What is Hemifacial Microsomia? By Pravin K. Patel, MD and Bruce S. Bauer, MD Children s Memorial Hospital, Chicago, IL

Similar documents
Craniofacial Microsomia

EAR RECONSTRUCTION. Reconstruction of the ear is one of MICROTIA

treacher collins syndrome

Cleft-Craniofacial Center

The America Association of Oral and Maxillofacial Surgeons classify occlusion/malocclusion in to the following three categories:

Figure 1. Basic anatomy of the palate

Vertical relation: It is the amount of separation between the maxilla and

ORTHOGNATHIC SURGERY

Treatment of Hemifacial Microsomia: A Case Report

Head and neck cancer - patient information guide

CLEFT LIP and PALATE. Sahlgrenska University Hospital Göteborg, Sweden. Information about Cleft Lip and Palate. English version

Correction of Dentofacial Deformities (Orthognathic Surgery)

The embryological basis of craniofacial dysplasias D. E. POSWILLO

Hemifacial microsomia: a clinicoradiological report of three cases

Dr.ALI AL BAZZAZ PLASTIC SURGON CLEFT LIP AND PALATE

What is Craniosynostosis?

Ibelieve the time has come for the general dentists to

Craniofacial Microsomia: A Long-term Outcome of Early Mandibular Distraction Osteogenesis and Comprehensive Care at the Tawanchai Center

MICROTIA. The condition is a complex mix of cosmetic, functional, and often psychological difficulties. Microtia: Not only the ear.

A REPORT OF HEMIFACIAL MICROSOMIA IN A 7-YEAR OLD MALE

Oral and Maxillofacial Surgery Privileges REAPPOINTMENT Effective from July 1, 2015 to June 30, 2016

Distraction osteogenesis therapy in patients affected by Goldenhar syndrome: a case series

MEDPOR. Plastic surgery

Treatment of Mandibular Asymmetry by Distraction Osteogenesis and Orthodontics: A Report of Four Cases

MORPHOFUNCTIONAL APPROACH TO TREAT TMJ ANKYLOSIS RESECTION OF TMJ ANKYLOSIS. FACIAL ASYMMETRY CORRECTION Prof. Dr. Dr. Srinivas Gosla Reddy

Departmental Segregated Total Form for Plastic and Reconstructive Surgery

Developing Facial Symmetry Using an Intraoral Device: A Case Report

Remember from the first year embryology Trilaminar disc has 3 layers: ectoderm, mesoderm, and endoderm

Patient information booklet Orthognathic Surgery

Hemifacial Microsomia An Intermediate Form in Oculo-Auriculo- Vertebral Disorder Spectrum

UNIVERSITY OF MEDICINE AND PHARMACY GR. T. POPA - IASI FACULTY OF DENTAL MEDICINE

G l o s s a r y. The lack of closure of a normal body orifice or. passage

Medical Policy Oral and Maxillofacial Surgery and Procedures

INTERNATIONAL MEDICAL COLLEGE

Professor, Department of Craniofacial Orthodontics, Chang Gung Memorial Hospital,

ORTHOGNATHIC SURGERY

The treatment of dentofacial deformities is

TRAUMA TO THE FACE AND MOUTH

NEUROCRANIUM VISCEROCRANIUM VISCEROCRANIUM VISCEROCRANIUM

Oral and Maxillofacial Surgery Privileges

Core Curriculum Syllabus Emergencies in Otolaryngology-Head and Neck Surgery FACIAL FRACTURES

SURGICAL TREATMENT OF MANDIBULAR ASYMMETRY By MARIAN GORSKI, M.D., 1 and IRENA HALINA TARCZYNSKA, M.D. Maxillo-Facial Clinic, Warsaw Medical Academy

ANATOMY & PHYSIOLOGY I Laboratory Version B Name Section. REVIEW SHEET Exercise 10 Axial Skeleton

Tanta University. Faculty of Medicine. Plastic and Reconstructive Surgery Department. Doctorate Degree in Plastic Surgery

06/12/18. [Note: When orthognathic surgery is not a covered benefit, it is non-covered for any diagnosis, including sleep apnea.]

CHAPTER 8 SECTION 1.4 ORAL SURGERY TRICARE/CHAMPUS POLICY MANUAL M DEC 1998 SPECIAL BENEFIT INFORMATION

Class II. Bilateral Cleft Lip and Palate. Clinician: Dr. Mike Mayhew, Boone, NC Patient: R.S. Cleft Lip and Palate.

Postnatal Growth. The study of growth in growing children is for two reasons : -For health and nutrition assessment


Temporal region. temporal & infratemporal fossae. Zhou Hong Ying Dept. of Anatomy

Clinical Study Open Reduction of Subcondylar Fractures Using a New Retractor

Head and Neck Development and Malformations

McHenry Western Lake County EMS System Paramedic, EMT-B and PHRN Optional Continuing Education 2019 #1 Facial Trauma

Non-Discrimination Statement and Multi-Language Interpreter Services information are located at the end of this document.

Intraoral mandibular distraction osteogenesis in facial asymmetry patients with unilateral temporomandibular joint bony ankylosis

ORTHOGNATHIC (JAW) SURGERY

Case Reports Pediatric Mandibular Distraction Osteogenesis: The Present and the Future

Non-surgical management of skeletal malocclusions: An assessment of 100 cases

ORTHOGNATHIC (JAW) SURGERY

Unilateral intraoral vertical ramus osteotomy based on preoperative three-dimensional simulation surgery in a patient with facial asymmetry

ORTHOGNATHIC (JAW) SURGERY

A guide for patients considering orthodontics and jaw surgery (Orthognathic Treatment)

William F. Walsh, M.D. Katharine D. Wenstrom, M.D. In the early weeks of fetal development, parts of the lip or palate (the roof of the

Human Anatomy and Physiology - Problem Drill 07: The Skeletal System Axial Skeleton

Combined use of digital imaging technologies: ortho-surgical treatment

Anatomy and Physiology. Bones, Sutures, Teeth, Processes and Foramina of the Human Skull

Radiotherapy to the face or neck (shell)

Skeletal System -Axial System. Chapter 7 Part A

Non Syndromic Aplasia of Mandibular Condyle - A Case Report

Will the cleft lip and palate affect hearing? Introduction

Corporate Medical Policy

Infratemporal fossa: Tikrit University college of Dentistry Dr.Ban I.S. head & neck Anatomy 2 nd y.

Surgical Treatment of the Nasal-Maxillary Complex in Adolescents With Cleft Lip and Palate

Disclosures. Overview. Goals I. Goals II. Clefts, Syndromes, and Care from Prenatal to Adulthood

Case Study. Micrognathia Secondary to Pierre Robin Sequence. Treated with distraction osteogenesis using an internal mandible distractor.

Upper arch. 1Prosthodontics. Dr.Bassam Ali Al-Turaihi. Basic anatomy & & landmark of denture & mouth

Finite Element Modeling of Complete Unilateral Cleft and Palate using MIMICS

3. The Jaw and Related Structures

MAHP Orthognathic Surgery Guidelines. Medical Policy Statement. Criteria

Table of Contents: Neligan Plastic Surgery 4e. Volume 1: Principles. 1. Plastic Surgery and Innovation in Medicine

Orthognathic treatment of facial asymmetry due to temporomandibular joint ankylosis

Quantitative Determination of

Overcorrection in Mandibular Advancement*

Rotation-Advancement Principle. in Cleft Lip Closure. D. RALPH MILLARD, JR., M.D., F.A.C.S. Miami, Florida

North Oaks Trauma Symposium Friday, November 3, 2017

The Prevention of Maxillary Collapse in

Face. Definition: The area between the two ears and from the chin to the eye brows. The muscles of the face

CRANIAL RECONSTRUCTION SOLUTIONS

EVALUATION AND MANAGEMENT OF PATIENTS WITH CLEFT LIP AND PALATE

Principles of flap reconstruction in ORL-HN defects. O.M. Oluwatosin Department of Surgery

04 Development of the Face and Neck. Development of the Face Development of the neck

Head and Neck Examination

The resident will be assigned to be on call with the Oral and Maxillofacial service. Call will be set according to PARO guidelines.

Topic: Orthognathic Surgery Date of Origin: October 5, Section: Surgery Last Reviewed Date: December 2013

Severe Malocclusion: Appropriately Timed Treatment. This article discusses challenging issues clinicians face when treating

Mixed-reality simulation for orthognathic surgery

Cleft Lip and Palate A GUIDE FOR FAMILIES

Skeletal system. Prof. Abdulameer Al-Nuaimi. E. mail:

About Treacher Collins Syndrome By CommonLit Staff 2016

Transcription:

What is Hemifacial Microsomia? By Pravin K. Patel, MD and Bruce S. Bauer, MD Children s Memorial Hospital, Chicago, IL 773-880-4094 Early in the child s embryonic development the structures destined to become the various parts of the face may not develop normally. The left and right side of the face may not grow equally or the entire lower jaw may not keep pace with the rest of the developing face. Not uncommonly these deformities of the jaw are also associated with the underdevelopment of the ear and other soft tissues, the overlying facial muscles and skin of the face. The term Hemifacial or Craniofacial Microsomia is used to describe the condition when one side of the child s face is smaller and malformed and the term microtia (micro means small and otia means ear) is used. The term Goldenhar Syndrome may be used to describe this group of deformities when the eye (epibulbar dermoids) and spine (hemivertebra) are also affected. There is a broad spectrum to this condition and there are many names associated with it: Tessier Number 7 cleft, oral-mandibular auricular syndrome, first and second branchial arch syndrome, lateral facial dysplasia, and others. Although it is described as involving only one side (unilateral condition) of the face, it may also involve both sides (bilateral) of the face to different extent resulting in an asymmetrical bilateral hemifacial microsomia. How common is it and How or Why does it occur? At most craniofacial centers, the second most common deformity seen, after children with cleft lip and palatal deformities, is hemifacial Microsomia. It is said to occur in approximately 1 in 3500 to 1 in 5000 births. For families with one child affected with hemifacial microsomia, the likelihood of a second child with the same condition is less than 1%, and the risk is 3% for an adult with hemifacial microsomia to pass this on to his children. There are some variants of hemifacial microsomia where the likelihood of passing this to their children is significantly greater and a discussion with a geneticist is valuable. A genetic cause has not yet been identified and it is believed that most cases occur because of an event in the developing embryo that disrupts the normal development of the ear and jaw. In the first six weeks of embryonic life, the ear forms from the coalescence of six small bumps, and closely associated with the formation of the ear is the development of the lower jaw. Because of this close relationship, ear deformities are frequently associated with deformities of the lower jaw, the mandible. While how it may occur can be understood, exactly why it occurs remains unknown today. What are the anatomic and functional deformities? Each of the structures is involved to varying degrees of severity. In some children only the ear deformity is evident while in others the ear is normal but the jaw is affected. In most severe cases, all the soft tissue and bony structures are hypoplastic. The Soft Tissue Deformity The extent of soft tissue involvement may vary from the barely perceptible to severe deficiency. The structures affected include the skin, the muscles and nerve of facial expression, the salivary gland and the ear. It is the appearance of an abnormal external ear that is the most noticeable feature. Frequently it is no more than a lump on the side of the face and bears little resemblance to the structure we recognize as an ear. Along with the external ear deformity, the ear canal and the internal structures of the ear that allow for hearing may also be affected. While children with unilateral involvement have problems locating the direction from which sound

comes, most children do not need hearing aides as long as the unaffected ear has normal hearing. In some children the various branches of the facial nerve and the associated muscles which allow for facial expression may be affected. Various degrees of facial paralysis are seen. The muscles that work the lower jay and allow mastication are also affected and occasionally the muscles of the soft palate and tongue on the same side as well. The thickness of the skin and underlying tissue is deficient of hypoplastic. In some children there is a lateral cleft of the lip extending from the corner of the mouth toward the ear resulting in macrostomia, an enlarged opening of the mouth. The Bony Deformity Even though the upper facial bones (maxilla, zygoma, orbit and temporal bones) may be involved, it is the lower jaw, the mandible that is believed to be the keystone to this deformity. With continued asymmetrical growth of the mandible, the facial deformity worsens. The amount of deficiency (hypoplasia) of the mandible varies from being minimally involved to where there is complete absence of the vertical portion (ramus) and the various bony structures (zygomatic arch and condyle) of the temporomandibular joint. The chin is deviated to the involved side and becomes more noticeable with opening and closing of the mouth. This hypoplasia of the mandible affects the normal downward growth of the upper jaw, the maxilla, and this results in a cant to the teeth. In addition, the cheek bone (zygoma) may be deficient and the orbit may be malpositioned. How is it treated? These varied deformities require treatment in order to improve a child s ability to breathe, eat, speak, and hear. Because of the degree and the complexity of various structures involved, a coordinated approach is needed to reconstruct anatomically and functionally the individual elements if the face. Caring for children with hemifacial microsomia requires a multidisciplinary approach. This means a close co-operation of a number of pediatric specialists plastic surgeons, otolaryngologists, dentists, orthodontists, audiologists, speech and language pathologists, geneticist. Because of the great variability of presentation, treatment will necessarily vary and must be individualized. Nevertheless, the goals remain the same: to restore the normal shape and contour of the face by both correcting the bony deformity and the external ear and the soft tissue deficiency and the external ear and to restore the normal function of hearing, speech and bite to the extent possible. The key to reconstructing the facial skeletal deformity is correcting the cant of the mandibular asymmetry. While in some cases orthodontic devices can sometimes be used to stimulate mandibular growth, more often when the deformity is significant surgical procedures are needed. This means surgically repositioning the lower jaw to correct the cant and bring the chin to the center to a more symmetrical position to match the other side. On the side with the bony deficiency, the mandible can be lengthened by using a rib or by using a newer technique called distraction osteogenesis that gradually lengthens the bone by using a special device. Distraction osteogenesis may provide a means of treating many of these deformities both at an earlier age and with the potential for better long-term results than conventional treatment of using a rib graft typically done in early childhood. When the mandible is lowered, this creates what is called an open bite, since the upper jaw remains in its uncorrected canted position, the teeth of the upper jaw do not meet the teeth of the lower jaw on the affected side. The upper jaw is then gradually brought down to meet the lower jaw. Even with correction of the occlusal cant in childhood, both upper and lower jaw may need to be simultaneously repositioned in adolescence at a time when facial growth is completed. This requires cutting the bones of the upper and lower jaw, realigning the various elements of the facial bones and fixing them into their position with plates and screws. Reconstructing the ear is a surgical challenge. The ear is built from the child s own rib cartilage and requires a number of stages, frequently three to four operations. Reconstruction of the ear typically begins between ages 5 and 6 when most of the growth if the normal ear on the other side is nearly complete and the child s chest wall cartilage is large enough to sculpt the ear framework. The size and position of the normal ear is used as a template for the new ear.

The ear framework is placed in either a skin pocket buried under a thin layer of vascularized tissue from the scalp and then covered with a skin graft. The lobule remnant frequently present is repositioned more symmetrically and the tragus is constructed from the concha or the bowl of the other ear. Each of these may be either a separate surgery or integrated with other surgical procedures. Both the ear reconstruction and jaw reconstruction can frequently be integrated in childhood. Even after re-alignment of the facial skeleton there is not infrequently a soft tissue deficit. This requires transplanting a soft tissue from another part of the body to restore the symmetry in volume. Frequently the skin from the upper back (scapular region) is used. In order for this tissue to live, the small vessels measuring between 1 to 2 mm in size must be connected to the vessels in the face. This is done using a microscope and is called microvascular surgery

FIGURE 1 A, B, C, D, E and F [Clinical and CT Photographs] A child born with craniofacial / hemifacial microsomia, the left side of his face is smaller than the right. The left ear failed to develop, and the eye and jaw are canted. Reconstruction involves restoring the symmetry to the facial skeleton and soft tissue volume, along with building an ear. The CT scan illustrates the skeletal asymmetry. The left zygomatic arch and mandible are underdeveloped. The left upper jaw (maxilla) and orbit are affected as well. FIGURE 2 [Line Drawing] Reconstructing the ear involves several operations beginning typically between the ages of five and six. The child s chest wall cartilage is carved to give the overall form of the ear. Further surgery involves, elevating the ear from the side of the face and adding other finer elements to recreate the complicated structure we recognize as the external ear.

FIGURE 3 A, B, C [Clinical Photographs] Before and after in a child with microtia without the jaw asymmetry. FIGURE 4 A, B [Clinical Photographs] Before and after in a child with left hemifacial microsomia. In children with hemifacial microsomia in addition to microtia, the ear reconstruction is more complex and symmetry difficult to obtain because of the underlying bony deficiency. FIGURE 5 A, B, C, D, E [Clinical Photographs and Line Drawing] This child with Goldenhar Syndrome, a variant of hemifacial microsomia. Her eyes and cervical spine are involved. In older children orthognathic surgery is used to correct the facial skeletal asymmetry with various osteotomies of the jaws. The bones are repositioned, and when additional bone is needed, rib is used. Reconstruction must often wait until adolescence when facial growth is completed. [Line drawings are from Ian Munro, Operative Techniques in Plastic and Reconstructive Surgery, 1994.]

FIGURE 6 A, B [Clinical Photographs and Line Drawing] Distraction osteogenesis is used to lengthen the lower jaw similar to the way in which orthopedic surgeons correct a child s legs of different length by slowly stretching the bone that is there. This new technique in some children replaces the need for bone grafting and allows skeletal correction at an earlier age in a child. FIGURE 7 A, B [Clinical Photographs] This child was born with asymmetric hemifacial microsomia. Because of severe mandibular deficiency, she had difficulty breathing and needed a tracheostomy.

FIGURE 8 A, B [Clinical Photographs] Lengthening the lower jaw using distraction osteogenesis allowed her tracheostomy tube to be removed and helped to correct the skeletal asymmetry. She then underwent staged ear reconstruction. FIGURE 9 A, B, C [Line Drawing and\ Clinical Photographs] Using microvascular surgery, the skin and underlying tissues from her back was transferred to correct the soft tissue volume deficiency.

To be inserted in the text where appropriate PEDIATRIC SPECIALISTS Plastic and Reconstructive Surgeons Otolaryngologists (Ear-Nose-Throat Surgeons) Pediatric Dentist Orthodontists Speech & Language Pathologists Audiologists Geneticists Radiologists SURGICAL RECONSTRUCTION 1. Macrostomia (cleft lip) repair 2-4 months of age 2. Ear lobule repositioning (auricular dystopia) 2-4 months of age 3. Mandibular distraction 2-8 years of age 4. Ear reconstruction, staged 5-8 years of age Integrated 1. Costal cartilage ear framework graft Approach with temporoparietal fascial flap if needed 3 to 4 operations to 2. Helical rim elevation, skin grafting reconstruct an ear 3. Tragal reconstruction and additional detailing 5. Orthognathic surgery 4-18 years of age Midface osteotomy and asymmetric repositioning Mandibular ramal osteotomy and repositioning Anterior mandibular osteotomy and repositioning 6. Microvascular soft tissue augmentation 8 to 18 years of age [Additional procedures may include middle ear reconstruction in appropriate situations.] Staging, timing and specific surgical procedure will depend on the anatomic deformity, functional severity and psychosocial factors.