Comparison of Cytotoxic Activity of Anticancer Drugs against Various Human Tumor Cell Lines Using In Vitro Cell-Based Approach

Similar documents
8. CHAPTER IV. ANTICANCER ACTIVITY OF BIOSYNTHESIZED SILVER NANOPARTICLES

Anti-cancer activity of Aya Thambira Chendooram (ATC) in in-vitro cell line against Breast Carcinoma

IN VITRO ANTICANCER ACTIVITY OF FLOWER EXTRACTS OF COUROUPITA GUIANENSIS

International Journal Of Recent Scientific Research

In-vitro assay for Cytotoxicity activity in ethonolic extract of fruit rind of Couropita Guianensis aubl

Asian Journal of Research in Pharmaceutical Sciences and Biotechnology

Assay Report. Histone Deacetylase (HDAC) Inhibitor Assays Enzymatic Study of Compounds from Client

Supporting Information Nitric oxide releasing photoresponsive nanohybrids as excellent therapeutic agent for cervical cancer cell lines

MTS assay in A549 cells

EPIGENTEK. EpiQuik Global Acetyl Histone H3K27 Quantification Kit (Colorimetric) Base Catalog # P-4059 PLEASE READ THIS ENTIRE USER GUIDE BEFORE USE

Effect of Organically Grown Curcuma longa (Turmeric) on Leukemic and MCF-7 Cell Lines

In Vitro Studies of the Aurora-Kinase Inhibitor MLN8237 in Prostate Cancer Cell Lines

EpiQuik Total Histone H3 Acetylation Detection Fast Kit (Colorimetric)

The effect of insulin on chemotherapeutic drug sensitivity in human esophageal and lung cancer cells

2-Deoxyglucose Assay Kit (Colorimetric)

Electronic Supporting Information for

AMCEN LAB SDN BHD ( W) No.18, Lorong Talang 9, Perai, Penang. Tel: Fax:

Overview of methodology, tools and reagents for evaluating cell proliferation and invasion using multicellular tumor spheroids.

Total Histone H3 Acetylation Detection Fast Kit (Colorimetric)

SensoLyte Generic MMP Assay Kit *Colorimetric*

EPIGENTEK. EpiQuik HDAC Activity/Inhibition Assay Kit(Colorimetric) Base Catalog # P-4002 PLEASE READ THIS ENTIRE USER GUIDE BEFORE USE

PFK Activity Assay Kit (Colorimetric)

Focus Application. Compound-Induced Cytotoxicity

Focus Application. Compound-Induced Cytotoxicity

EPIGENTEK. EpiQuik HDAC2 Assay Kit (Colorimetric) Base Catalog # P-4006 PLEASE READ THIS ENTIRE USER GUIDE BEFORE USE

MTS assay in THP-1 cells

Data Sheet. Fluorogenic HDAC 8 Assay Kit Catalog #: 50068

Glucose Assay Kit. Catalog Number KA assays Version: 07. Intended for research use only.

Journal of Chemical and Pharmaceutical Research

EpiQuik HDAC Activity/Inhibition Assay Kit (Fluorometric)

Human TSH ELISA Kit. User Manual

HCC1937 is the HCC1937-pcDNA3 cell line, which was derived from a breast cancer with a mutation

Scholars Research Library

Effects of COX-2 Inhibitor on the Proliferation of MCF-7 and LTED MCF-7 Cells

20X Buffer (Tube1) 96-well microplate (12 strips) 1

Optimization of a LanthaScreen Kinase assay for ZAP70

System. xcelligence System RTCA HT Instrument. Application Note No. 14 /January Long-Term High-Throughput Cytotoxicity Profiling

Anti-Aging Activity Of Cucurbita moschata Ethanolic Extract Towards NIH3T3 Fibroblast Cells Induced By Doxorubicin

Procine sphingomyelin ELISA Kit

EpiQuik Circulating Acetyl Histone H3K18 ELISA Kit (Colorimetric)

Optimization of a LanthaScreen Kinase assay for NTRK1 (TRKA)

NF-κB p65 (Phospho-Thr254)

MRP2 TR ATPase Assay Protocol CAT. NO. SBAT03

Glucose Uptake Colorimetric Assay Kit

Low Cell Binding Property of LIPIDURE -COAT

Alkaline Phosphatase Assay Kit (Fluorometric)

Study of structure-bioactivity relationship of three new pyridine Schiff bases:

Part-4. Cell cycle regulatory protein 5 (Cdk5) A novel target of ERK in Carb induced cell death

ROS Activity Assay Kit

Human LDL ELISA Kit. Innovative Research, Inc.

Galactose and Lactose Assay Kit

Assay Report. Phosphodiesterase (PDE) Inhibitor Assays Enzymatic Study of Compounds from Client

Appendix A: Preparation of Media and Chemicals. Malt Extract Agar (MEA) weighing g was dissolved in 400 ml of distilled water

Cinnamomum Essential Oil Prevents DNA Damage- Induced by Doxorubicin on CHO-K1 Cells

Lysine analogue of Polymyxin B as a significant opportunity for photodynamic antimicrobial chemotherapy

Rapid Assessment of Cell Viability Based on Glucose Consumption Measurement using a Diabetes Blood Glucometer

HEK293 cells transfected with human MATE1, MATE2-K, or vector control were established by

Yuriko Saiki, 1 Takenori Ogawa, 1, 2 Kiyoto Shiga, 2 Makoto Sunamura, 1, 3 Toshimitsu Kobayashi, 2 and Akira Horii 1. 1.

Investigations on its antioxidative and anti-inflammatory potential

Inhibition of TGFβ enhances chemotherapy action against triple negative breast cancer by abrogation of

ab Cell Invasion Assay (Basement Membrane), 24-well, 8 µm

SensoLyte 490 HIV-1 Protease Assay Kit *Fluorimetric*

EPIGENTEK. EpiQuik Global Histone H3 Acetylation Assay Kit. Base Catalog # P-4008 PLEASE READ THIS ENTIRE USER GUIDE BEFORE USE

Aspartate Transaminase (AST) Color Endpoint Assay Kit Manual Catalog #:

EPIGENTEK. EpiQuik Global Histone H4 Acetylation Assay Kit. Base Catalog # P-4009 PLEASE READ THIS ENTIRE USER GUIDE BEFORE USE

Cotinine (Mouse/Rat) ELISA Kit

RayBio Maltose and Glucose Assay Kit

EXOTESTTM. ELISA assay for exosome capture, quantification and characterization from cell culture supernatants and biological fluids

RayBio Acid Phosphatase Activity Colorimetric Assay. Kit. User Manual Version 1.0 May 5, RayBiotech, Inc. Kit Protocol. (Cat#: 68CL-AcPh-S500)

Elution of Tumoricidal Doses of Bortezomib from a Resorbable Cement Carrier

SOMAPLEX REVERSE PHASE PROTEIN MICROARRAY HUMAN KIDNEY TUMOR & NORMAL TISSUE

Global Histone H3 Acetylation Assay Kit

Research Article. Cell culture study on the cytotoxic effects of Cureit - a novel bio available curcumin-anti cancer effects

Rat Mullerian Inhibiting Substance/Anti-Mullerian hormone, MIS/AMH ELISA kit

ab MitoTox Complex I OXPHOS Activity Microplate Assay

BIOO RESEARCH PRODUCTS. Aspartate Transaminase (AST) Color Endpoint Assay Kit Manual Catalog #:

5þ ; AA, ascorbic acid.

TRACP & ALP Assay Kit

MitoCheck Complex II Activity Assay Kit

xcelligence Real-Time Cell Analyzers

CoQ10(Coenzyme Q10) ELISA Kit

International Journal of PharmTech Research CODEN (USA): IJPRIF, ISSN: Vol.7, No.2, pp ,

SensoLyte pnpp Alkaline Phosphatase Assay Kit *Colorimetric*

Superoxide Dismutase Assay Kit

D-Mannitol Assay Kit (Colorimetric)

Available online at IC 50 OF GANODERMA LUCIDUM EXTRACT ON ORAL CANCER CELLS, ORL-48T. and G. H. Khor 1,3,*

L-Amino Acid Assay Kit

Proteomic profiling of small-molecule inhibitors reveals dispensability of MTH1 for cancer cell survival

Prothrombin (Human) ELISA Kit

TECHNICAL BULLETIN. MDR1, human recombinant, expressed in Sf9 cells, membrane preparation, for ATPase. Product Number M9194 Storage Temperature 70 C

Berberine Sensitizes Human Ovarian Cancer Cells to Cisplatin Through mir-93/ PTEN/Akt Signaling Pathway

Fructose Assay Kit. Catalog Number KA assays Version: 03. Intended for research use only.

PUMA gene transfection can enhance the sensitivity of epirubicin-induced apoptosis of MCF-7 breast cancer cells

Coenzyme A Assay Kit. Catalog Number KA assays Version: 02. Intended for research use only.

Intracellular (Total) ROS Activity Assay Kit (Red)

Data Sheet. PCSK9[Biotinylated]-LDLR Binding Assay Kit Catalog # 72002

RayBio Human, Mouse and Rat Phospho-NF-kB P65 (Ser536) and Total NF-kB P65 ELISA Kit

Anticancer Properties of Phytochemicals Present in Indian Medicinal Plants.

GAA Activity Assay Kit (Colorimetric)

Transcription:

International journal of Biomedical science ORIGINAL ARTICLE Comparison of Cytotoxic Activity of Anticancer Drugs against Various Human Tumor Cell Lines Using In Vitro Cell-Based Approach Leila Florento, Ronald Matias, Elena Tuaño, Katherine Santiago, Frederick dela Cruz, Alexander Tuazon Department of Biological Sciences, Medical and Regulatory Affairs Division, United Laboratories, Inc., 66 United St. Mandaluyong City, Philippines Abstract Chemotherapy is the main treatment modality for certain types of cancer. It is important to monitor and ensure that these chemotherapeutic drugs are potent and effective prior to patient administration. The objective of the study is to evaluate the cytotoxic activity and potency of selected commercially available generic anticancer drugs in comparison with originator using various human cancer cell lines in an in vitro cell-based assay. Half-maximal inhibitory concentration (IC ) of the different chemotherapeutic agents was obtained from an experimentally derived dose-response curve. Relative potency of the drugs was estimated according to Parallel Line assay. This study demonstrated that the selected generic oncology products tested had similar efficacy compared with the originator. Both products showed comparable results as shown both in vitro cytotoxicity assay and statistical analysis. In vitro cell-based cytotoxicity assay promises to be a useful, reliable and rapid method for demonstrating chemotherapeutic drug activity. (Int J Biomed Sci 212; 8 (1): 76-8) Keywords: IC ; in vitro cytotoxicity; dose-response; relative potency INTRODUCTION Corresponding author: Leila M. Florento, Department of Biological Sciences, Medical and Regulatory Affairs Division, United Laboratories, Inc., 66 United St. Mandaluyong City, Philippines. E-mail: leilaflorento@ yahoo.com, lmflorento@unilab.com.ph. Copyright: 212 Leila M. Florento et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Received February 15, 212; Accepted March 2, 212 Chemotherapy with cytotoxic drugs is the main treatment modality for certain types of cancer (1). It is important to monitor and ensure that these chemotherapeutic drugs are potent and effective prior to patient administration. In vitro cell-based assays have been developed to rapidly determine the cytotoxic activity of several compounds. Cell-based assays are also useful in identifying variations in susceptibility of different target cells to several chemotherapeutic agents (2, 3) There are several chemotherapeutic drugs available in the market. Potency of these products has been tested at the site of production and has passed quality control and quality assurance requirements. However, these products may be exposed to different environmental stress conditions during transport and storage. Hence, it may be necessary to test randomly selected lots for their activity to ensure efficacy. The objective of the study is to evaluate the cytotoxic activity and potency of selected commercially available 76 March 212 Vol. 8 No. 1 Int J Biomed Sci www.ijbs.org

generic anticancer drugs in comparison with originator using various human cancer cell lines in an in vitro cellbased assay. MATERIALS AND METHODS Cell lines HT-29 and HeLa cells were grown on E-MEM Minimum Essential Medium (MEM) with Earle s salt and nonessential amino acids, supplemented with 5% heat-inactivated fetal calf serum (FCS), 1 mm sodium pyruvate, and 2 mm L-glutamate. NCI-H2126 cells were grown on HITES medium supplemented with 5% fetal bovine,.5 mg/ml insulin,.1 mg/ml transferrin, 3 nm sodium selenite, 1 nm hydrocortisone, 1 nm beta-estradiol, 1 mm HEPES, and 2 mm L-glutamine. SKOV-3 cells were grown on McCoy s 5a medium supplemented with 1% fetal bovine serum. PC-3 cells were grown on F12-K medium supplemented with 1% fetal bovine serum. All cells were grown at 37 C in 95% air with the addition of 5% CO 2. Cytotoxicity Assay MTT Assay. The details of this assay have been described previously (3, 4). Briefly, cells were seeded at 1 1 5 cells/ml in 96 well microtiter plates in Minimum Essential Medium with fetal bovine serum. The cells were incubated overnight for attachment. Drug concentrations in serial three-fold dilutions were added in triplicates and incubated for 48h at 5% CO 2 at 37 o C (see list of drugs and corresponding cell line used in Table 1). Thereafter, the cells were treated with 3-[4,5-dimethylthiazol-2-yl]-2,5- diphenyltratrazolium bromide (MTT) (Sigma Chemical Co., St. Louis, MO). Four hours later, all of the medium including MTT solution (5 mg/ml) was aspirated from the wells. The remaining formazan crystals were dissolved in DMSO and the absorbance was measured at 57 nm using a 96 well microplate reader (Synergy TM HT, Bio-Tek Instruments, Inc.). The cytotoxicity index was determined using the untreated cells as negative control. The percentage of cytotoxicity was calculated using the backgroundcorrected absorbance follows (3, 4): (1 absorbance of experimental well) % cytotoxicity = 1 absorbance of negative control well IC determination The IC was extrapolated from the dose-response graph. The drug concentration that reduced the viability of cells by % (IC ) was determined by plotting triplicate data points over a concentration range and calculating values using regression analysis of PRISM program. Statistical Analysis Analysis of the dose-response curve was done using the Software GraphPad PRISM. Relative potency of the drugs was estimated according to Parallel Line Assay (PLA version 1.2.6) (5, 6). Calculation of confidence limits and significance testing were made at the level of p=.5. RESULTS Evaluation of Cytotoxic Effect Using MTT Test Metabolic activity can be evaluated by measuring the activity of a mitochondrial enzyme succinate dehydrogenase using MTT test. MTT is designed for the quantifi- Table 1. List of Generic Oncology Products, the innovator products and the corresponding tumor cell line used Generic-oncology Products Tumor cell line used Origin Paclitaxel Brand X MCF-7 Breast carcinoma NCI-H2126 non-small cell lung carcinoma Docetaxel Brand X MCF-7 Breast carcinoma SKOV-3 ovarian carcinoma PC-3 prostate carcinoma NCI-H2126 non-small cell lung carcinoma Oxaliplatin Brand X HT-29 colorectal carcinoma Bicalutamide Brand X PC-3 prostate carcinoma Anastrozole Brand X MCF-7 breast carcinoma www.ijbs.org Int J Biomed Sci vol. 8 no. 1 March 212 77

cation of cytotoxic index in cell population using 96 well plate format. This test is widely used in the in vitro evaluation of the cytotoxic potency of drugs. In the present study we applied the MTT test to evaluate the potency of selected commercially available generic anticancer drugs in comparison with originator using various human cancer cell lines in an in vitro cell-based assay. Dose-response curve The cytotoxic response of the different cell lines to different generic oncology products versus the originator is shown in Figure 1 (a-f). The dose response curve exhibited by the generic oncology products is comparable with the originator using the indicated cancer cell lines. IC and Relative Potency Table 2 shows the half maximal effective dose deduced from the generated dose-response curve and the relative potency of the selected generic oncology products. Statistical analysis was done using parallel line assay (PLA version 1.2.6) and both were found to be comparably cytotoxic and potent. A value of 1 (±.2) means that the relative potency of the tested product is almost the same as that of the competitor product (6). The generic oncology products in comparison with the competitor passed the test for linearity, test of slope and test of parallelism. DISCUSSION We used a cell-based assay to demonstrate that the potency of the generic oncology products is comparable with innovator drugs. Drug chemosensitivity assays were developed to evaluate anti-neoplastic drugs using cell cultures. Incorporation of cell culture studies offers good possibility as gold standard to assess the drugs due to the controlled conditions and easy procedures. A cytotoxicity test based on mitochondrial activity is then used to evaluate in vitro drug efficacy (4). One of the major goals of oncology is to predict the response of patients with cancer to chemotherapeutic agents by employing laboratory methods variously called tumor chemosensitivity assays, drug response assays, or drug sensitivity assays, in vitro (4). The MTT assay is one of the methods used to predict the drug response in malignancies (4). In vitro cytotoxicity assays were applied to evaluate anti-neoplastic drugs on target cell lines. Incorporation of cell culture studies offers good possibility as gold standard to assess the drugs due to the controlled conditions and automated procedures (6). The cytotoxic response of different cell lines to different oncology products is evaluated using high-throughput cell-based assay, the MTT assay. MTT assay is a laboratory test and a standard colorimetric assay (an assay which measures changes in colour) for measuring cellular pro- Table 2. The half maximal effective dose (IC ) and relative potency of the selected generic oncology products CELL LINES IC (m/ml) 95% Confidence Interval Relative Potency 95% Confidence Interval PACLITAXEL MCF-7 (breast cancer cells) 6.9 (6.19-7.58).9 (.72-1.15) NCI-H2126 (non-small cell lung cells) 3.1 (2.66-3.69).95 (.45-1.94) DOCETAXEL MCF-7 (breast cancer cells) 5 (4.44-5.69) 1.2 (.69-2.15) SKOV-3 (ovarian cancer cells) 83.7 (76.4-92.2) 1.8 (.65-1.78) PC-3 (prostate cancer cells) 6.4 (5.61-7.37).9 (.48-1.53) NCI-H2126 (non-small cell lung cells) 5 (4.44-5.69) 1.1 (.72-1.79) OXALIPLATIN HT-29 (colorectal cancer cells) 6.7 (6.1-7.33).9 (.71-1.1) BICALUTAMIDE PC-3 (prostate cancer cells) 41.3 (36.3-47.7) 1.1 (.97-1.3) ANASTROZOLE MCF-7 (breast cancer cells) 1.6 (1.31-2.24).9 (.45-1.96) 78 March 212 Vol. 8 No. 1 Int J Biomed Sci www.ijbs.org

Figure 1a. Paclitaxel breast cancer cells (MCF-7) to vs 1 6.922.9747 6.468 to 7.47 6.922.9746.7815 6.468 to 7.47.1 1 1 1 1 breast cancer cells line (MCF-7) to vs 1.1 1 1 1 5.33.9435 4.446 to 5.698 5.33.9673 4.446 to 5.698.346 non-small lung cancer cells (NCI-H2126) to vs 1.1 Figure 1b. Docetaxel.1.1 1 1 1 1 3.138.9719 2.663 to 3.698 3.138.9721.163 2.663 to 3.698 NCI-H2126 (non-small lung cell line) Ovarian cancer cells (SKOV-3) to vs 1.1 Figure 1c. Docetaxel prostate cancer cells (PC-3) to vs 1.1 1 1 1 1 6.432.999 5.611 to 7.372 6.432.9291.241 5.611 to 7.372 PC-3 (prostate cancer cell line) 1 1 1 1 1 83.74.9567 76.4 to 92.22 83.74.9526 76.4 to 92.22.7329 SKOV-3 (ovarian cancer cell line) non-small lung cancer cells line (NCI-H2126) to vs 1 5.33.9435 4.446 to 5.698 5.33.9673 4.446 to 5.698.316 NCI-H2126 (non-small lung cell line) Figure 1d. Oxaliplatin Colorectal cancer cells (HT-29) to Oxaliplatin A vs.1 1 1 1 1 Oxaliplatin A 6.693.9761 6.13 to 7.339 6.693.9815 6.13 to 7.339.13 HT-29 (colorectal cancer cell line) 1 Oxaliplatin A prostate cancer cells (PC-3) to Bicalutamide A vs..5 1. 1.5 2. 2.5 3. Bicalutamide A 41.35.9516 36.32 to 47.7 41.35.9634 36.32 to 47.7.341 PC-3 (prostate cancer cell line) 1 Figure 1e. Oxaliplatin Figure 1f. Anastrozole Bicalutamide A breast cancer cells (MCF) to Anastrozole A vs 1 Anastrozole A.1.1 1 1 1 1 Anastrozole A 1.662.9578 1.318 to 2.246 1.662.9381 1.157 to 2.2.7334 Figure 1. Comparison of the dose-response curve of selected generic oncology products with originator. A similar dose-response was observed in increasing dose concentration of the drugs added to the cells in culture. The dose-response is similar and statistical analysis proved that the difference is not significant (p>.5). The IC was estimated from the curve generated. The lower the IC, the more cytotoxic the drug is to that specific cancer cell type. www.ijbs.org Int J Biomed Sci vol. 8 no. 1 March 212 79

liferation (cell growth) (7, 8). The MTT assay reported by Mosmann is a rapid and convenient colorimetric assay for cellular growth and survival in vitro. In this paper, the MTT assay was modified as a chemosensitivity test, and its potential was investigated. This method also has several advantages with respect to rapidity, quantitation, management of many samples, and cell number required for the assay. Application of this assay to chemosensitivity testing seems to be valuable and useful. MTT measures cell respiration and the amount of formazan produced is proportional to the number of living cells present in culture. An increase or decrease in cell number results in a concomitant change in the amount of formazan formed, indicating the degree of cytotoxicity caused by the drug. IC is the concentration of the tested drug able to cause the death of % of the cells and can be predictive of the degree of cytotoxic effect. The lower the value, the more cytotoxic is the substance. Figure 1 (a-f) shows the comparison of the IC of some chemotherapeutic drugs against human cancer cell lines. The MTT-based assay relies upon the cellular reduction of tetrazolium salts to their intensely colored formazans. The test is easy to perform in hematological malignancies and is adaptable for high throughput of samples, although there are some minor limitations in its application resulting from metabolic interference. This class of assay is highly accurate for predicting drug resistance, whereas its predictive value for drug sensitivity depends on the type of disease and drug or drug combination used (9). They have been found to predict clinical response to fluradabine FLD in B-CLL and were useful for predetermining clinical potential of a single drug or drug combination in AML patients (4). The premise of in vitro drug response testing is that it can provide the knowledge of the relative efficacy of the various agents used in standard therapy before an empiric in vivo trial. Cell-based assays may help in the selection of chemotherapeutic drugs with the greatest likelihood for clinical effectiveness, and in the exclusion of ineffective therapy. This can lead to improved disease management, response, survival and use of financial resources. This study demonstrated that selected generic oncology products tested has similar efficacy compared with originator. Both products showed comparable results as proven by both in vitro cytotoxicity assay and statistical analysis. ACKNOWLEDGMENT The authors would like to thank Bio-Onco Division of United Laboratories, Inc. for the support and supply of the materials used in the study. REFERENCES 1. Koch S, Mayer F, Honecker F, Schittenhelm M, et al. Efficacy of cytotoxic agents used in the treatment of testicular germ cell tumours under normoxic and hypoxic conditions in vitro. Br. J. Cancer. 23; 89: 2133-2139. 2. Alami N, Paterson J, Belanger S, Juste S, et al. Comparative analysis of xanafide cytotoxicity in breast cancer cell lines. Br. J. Cancer. 27; 97: 58-64 3. Carmichael J, DeGraff WG, Gazdar AF, Minna JD, et al. Evaluation of a tetrazolium based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 1987; 47: 936-942. 4. Hayon T, Dvilansky A, Sphilberg O, Nathan I. Appraisal of the MTTbased Assay as a Useful Tool for Predicting Drug Chemosensitivity in Leukemia. Leukemia and Lymphoma. Sept 23, 44 (11): 1957-1962. 5. PLA 1.2. Analysis of Parallel-Line Assays User Manual. Stegmann Systemberatung. 2. 6. Brown F, Mire-Sluis A. Developments in Biologicals. The Design and Analysis of Potency Assays for Biotechnology Products. Karger AGMedecine et Hygiene, Geneve. ISBN. 3-855-74-8. 22; 17. 7. Ulukaya E, Colakogullari M, Wood E. Interference by Anti-Cancer Chemotherapeutic Agents in the MTT-Tumor Assay. Chemotherapy. 24; : 43-. 8. Mosmann T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Meth. 1983; 65: 55-63. 9. Wilson AP. Cytotoxicity and Viability Assays in Animal Cell Culture: A Practical Approach, 3rd ed. (ed. Masters JRW). Oxford: Oxford University Press. 2; 1: 1-219. 8 March 212 Vol. 8 No. 1 Int J Biomed Sci www.ijbs.org