance Access published August 12, New pathophysiological function of protein phosphatase 2A?

Reflection paper on assessment of cardiovascular risk of medicinal products for the treatment of cardiovascular and metabolic diseases Draft

Integration Of Metabolism

Influence of Breathing on the Measurement of Lipids in the Myocardium by 1 H MR Spectroscopy

Marshall Tulloch-Reid, MD, MPhil, DSc, FACE Epidemiology Research Unit Tropical Medicine Research Institute The University of the West Indies, Mona,

SMARTool clinical and biohumoral results. Chiara Caselli IFC-CNR

BBSG 501 Section 4 Metabolic Fuels, Energy and Order Fall 2003 Semester

Pathophysiology and Diagnosis of Heart Failure

Recommended Evaluation Data Excerpt from NVIC 04-08

Appropriate Use Criteria for Initial Transthoracic Echocardiography in Outpatient Pediatric Cardiology (scores listed by Appropriate Use rating)

18. PANCREATIC FUNCTION AND METABOLISM. Pancreatic secretions ISLETS OF LANGERHANS. Insulin

5.0 HORMONAL CONTROL OF CARBOHYDRATE METABOLISM

Principles of Anatomy and Physiology

ΛΟΙΜΩΞΗ HIV. Ιγνάτιος Οικονομίδης,MD,FESC Β Πανεπιστημιακή Καρδιολογική

Chapter 2. The Physiology of Fat

Energy metabolism - the overview

Lipid Metabolism. Remember fats?? Triacylglycerols - major form of energy storage in animals

Index. cardiology.theclinics.com. Note: Page numbers of article titles are in boldface type.

ASSOCIATION OF SYSTEMIC INFLAMMATION WITH ARTERIAL STIFFNESS IN HYPERTENSION

Multiple choice: Circle the best answer on this exam. There are 12 multiple choice questions, each question is worth 3 points.

European CMR Certification: LIST OF PROCEDURES FORM

A NEW RISK FACTOR FOR EARLY HEART FAILURE: PRETERM BIRTH

Diabetes and the Heart

BCH 447. Triglyceride Determination in Serum

Cardiovascular disease physiology. Linda Lowe-Krentz Bioscience in the 21 st Century November 2, 2016

Impacts of prenatal malnutrition and an early obesogenic diet on adipose tissue morphology and gene expression in adult sheep


Study of rhythm disturbances in acute myocardial infarction in Government Dharmapuri Medical College Hospital, Dharmapuri

Title. CitationJournal of Nuclear Cardiology, 23(3): Issue Date Doc URL. Rights. Type. File Information

Published on Second Faculty of Medicine, Charles University ( )

What s New in Bariatric Surgery?

Small dense low-density lipoprotein is a risk for coronary artery disease in an urban Japanese cohort: The Suita study

Hypertrophic Cardiomyopathy

Wellness: Concepts and Applications 8 th Edition Anspaugh, Hamrick, Rosato

Supplementary Fig. 1 eif6 +/- mice show a reduction in white adipose tissue, blood lipids and normal glycogen synthesis. The cohort of the original

Unit IV Problem 3 Biochemistry: Cholesterol Metabolism and Lipoproteins

Metabolic Syndrome.

Topic 11. Coronary Artery Disease

Part 1 Risk Factors and Atherosclerosis. LO1. Define the Different Forms of CVD

Triglyceride determination

Obesity, insulin resistance, and diabetes are now. Impaired Long-Chain Fatty Acid Oxidation and Contractile Dysfunction in the Obese Zucker Rat Heart

Transcription:

Myocardial lipid accumulation and lipotoxicity in heart failure P. Christian Schulze, MD, PhD New York - Presbyterian Hospital, Columbia University Medical Center, Division of Cardiology, New York, NY, U.S.A. Brief Title: Myocardial lipid accumulation and lipotoxicity Word Count: 1693 Abstract Word Count: 0 Figures: 0 Tables: 0 Address for Correspondence: P. Christian Schulze, MD, PhD New York-Presbyterian Hospital Columbia University Medical Center Division of Cardiology 622 West 168 th Street, PH9-972 New York, NY 10032 U.S.A. Tel: 212-305-6916 Fax: 212-305-9953 pcs2121@columbia.edu

The syndrome of chronic heart failure is a systemic disease state with primary cardiac dysfunction that subsequently affects multiple organ systems. After the primary cardiac insult, the clinical course of the patient is affected by co-morbidities and the underlying type of cardiomyopathy. The most common cause of heart failure in the United States is coronary artery disease. This proportion is rising due to improved survival of patients after myocardial infarction secondary to the success of coronary revascularization procedures but also because of the increasing number of patients with cardiac risk factors such as obesity, diabetes, hypertension and hyperlipidemia. The highly prevalent metabolic syndrome is a unifying clinical diagnosis that represents these abnormalities. While the metabolic syndrome is a clinical constellation with higher risk for the development of cardiac disease, it also affects the clinical course of patients with established cardiac disease e.g. coronary artery disease and heart failure. Intrinsic cardiac metabolism of the adult heart depends primarily on the utilization of fatty acids for oxidative phosphorylation and generation of ATP (Rajabi et al., 2007). In contrast, the fetal heart preferably uses glucose for energy generation. After birth, for reasons still unknown, profound changes in the program of myocardial gene expression lead to increased expression of genes involved in fatty acid metabolism (Hunter and Chien, 1999; Rajabi et al., 2007). The myocardium in response to stressors including hypertrophy, failure and infarction switches back to the fetal transcriptional program (Hunter and Chien, 1999) with reduced expression of genes involved in fatty acid metabolism with relative increase in gene products involved in glucose metabolism (Rajabi et al., 2007). These changes result in the preferable utilization of glucose for energy generation. This change is, however, accompanied by altered substrate utilization and reduced myocardial production of ATP due to the lower number of ATP molecules generated during glycolysis compared to fatty acid oxidation. Notably, lipids accumulate in failing

myocardium in particular in subjects with diabetes and obesity with increased levels of toxic intermediates leading to lipotoxicity (Sharma et al., 2004). Toxic intermediate products may further worsen cardiac function and metabolism with development of progressive myocardial atrophy and protein breakdown (Zhou et al., 2000). While the hemodynamic improvement through unloading of the left ventricle by left ventricular assist device implantation partially corrects pathways of proteins synthesis and degradation (Razeghi et al., 2003), no data are known regarding the impact of hemodynamic correction on lipid accumulation and markers of lipotoxicity. Under physiologic conditions, most triglycerides are stored in adipocytes with only minimal accumulation of lipids in other tissues such as the liver or muscle. Increased stores of triglycerides are detectable in the myocardium of animals with obesity and diabetes (Zhou et al., 2000). This finding has been reproduced in patients with heart failure and diabetes (Sharma et al., 2004) and correlates with the degree of obesity (McGavock et al. 2007; Peterson et al. 2004). It has been proposed that the amount and composition of lipids in the myocardium contributes to the development of cardiac dysfunction through so called "lipotoxic" effects. While the underlying molecular pathways are only partially understood, several groups have reported animal models of cardiac lipotoxicity. The transcription factor sterol regulatory element bindingprotein (SREBP)-1c controls lipogenesis and regulates the metabolism of glucose to fatty acids and triglycerides during the storage of excess energy (Tontonoz et al., 1993). Activation of SREBP-1c in the liver induces hepatosteatosis and insulin resistance (Muller-Wieland et al., 2002). Activation of the transcriptional co-activator PPARγ and the transcription factor SREBP- 1c might be important molecular switches regulating lipid accumulation and lipotoxicity. Notably, transgenic mice overexpressing PPARγ in the myocardium show increased cardiac

expression of fatty acid oxidation genes and increased lipoprotein triglyceride uptake. PPARγ transgenic mice also develop a dilated cardiomyopathy associated with increased lipid and glycogen stores and abnormal mitochondrial structure (Son et al., 2007). These findings are well in line with the known detrimental effects of pharmacologic modulation through PPARγ agonists in patients with heart failure leading to fluid retention and cardiac decompensation. In the current study by Marfella et al. (Marfella et al., 2009), a group of patients with and without evidence of the metabolic syndrome was selected from a large cohort of patients undergoing aortic valve replacement. All patients underwent echocardiographic assessment of their cardiac function. During open heart surgery, myocardial samples were collected from those patients for molecular and histological analysis. Increased amounts of lipid deposits were found in the myocardium of patients with left ventricular hypertrophy and the metabolic syndrome compared to patients without the metabolic syndrome. Increased protein levels of SREBP-1c and PPARg and lower levels of SERCA2a were also detectable in patients with the metabolic syndrome suggesting activation of lipogenesis and impaired calcium handling in those patients. These changes correlated well with the degree of left ventricular dysfunction suggesting a link between molecular markers of lipogenesis and abnormal calcium handling with impaired ventricular function. Notably, no differences in circulating total cholesterol or LDL cholesterol levels were noted in the presence of increased levels of triglycerides and HDL cholesterol. Not surprisingly, patients with the metabolic syndrome had a higher degree of insulin resistance. The degree of insulin resistance, however, did not correlate with the amount of lipid in failing myocardium. Since all current studies in patients with and animal models of heart failure have only demonstrated the accumulation of lipids in the myocardium, it is not clear whether this results

from increased uptake of fatty acids, increased lipogenesis or impaired degradation of lipids. Future studies have to focus on these mechanisms in order to clarify the causative mechanism behind increased lipid stores in the failing myocardium. Further, while the phenotype of increased lipid accumulation in the failing myocardium, in particular in the setting of diabetes and the metabolic syndrome, has been established, it is not clear what specific type of lipid intermediates accumulates in the failing myocardium. The role of insulin resistance and impaired insulin signaling on myocardial lipid accumulation as well as the specific lipid composition is currently unclear. A systematic approach to characterize the lipid content in normal and different types of failing myocardium through lipidomics will help to clarify these issues. Finally, one might speculate that the intracellular compartmentalization of lipids are important for their potential cytotoxic role and a more specific characterization would be beneficial to better understand their functional significance. While it is known that toxic intermediates of lipid metabolism can cause cardiac dysfunction, the reversibility of this phenotype after correction of myocardial structure and morphology has never been shown. It is, therefore, possible that ectopic myocardial lipid deposits are just a sign of myocardial degradation during the progression of cardiac failure (as seen in Duchenne's muscular dystrophy). On the other hand, data on increased levels of toxic lipid intermediates that accumulate in failing myocardium suggest direct myocardial toxicity of impaired lipid metabolism in heart failure. It would, therefore, be interesting to see whether the pharmacologic modulation of lipid metabolism in the failing myocardium leads to changes in myocardial function and structure.

The current study is a valuable addition to the literature on cardiac abnormalities in heart failure and the metabolic syndrome. As it is the case with most complex diseases, the novel and useful information reported in this study raises a number of new questions that need to be addressed in future studies. Most importantly, this study describes a distinct phenotype of abnormal cardiac structure and metabolism that might advance our knowledge on cardiac metabolism not only in cardiac failure but also in the normal myocardium. The once obscure finding of lipid accumulation in the failing myocardium has opened the door towards a better understanding of mechanisms of lipotoxicity in the failing myocardium with the potential of novel therapeutic interventions in patients with heart failure.

REFERENCES 1. Hunter, J. J., and Chien, K. R. (1999). Signaling pathways for cardiac hypertrophy and failure. N Engl J Med 341, 1276-1283. 2. McGavock JM, Lingvay I, Zib I, Tillery T, Salas N, Unger R, Levine BD, Raskin P, Victor RG, Szczepaniak LS (2007). Cardiac steatosis in diabetes mellitus: a 1Hmagnetic resonance spectroscopy study. Circulation 116:1170-5. 3. Muller-Wieland D, Kotzka J (2002). SREBP-1: gene regulatory key to syndrome X? Ann N Y Acad Sci 967:19-27. 4. Peterson LR, Herrero P, Schechtman KB, Racette SB, Waggoner AD, Kisrieva- Ware Z, Dence C, Klein S, Marsala J, Meyer T, Gropler RJ (2004). Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women. Circulation 109:2191-6. 5. Rajabi, M., Kassiotis, C., Razeghi, P., and Taegtmeyer, H. (2007). Return to the fetal gene program protects the stressed heart: a strong hypothesis. Heart Fail Rev 12, 331-343. 6. Razeghi, P., Sharma, S., Ying, J., Li, Y. P., Stepkowski, S., Reid, M. B., and Taegtmeyer, H. (2003). Atrophic remodeling of the heart in vivo simultaneously activates pathways of protein synthesis and degradation. Circulation 108, 2536-2541. 7. Sharma, S., Adrogue, J. V., Golfman, L., Uray, I., Lemm, J., Youker, K., Noon, G. P., Frazier, O. H., and Taegtmeyer, H. (2004). Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart. Faseb J 18, 1692-1700. 8. Son N, Park TS, Yamashita H, Yokoyama M, Huggins LA, Okajima K, Homma S, Szabolcs MJ, Huang LS, Goldberg IJ (2007). Cardiomyocyte expression of PPARγ leads to cardiac dysfunction in mice. J Clin Invest 117:2791-2801.

9. Tontonoz P, Kim JB, Graves RA, Spiegelman BM (1993). ADD1: a novel helixloop-helix transcription factor associated with adipocyte determination and differentiation. Mol Cell Biol 13: 4753-9. 10. Zhou, Y. T., Grayburn, P., Karim, A., Shimabukuro, M., Higa, M., Baetens, D., Orci, L., and Unger, R. H. (2000). Lipotoxic heart disease in obese rats: implications for human obesity. Proc Natl Acad Sci U S A 97, 1784-1789.