Determination of gene signatures to subgroup melanoma patients using novel branched DNA hybridization assays

Similar documents
Determination of gene signatures to subgroup melanoma patients using novel branched DNA hybridization assays

Impact of Prognostic Factors

microrna Presented for: Presented by: Date:

Genetic Testing: When should it be ordered? Julie Schloemer, MD Dermatology

I have no relevant conflicts of interest to disclose. John T. Seykora MD PhD Departments of Dermatology & Pathology and Laboratory Medicine

RNA preparation from extracted paraffin cores:

Prosigna BREAST CANCER PROGNOSTIC GENE SIGNATURE ASSAY

Prosigna BREAST CANCER PROGNOSTIC GENE SIGNATURE ASSAY

Table S2. Expression of PRMT7 in clinical breast carcinoma samples

> 6000 Mutations in Melanoma. Tests That Cay Be Employed. FISH for Additions/Deletions. Comparative Genomic Hybridization

A complete next-generation sequencing workfl ow for circulating cell-free DNA isolation and analysis

Corporate Medical Policy

FAQs for UK Pathology Departments

Update on Genetic Testing for Melanoma

Welcome. Nanostring Immuno-Oncology Summit. September 21st, FOR RESEARCH USE ONLY. Not for use in diagnostic procedures.

(A) PCR primers (arrows) designed to distinguish wild type (P1+P2), targeted (P1+P2) and excised (P1+P3)14-

Molecular Methods in the Diagnosis and Prognostication of Melanoma: Pros & Cons

The Avatar System TM Yields Biologically Relevant Results

Extracellular Vesicle RNA isolation Kits

Computer Science, Biology, and Biomedical Informatics (CoSBBI) Outline. Molecular Biology of Cancer AND. Goals/Expectations. David Boone 7/1/2015

Refining Prognosis of Early Stage Lung Cancer by Molecular Features (Part 2): Early Steps in Molecularly Defined Prognosis

6/22/2015. Original Paradigm. Correlating Histology and Molecular Findings in Melanocytic Neoplasms

HER2 FISH pharmdx TM Interpretation Guide - Breast Cancer

ExpressArt FFPE Clear RNAready kit

Page 1 of 3. We suggest the following changes:

FISH mcgh Karyotyping ISH RT-PCR. Expression arrays RNA. Tissue microarrays Protein arrays MS. Protein IHC

Applications of IHC. Determination of the primary site in metastatic tumors of unknown origin

Which melanoma patients benefit from genetic testing?

HER2/neu Amplification in Breast Cancer Stratification by Tumor Type and Grade

SUPPLEMENTARY APPENDIX

Genomic Medicine: What every pathologist needs to know

MEDICAL POLICY Gene Expression Profiling for Cancers of Unknown Primary Site

Supplementary Figure 1. SA-β-Gal positive senescent cells in various cancer tissues. Representative frozen sections of breast, thyroid, colon and

MAPK Pathway. CGH Next Generation Sequencing. Molecular Tools in Care of Patients with Pigmented Lesions 7/20/2017

1. The metastatic cascade. 3. Pathologic features of metastasis. 4. Therapeutic ramifications. Which malignant cells will metastasize?

SUPPLEMENTAL INFORMATIONS

Supplementary Figure 1

Molecular Probes Introducing 14 new probes

Profiles of gene expression & diagnosis/prognosis of cancer. MCs in Advanced Genetics Ainoa Planas Riverola

Fluxion Biosciences and Swift Biosciences Somatic variant detection from liquid biopsy samples using targeted NGS

CANCER. Clinical Validation of Breast Cancer Predictive Markers

Patricia Chevez-Barrrios AAOOP-USCAP /12/2016

Molecular Characterization of Breast Cancer: The Clinical Significance

HER2 status assessment in breast cancer. Marc van de Vijver Academic Medical Centre (AMC), Amsterdam

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

(A) RT-PCR for components of the Shh/Gli pathway in normal fetus cell (MRC-5) and a

Dr. dr. Primariadewi R, SpPA(K)

(a) Significant biological processes (upper panel) and disease biomarkers (lower panel)

AmoyDx TM BRAF V600E Mutation Detection Kit

1.The metastatic cascade. 2.Pathologic features of metastasis. 3.Therapeutic ramifications

Characterisation of structural variation in breast. cancer genomes using paired-end sequencing on. the Illumina Genome Analyser

MicroRNA expression profiling and functional analysis in prostate cancer. Marco Folini s.c. Ricerca Traslazionale DOSL

ncounter TM Analysis System

Dako IT S ABOUT TIME. Interpretation Guide. Agilent Pathology Solutions. ALK, ROS1 and RET IQFISH probes (Dako Omnis) MET IQFISH probe (Dako Omnis)

Next-Generation Immunohistochemistry: Multiplex tissue imaging with mass cytometry

7/6/2015. Cancer Related Deaths: United States. Management of NSCLC TODAY. Emerging mutations as predictive biomarkers in lung cancer: Overview

Implications of Progesterone Receptor Status for the Biology and Prognosis of Breast Cancers

Assessment of Risk Recurrence: Adjuvant Online, OncotypeDx & Mammaprint

High expression of fibroblast activation protein is an adverse prognosticator in gastric cancer.

Molecular classification of melanomas and nevi using gene expression microarray signatures and formalin-fixed and paraffin-embedded tissue

HER2 CISH pharmdx TM Kit Interpretation Guide Breast Cancer

Contemporary Classification of Breast Cancer

Springer Healthcare. Staging and Diagnosing Cutaneous Melanoma. Concise Reference. Dirk Schadendorf, Corinna Kochs, Elisabeth Livingstone

mirna Dr. S Hosseini-Asl

National Surgical Adjuvant Breast and Bowel Project (NSABP) Foundation Annual Progress Report: 2009 Formula Grant

MEDICAL POLICY Genetic and Protein Biomarkers for Diagnosis and Risk Assessment of

30 years of progress in cancer research

HER-2/neu amplification detected by fluorescence in situ hybridization in fine needle aspirates from primary breast cancer

The effect of temperature and incubation time on the analysis of highly sialylated glycans from bovine fetuin

Supplementary Information Titles Journal: Nature Medicine

CELL BIOLOGY - CLUTCH CH CANCER.

Regarding techniques of proteomics, there is:

Oncogenes and Tumor Suppressors MCB 5068 November 12, 2013 Jason Weber

Assessment of Breast Cancer with Borderline HER2 Status Using MIP Microarray

Diagnostic test Suggested website label Description Hospitals available

QuantiGene and View RNA Assays for cancer research. Relative light unit (RLU) x 10-3 *P<0.05 **P<0.01 ** *

Oncology Drug Development Using Molecular Pathology

Cancer cells in vitro

Carcinome du sein Biologie moléculaire. Thomas McKee Service de Pathologie Clinique Genève

Maram Abdaljaleel, MD Dermatopathologist and Neuropathologist University of Jordan, School of Medicine

SUPPLEMENTARY INFORMATION

ab Pancreatic cancer tissue array, 24 cases, 48 samples (2mm)

Supplementary Materials. for Garmy-Susini, et al, Integrin 4 1 signaling is required for lymphangiogenesis and tumor metastasis

Active surveillance: Shrinking the grey zone. Sommerakademi e Munich, June rd FOIUS Tel Aviv, July 2016

Update on Lymph Node Management in Melanoma

For Research Use Only Ver

The use of diagnostic FFPE material in cancer epidemiology research

For Research Use Only Ver

IntelliGENSM. Integrated Oncology is making next generation sequencing faster and more accessible to the oncology community.

Breast cancer: Molecular STAGING classification and testing. Korourian A : AP,CP ; MD,PHD(Molecular medicine)

SUPPLEMENTARY INFORMATION

Financial disclosures

Predictive Assays in Radiation Therapy

Product Contents. 1 Specifications 1 Product Description. 2 Buffer Preparation... 3 Protocol. 3 Ordering Information 4 Related Products..

An Overview of Melanoma. Harriet Kluger, M.D. Associate Professor Section of Medical Oncology Yale Cancer Center

MammaPrint, the story of the 70-gene profile

Michael T. Tetzlaff MD, PhD

RECENT ADVANCES IN THE MOLECULAR DIAGNOSIS OF BREAST CANCER

Evolution of Pathology

Transcription:

APPLICATION NOTE QuantiGene Plex and ViewRNA ISH Assays Determination of gene signatures to subgroup melanoma patients using novel branched DNA hybridization assays Poster presentation from the 4th International Symposium on Cancer Metastasis and the Lymphovascular System: Basis for Rational Therapy, May 2011 Gary K. McMaster, Botoul Maqsodi, Wilson Lew, Yunqing Ma, Razia Khan, Takuro Yaoi, John C. Moretto,* Brigitte Robert,* George Bers, Mohammed Kashani-Sabet,* and Stanley P. L. Leong* Background Melanoma is the most life-threatening neoplasm of the skin, with increasing incidence and mortality worldwide. The development of melanoma progresses through discrete stages that have well-known clinical and histological features; however, key underlying molecular events have not been clearly elucidated [1]. Identification of prognostic and predictive biomarkers will help to better understand the biological pathways of relevance; genomic studies of melanomas are necessary. Gene expression signatures have been successfully employed to distinguish cancer subtypes in many tumor types including melanoma [2]; however, melanin content of later-stage melanomas and age of stored formalin-fixed, paraffinembedded (FFPE) samples can make gene expression analysis difficult [3]. Here we describe two gene expression technologies to validate microarray data, that work either directly on melanoma tissue lysates using the Invitrogen QuantiGene Plex Assay, or by in situ hybridization (ISH) using the Invitrogen ViewRNA ISH Tissue Assay, which uses FFPE tissue sections (Figure 1). The two assays, based on second-generation branched-dna nanostructures, enable direct, specific, and quantitative detection of mrnas without RNA isolation, reverse transcription, or PCR amplification. 40 human samples (20 melanoma and 20 matched skin) } QuantiGene Plex Assay Tissue homogenates 62 genes tested ViewRNA ISH Tissue Assay In situ RNA detection 7 genes with best P values tested Figure 1. QuantiGene Plex and ViewRNA biomarker assay strategy melanoma and normal skin. * California Pacific Medical Center, Center for Melanoma Research and Treatment, 2340 Clay St., San Francisco, CA 94115.

QuantiGene Plex Assay overview Twenty matched-pair melanoma and normal skin samples were prepared for QuantiGene Plex Assays as follows: 5 mg wet-weight, snap-frozen tissue samples were homogenized in 300 µl Invitrogen QuantiGene Homogenization Solution plus Proteinase K. Homogenates were tested in 40 µl triplicate samples by the QuantiGene Plex Assay using two 36-gene panels as described in the user manual; each panel contained 31 target genes and 5 housekeeping genes. All samples were analyzed using a Luminex instrument, and all target gene expression was normalized to a geometric mean of the 5 housekeeping genes (PGK1, HPRT, TBP, ACTB, GUSB; see Figure 2). Sample preparation Target hybridization Signal amplification Detection Luminex beads with capture probes Pre-amplifier Streptavidinphycoerythrin (SAPE) Incubate beads with sample and probes Capture extenders (CE) Amplifier Label probe Hybridization and wash steps Read signal using a Luminex instrument 80 RNA targets per well Lyse sample Label extenders (LE) Blocking probes (BL) Lysate (with target RNA) Lysate (with target RNA) Figure 2. QuantiGene Plex Assay overview. The assay uses Luminex xmap technology to simultaneously measure as many as 80 genes in a single well.

ViewRNA ISH Tissue Assay overview Snap-frozen tissues were fixed in 10% buffered formalin for 24 hours, rinsed in water, dehydrated, and embedded in paraffin. Tissue sections (5 µm) were deposited on positively charged Fisher Scientific SuperFrost Plus slides (Cat. No. 12-550-15). All samples were tested in duplicate by the ViewRNA ISH Tissue Assay for the 7 genes with the best P values, including dapb (negative control), ACTB (positive control for all samples), and KRT5 (positive control for normal skin and negative control for metastatic melanoma). Sections were hybridized with probe and labeled with Fast Red, and nuclei were counterstained with DAPI as described in the user manual. 20x/NA 0.75 images were taken with an Olympus IX71 microscope and Olympus DP71 camera (Figure 3). Sample preparation Target hybridization Signal amplification Detection Target-specific probe set Incubate Pre-amplifier (PreAmp1 QF) Amplifier (Amp1 QF) Label probe (label probe AP) Fast Red substrate Visualize using brightfield or fluorescence microscope Fix cells and permeabilize Sequential hybridizations Figure 3. ViewRNA ISH assay. The ViewRNA ISH Tissue Assay, based on branched-dna signal amplification technology, has the sensitivity and robustness to measure single molecules of mrna in single cells.

Results Sixty-two genes related to melanoma have been categorized from the literature using RNA expression to determine the prevalence of these genes in 20 frozen sections of metastatic melanoma tissues, as compared to their corresponding normal skin counterparts. RNA expression was quantified directly from melanoma and normal skin tissue homogenates by the QuantiGene Plex Assay, based on branched DNA technology (Figure 4) [4,5]. Seven genes, demonstrating the most significant difference in expression between tissue types (P values 1.28 x 10 9 to 1.13 x 10 6), were found to be significantly associated with melanoma as compared to normal skin when analyzed by principal component analysis and cluster analysis (Figures 5 and 6). These 7 genes were validated using FFPE tissues from the same donors by the ViewRNA ISH Tissue Assay (Figure 7) [6]. Of the 7 genes, 4 genes were upregulated in the melanoma metastases versus normal skin tissues. These 7 candidate genes gave signal differences in both intensity and spatial recognition between melanoma tumor and normal skin tissue microenvironments. These genes support angiogenesis, immune response and inflammation, DNA replication, cell proliferation and motility, tissue invasion and progression, epidermis development, cell communication, and morphogenesis. Gene P value Gene P value BCL6 1.28 x 10 9 XRCC6 1.88 x 10 2 PTEN 1.03 x 10 8 DNAJA1 2.51 x 10 2 ARPC2 2.17 x 10 8 CDKN2A 3.31 x 10 2 CXCL12 1.37 x 10 7 NOS2 4.91 x 10 2 BRAF 4.18 x 10 7 CTNNB1 7.62 x 10 2 PCNA 6.33 x 10 7 VEGFC 1.02 x 10 1 CLEC3B 1.13 x 10 6 B3GAT1 1.19 x 10 1 MCM6 1.93 x 10 6 CEACAM1 1.20 x 10 1 NME1 2.39 x 10 6 CCNA1 1.43 x 10 1 EMX2 3.07 x 10 6 GMNN 1.72 x 10 1 MKI67 3.45 x 10 6 TRPM1 1.96 x 10 1 TP53 3.63 x 10 6 IL-8 2.37 x 10 1 MMP2 6.60 x 10 6 APAF1 2.82 x 10 1 NCOA3 1.84 x 10 4 MCAM 2.91 x 10 1 BIRC5 2.21 x 10 4 CD8A 3.22 x 10 1 PLAT 3.27 x 10 4 IL-10 3.23 x 10 1 FXYD5 3.67 x 10 4 MCM4 3.47 x 10 1 RGS1 4.13 x 10 4 TFAP2A 3.75 x 10 1 SPP1 4.45 x 10 4 FGF2 3.84 x 10 1 LICAM 1.70 x 10 3 BCL2L1 3.85 x 10 1 CDKN1A 2.13 x 10 3 XRCC5 3.86 x 10 1 IL-24 2.40 x 10 3 CXCR4 4.11 x 10 1 LYVE1 2.46 x 10 3 ICAM1 4.76 x 10 1 MITF 2.53 x 10 3 BCL2 5.23 x 10 1 TYR 5.06 x 10 3 ATF2 5.37 x 10 1 MAP2 7.88 x 10 3 WNT2 5.54 x 10 1 MLANA 8.26 x 10 3 BBC3 6.51 x 10 1 TNF 1.11 x 10 2 STMN2 8.32 x 10 1 CDH3 1.20 x 10 2 HSPA4 8.89 x 10 1 FN1 1.21 x 10 2 CD4 9.54 x 10 1 ITGB3 1.43 x 10 2 CNN3 9.98 x 10 1 Figure 4. Gene expression differences between melanoma and normal skin. Expression of all 62 genes was normalized to the geometric mean of 5 housekeeping genes, and the P value for each gene was calculated using a supervised Student s t-test. The genes are in the order of their P values; the best P values are in bold.

Principal component analysis of 7 genes pca2$x[.2] 4 2 0 2 4 Metastatic melanoma Normal PCA M17 5 0 5 10 pca2$x[.1] Gene P value BCL6 1.28 x 10 9 PTEN 1.03 x 10 8 ARPC2 2.17 x 10 8 CXCL12 1.37 x 10 7 BRAF 4.18 x 10 7 PCNA 6.33 x 10 7 CLEC3B 1.13 x 10 6 M17: Not melanoma; lymph node with pigmented histiocytes Figure 5. QuantiGene Plex mrna principal component analysis (PCA). Genes with the best 7 P values were analyzed using an unsupervised principal component analysis. Note: Sample 17 was not a melanoma sample (lymph node with pigmented histiocytes). Cluster analysis of 7 genes 0 2 4 6 8 10 M17 M25 M13 M4 M23 M39 M10 M30 M35 M8 M19 M31 M2 M27 M11 M37 M15 M21 M6 M1 M33 n18 n20 n22 n28 n40 n34 n5 n36 n38 n9 n14 n16 n24 n32 n7 n26 n3 n12 n29 Gene BCL6 PTEN ARPC2 CXCL12 BRAF PCNA CLEC3B P value 1.28 x 10 9 1.03 x 10 8 2.17 x 10 8 1.37 x 10 7 4.18 x 10 7 6.33 x 10 7 1.13 x 10 6 M17: Not melanoma; lymph node with pigmented histiocytes Figure 6. QuantiGene Plex mrna cluster analysis. Genes with the best 7 P values were analyzed using an unsupervised cluster analysis. Note: Sample 17 was not a melanoma sample (lymph node with pigmented histiocytes).

Normal skin: brightfield Normal skin: fluorescent Metastatic melanoma: brightfield Metastatic melanoma: fluorescent E. coli dapb: negative control Human ACTB: positive control Human KRT5: negative control (melanoma), positive control (normal skin) Human CXCL12 Human ARPC2 Human PCNA Figure 7. ViewRNA in situ mrna hybridization. 20x images of matched normal skin vs. melanoma skin. The ViewRNA probe sets used are indicated on the left.

Functions of the top 7 genes with the best P values BCL6 (B-cell CLL/lymphoma 6): Repressor of transcription; decreased expression associated with impaired prognosis [7] PTEN (phosphatase and tensin homolog): Signal transduction regulator; decreased expression associated with impaired prognosis [8] ARPC2 (actin-related protein 2/3 complex, subunit 2): Control of actin polymerization in cells; increased expression in malignant melanomas [9] CXCL12 (chemokine (C-X-C motif) ligand 12): Angiogenesis; increased expression is involved in melanoma progression [10] BRAF (v-raf murine sarcoma viral oncogene homolog B1): Cell division; increased expression in PCNA (proliferating cell nuclear antigen): DNA replication; increased expression correlated with increased risk of developing distant metastasis and impaired prognosis [12] melanoma and skin tissue homogenates, providing a fast, convenient workflow with precise and accurate simultaneous measurements of mrnas without purification and target amplification, streamlining the target validation. The ViewRNA ISH Tissue Assay is an in situ hybridization assay that has the sensitivity and robustness to measure single RNA molecules in single cells in human melanoma and skin. Sixty-two genes from the literature were validated: (1) QuantiGene Plex Assay expression data from 7 of the 62 genes were sufficient to discriminate melanoma from matched normal skin; (2) the ViewRNA ISH Tissue Assay showed both signal intensity and spatial resolution of these 7 validated genes within melanoma and normal skin tissue samples. Taken together, these results demonstrate the power of using branched-dna technologies to validate melanoma biomarkers. CLEC3B (C-type lectin domain family 3, member B): Cell-extracellular matrix interaction; decreased expression associated with primary tumors with low tumor thickness [13] Conclusions The QuantiGene Plex Assay works directly on human

References 1. Balch CM, et al. (2009) Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol 27(36):6199 6206. 2. Haqq C, et al. (2005) The gene expression signatures of melanoma progression. Proc Natl Acad Sci USA 102(17):6092 6097. 3. Conway C, et al. (2009) Gene expression profiling of paraffin-embedded primary melanoma using the DASL assay identifies increased osteopontin expression as predictive of reduced relapse-free survival. Clin Cancer Res 15(22):6939 6946. 4. Paik S, et al. (2008) HER2 status and benefit from adjuvant trastuzumab in breast cancer. N Engl J Med 358(13):1409 1411. 5. Hall JS, et al. (2011) Exon-array profiling unlocks clinically and biologically relevant gene signatures from formalin-fixed paraffin-embedded tumour samples. Br J Cancer 104:971 981. 6. Ting DT, et al. (2011) Aberrant overexpression of satellite repeats in pancreatic and other epithelial cancers. Science 331(6017):593 596. 7. Alonso SR, et al. (2004) Progression in cutaneous malignant melanoma is associated with distinct expression profiles: a tissue microarray-based study. Am J Pathol 164(1):193 203. 8. Mikhail M, et al. (2005) PTEN expression in melanoma: relationship with patient survival, Bcl-2 expression, and proliferation. Clin Cancer Res 11(14):5153 5157. 9. Kashani-Sabet M, et al. (2009) A multi-marker assay to distinguish malignant melanomas from benign nevi. Proc Natl Acad Sci USA 106(15):6268 6272. 10. Franco R, et al. (2010) CXCR4-CXCL12 and VEGF correlate to uveal melanoma progression. Frontiers Biosci (Elite Ed.) 2:13 21. 11. Curtin JA, et al. (2006) Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol 24(26):4340 4346. 12. Winnepenninckx V, et al. (2006) Gene expression profiling of primary cutaneous melanoma and clinical outcome. J Natl Cancer Inst 98(7):472 482. 13. Jaeger J, et al. (2007) Gene expression signatures for tumor progression, tumor subtype, and tumor thickness in laser-microdissected melanoma tissues. Clin Cancer Res 13(3):806 815. Find out more at thermofisher.com/quantigene For Research Use Only. Not for use in diagnostic procedures. 2017 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. Luminex and xmap are registered trademarks of Luminex Corporation. Olympus is a trademark of Olympus Corporation. COL31607 0417