Predictive Value of Foot Pressure Assessment as Part of a Population- Based Diabetes Disease Management Program

Similar documents
Risk factors for recurrent diabetic foot ulcers: Site matters. Received for publication 5 March 2007 and accepted in revised form

Clinical assessment of diabetic foot in 5 minutes

Use of Pressure Offloading Devices in Diabetic Foot Ulcers: Do We Practice What We Preach?

The Forefoot-to-Rearfoot Plantar Pressure Ratio Is Increased in Severe Diabetic Neuropathy and Can Predict Foot Ulceration

Predicting & Preventing Diabetic Ulcerations Utilizing Computerized Pressure Gait Analysis

Custom-made total contact insoles and prefabricated functional diabetic insoles: A case report

Surgical Off-loading. Reiber et al Goals of Diabetic Foot Surgery 4/28/2012. The most common causal pathway to a diabetic foot ulceration

Plantar Tissue Thickness Is Related to Peak Plantar Pressure in the High-Risk Diabetic Foot

Article. Reference. Relationship between foot type, foot deformity, and ulcer occurrence in the high-risk diabetic foot. LEDOUX, William R, et al.

The Diabetic Foot Screen and Management Foundation Series of Modules for Primary Care

Pressure and the diabetic foot: clinical science and offloading techniques

Increased pressures at

Shear-Reducing Insoles to Prevent Foot Ulceration in High-Risk Diabetic Patients

Skin Temperature Monitoring Reduces the Risk for Diabetic Foot Ulceration in High-risk Patients

Preservation of the First Ray in Patients with Diabetes

Diabetic Foot Problems

Diabetic/Neuropathic Foot Ulcer Assessment Guide South West Regional Wound Care Program Last Updated June 10,

Appendix H: Description of Foot Deformities

It is now 10 years since the last technical

Prediction of Diabetic Foot Ulcer Occurrence Using Commonly Available Clinical Information 1,2

AGONY FEET. The. of the. Prevention and management of diabetic foot ulcers

Diabetic foot: primary prevention and the patient in remission

Diabetic Foot-Evidence that counts

Evaluation and Optimization of Therapeutic Footwear for Neuropathic Diabetic Foot Patients Using In-Shoe Plantar Pressure Analysis

Diabetic Foot Pathophysiology. Professor Donald G. MacLellan Executive Director Health Education & Management Innovations

Lower-Extremity Amputation Risk Following Charcot Arthropathy and Diabetic Foot Ulcer

A comparison of the monofilament with other testing modalities for foot ulcer susceptibility

David G. Armstrong, DPM, MD, PhD 1 ; Adam L. Isaac, DPM 2 ; Nicholas J. Bevilacqua, DPM 3 ; Stephanie C. Wu, DPM, MS 4

Clinical Examination and Risk Classification of the Diabetic Foot

Forefoot Procedures to Heal and Prevent Recurrence. Watermark. Diabetic Foot Update 2015 San Antonio, Texas

Increased aeen9on. The biomechanics of the diabetic foot and the clinical evidence for offloading and footwear. Sicco A.

Helen Gelly, MD, FUHM, FCCWS

Open Access. Original Article

Epidemiology and Health Care Costs for Diabetic Foot Problems

Preventing Foot Ulcers in the Neuropathic Diabetic Foot. Glossary of Terms

Conservative Management to Restore and Maintain Function in Limb Preservation Patients

Diabetic/Neuropathic Foot Ulcer Assessment Guide South West Regional Wound Care Program Last Updated April 7,

DIABETES AND THE AT-RISK LOWER LIMB:

The Diabetic foot. diabetic. foot. the

Practical advice when treating feet

Reduction of Ankle Equinus Contracture Secondary to Diabetes Mellitus with Dynamic Splinting

2017 OPTIONS FOR INDIVIDUAL MEASURES: REGISTRY ONLY. MEASURE TYPE: Process

Incorporating Friction Management into Orthotic Therapy. Here s how to treat and prevent ulcers, calluses, and blisters. BY LAWRENCE HUPPIN, DPM

Diabetic Foot Ulcer Treatment and Prevention

Index. Note: Page numbers of article titles are in boldface type.

AWMA MODULE ACCREDITATION. Module Five: The High Risk Foot (Including the Diabetic Foot)

Model of Care for the Diabetic Foot

The Great Debate: Offloading Diabetic Foot Ulcers: TCC vs. CAM Walkers Gregory A Bohn, MD MAPWCA, ABPM/UHMS

DIAGNOSIS OF DIABETIC NEUROPATHY

The Role of Limited Joint Mobility in Diabetic Patients With an At-Risk Foot

2018 OPTIONS FOR INDIVIDUAL MEASURES: REGISTRY ONLY. MEASURE TYPE: Process

Temperature as a Causative Factor in Diabetic Foot Ulceration: A Call to Revisit Ulcer Pathomechanics

Working Under Pressure is Not Always. a Good Thing. Kathya M. Zinszer, DPM, MPH, MAPWCA. Geisinger Hospital System Orthopedics Department Danville, PA

High Risk Podiatry in a Vascular Setting; A new paradigm in Diabetic Foot Disease? Ereena Torpey Senior Podiatrist - FMC

1 of :19

Diabetic Feet. Juanita Muller

Delayed Primary Closure of Diabetic Foot Wounds using the DermaClose RC Tissue Expander

A Comparison of Two Diabetic Foot Ulcer Classification Systems. The Wagner and the University of Texas wound classification systems

Diabetic Foot Complications

Improved Sensitivity in Patients with Peripheral Neuropathy

10/19/2017. Shawn M Sanicola DPM, FACFAS Foot And Ankle Associates of WI. Consultant with J&J-Depuy-Synthesis

Diabetes Mellitus and the Associated Complications

Impact of Achilles Tendon Lengthening on Functional Limitations and Perceived Disability in People With a Neuropathic Plantar Ulcer

University of Huddersfield Repository

University of Groningen

Definitions and criteria

Aetiology Macroangiopathy occurs mainly distally ie Popliteal artery There is arterial wall calcification Microangiopathy is less common

A Post-hoc Analysis of Reduction in Diabetic Foot Ulcer Size at 4 Weeks as a Predictor of Healing by 12 Weeks

Address: Left Leg. other: Nails: thick yellow brittle fungus abnormal thick yellow brittle fungus abnormal

Peripheral Neuropathy

Off Loading, TCC, Shoe 을지의대을지병원 족부정형외과 이경태

Prediction of healing for post-operative diabetic foot wounds based on early wound area progression

Efficacy of Injected Liquid Silicone in the Diabetic Foot to Reduce Risk Factors for Ulceration. A randomized double-blind placebo-controlled trial

Foot Ulcer Workshop: Prevention and Management of Diabetic Foot Ulcers. Aparna Pal, Consultant Endocrinologist, RBH Keith Hilston, Podiatrist, BHFT

Project I - Background Worksheet. Team Members: Kira Brown, Paige Fallu. Clinical problem Diabetic Foot Ulcers

CHRONIC FOOT PROBLEMS FOOT and ANKLE BASICS

Kira Brown & Paige Fallu December 12th, 2017 BME 4013 ROAD: Removable Offloading Adjustable Device

Nonremovable, Windowed, Fiberglass Cast Boot in the Treatment of Diabetic Plantar Ulcers

Validation of Plantar Pressure Measurements for a Novel In-Shoe Plantar Sensory Replacement Unit

EVALUATION OF THE VASCULAR STATUS OF DIABETIC WOUNDS Travis Littman, MD NorthWest Surgical Specialists

Service Development Tool for the Assessment of Provision of Services for Patients with Diabetes Related Foot Problems

Diabetes Foot Screening and Risk Stratification Tool

Incidence of Skin Breakdown and Higher Amputation After Transmetatarsal Amputation: Implications for Rehabilitation

Biomechanics of the Diabetic Foot

The Diabetic Foot Latest Statistics

Jack W. Hutter DPM, FACFAS, C.ped

Diabetic Foot Exams. Comprehensive. The Foot & Ankle Center Located on the Campus of Johnston-Willis Hospital

COMPLICATIONS OF DIABETES

Quicker application Great comfort. TCC wound healing rate 1,2. Advancing the Gold Standard of Care. ESSENTIAL TO HEALTH

When Routine Care is Not Routine. David M Davidson, DPM Desert Foot 2014

RISK FACTORS STRATIFICATION IN100 PATIENTS WITH DIABETIC FOOT

Podiatry in Practice. Alan M. Singer, DPM, FACFAS

Diabetic Foot Ulcers. Care for Patients in All Settings

Tendon lengthening and fascia release for healing and preventing diabetic foot ulcers: a systematic review and meta-analysis

Introduction. Epidemiology Pathophysiology Classification Treatment

Diabetes Foot and Skin Care. Diabetes and the feet. Foot problems: Major cause of morbidity and mortality

THE PLANTAR PRESSURE STUDY IN DIABETIC PATIENTS AND ITS USE TO PROGNOSTICATE DIABETIC FOOT ULCERS.

Therapeutic Foot Care Certificate Program Part I: Online Home Study Program

Diabetes is a prevalent diagnosis in Americans

Transcription:

Epidemiology/Health Services/Psychosocial Research O R I G I N A L A R T I C L E Predictive Value of Foot Pressure Assessment as Part of a Population- Based Diabetes Disease Management Program LAWRENCE A. LAVERY, DPM, MPH 1,3 DAVID G. ARMSTRONG, DPM 1,2,4 ROBERT P. WUNDERLICH, DPM 1 1 JEFFREY TREDWELL, DPM ANDREW J.M. BOULTON, MD 4 OBJECTIVE To evaluate the effectiveness of dynamic plantar pressure assessment to determine patients at high risk for neuropathic ulceration. In choosing the cut point, we looked for an optimum combination of sensitivity and specificity of plantar pressure to screen for neuropathic ulceration. RESEARCH DESIGN AND METHODS A total of 1,666 consecutive individuals with diabetes (50.3% male) presenting to a large urban managed care based outpatient clinic were enrolled in this longitudinal 2-year outcome study. Patients received a standardized medical and musculoskeletal assessment at the time of enrollment, including evaluation in an onsite gait laboratory. RESULTS Of the entire population, 263 patients (15.8%) either presented with or developed an ulcer during the 24-month follow-up period. As expected, baseline peak plantar pressure was significantly higher in the ulcerated group than in the group who did not ulcerate (95.5 26.4 vs. 85.1 27.3 N/cm 2, P 0.001). There was also a trend toward increased pressure with increasing numbers of foot deformities, as well as with increasing foot risk classification (P 0.0001). Peak pressure was not a suitable diagnostic tool by itself to identify high-risk patients. After eliminating patients without loss of protective sensation, using receiver operating characteristic (ROC) analysis, the optimal cut point, as determined by a balance of sensitivity and specificity, was 87.5 N/cm 2, yielding a sensitivity of 63.5% and a specificity of 46.3%. CONCLUSIONS The data from this evaluation continue to support the notion that elevated foot pressure is an important risk factor for foot complications. However, the ROC analysis suggests that foot pressure is a poor tool by itself to predict foot ulcers. Neuropathic foot ulcers in individuals with diabetes are precipitated by a combination of pressure and cycles of repetitive stress (1,2). Identification, quantification, and mitigation of pressure and cycles of stress (activity) are thought to be important components in Diabetes Care 26:1069 1073, 2003 risk assessment and management of patients both before and after ulceration (3 8). Several investigators have evaluated populations of high-risk patients to identify strata of foot pressures that might assist in assessment. Boulton et al. (9) From the 1 Diabetex Research Group, Baltimore, Maryland; the 2 Department of Surgery, Southern Arizona Veterans Affairs Medical Center, Tucson, Arizona; the 3 Department of Orthopaedics, Loyola University, Chicago, Illinois; and the 4 Department of Medicine, Manchester Royal Infirmary, Manchester, U.K. Address correspondence and reprint requests to D.G. Armstrong, Department of Surgery, 3601 South Sixth Ave., Tucson, AZ 85723. E-mail: armstrong@usa.net. Received for publication 6 September 2002 and accepted in revised form 13 December 2002. Abbreviations: OR, odds ratio; ROC, receiver operating characteristic. A table elsewhere in this issue shows conventional and Système International (SI) units and conversion factors for many substances. reported that pressures were 110 N/cm 2 for every subject with a foot ulcer, suggesting a threshold pressure below which individuals would not ulcerate. Only 31% of individuals with diabetes without a history of ulceration demonstrated abnormal peak foot pressures based on the criteria of Boulton et al. However, it is not clear if a threshold pressure level exists because other reports have identified lower peak foot pressures at sites of neuropathic ulceration than those identified by Boulton et al. (8 10). For instance, diabetic subjects with peak plantar pressures 65 N/cm 2 have been shown to be at a six times greater risk for ulceration than subjects with pressures below this value (3). In a previous case-control study, our group was unable to identify a clear-cut threshold pressure that could be used to identify risk (11). Clearly, identification of an optimal peak plantar pressure cut point to help physicians stratify diabetic subjects by risk would be a valuable tool. Therefore, the purpose of this study was to determine, in a large patient sample, a practical combination of sensitivity and specificity of plantar pressure to screen for neuropathic ulceration. RESEARCH DESIGN AND METHODS We implemented a diabetes disease management lowerextremity screening and treatment program in San Antonio, Texas, in collaboration with two large physician groups. Patients with diabetes were identified from inpatient and outpatient administrative databases to identify patients with any 250 ICD-9-CM (International Classification of Diseases, Ninth Revision, Clinical Modification) code. The diagnosis of diabetes was confirmed by review of medical records, review of laboratory data, or communication with the primary care physician. This report includes data from the first 1,666 patients screened and followed for a mean of 24 months (range 20 29). DIABETES CARE, VOLUME 26, NUMBER 4, APRIL 2003 1069

Value of plantar foot pressure Lower-extremity screening involved a review of the patient s past medical history and a comprehensive lower-extremity physical examination. Patients were screened to identify risk factors such as history of lower-extremity pathology (previous foot ulceration, amputation, Charcot arthropathy, lower-extremity arterial bypass, or lower-extremity angioplasty), peripheral sensory neuropathy, peripheral vascular disease, foot deformities, or abnormal foot pressures. A lowerextremity sensory examination was conducted using a 10-g Semmes- Weinstein monofilament (Touch-Test Sensory Evaluator; North Coast Medical, Morgan Hill, CA) and vibration perception threshold testing (VPT Tester; Salix Medical, San Antonio, TX) using the methods previously described by Armstrong et al. (12). A diagnosis of peripheral sensory neuropathy with loss of protective sensation was based on either the inability to accurately detect the 10 sites evaluated with the Semmes- Weinstein monofilament on each foot or a vibration perception threshold level of 25 V. Lower-extremity vascular status was assessed by palpating the dorsalis pedis and posterior tibial pulses. If any foot pulse was not palpable or if the patient had a history of intermittent claudication or rest pain, arterial Doppler studies were performed. A diagnosis of peripheral vascular disease was defined as a nonpalpable foot pulse and an ankle-brachial index in either foot of 0.80. A musculoskeletal examination was performed by a staff podiatrist to identify the presence of hallux valgus, hammer or claw toes, tailor s bunions, hallux rigidus (dorsiflexion of the first metatarsophalangeal joint 50 ), and ankle equinus (dorsiflexion 0 ) (3,13). The presence of callus was identified on the sole and dorsum of the foot. In addition, peak foot pressures were assessed using Novel s EMED force-plate gait analysis system (Novell, Minneapolis, MN). Peak foot pressure was identified for each foot with a two-step method using previously described criteria (14,15). The system measures pressures at a resolution of 4 pixels per square centimeter over the entire surface of contact. The location and value of the largest (peak) focal pressure was recorded. For selecting the optimal diagnostic cutoff points on the scale of measurement, receiver operating characteristic (ROC) curves were used (16). Based on screening results, patients were then categorized by their risk of diabetic foot complications, and either preventative or acute care was provided based on specific risk-based protocols. Low-risk (foot risk category 0) patients were rescreened annually. Patients were considered high risk if they fell into categories 1 or higher. Risk category 1 included patients with neuropathy and no deformity. Category 2 included patients with neuropathy and deformity. Patients with a history of ulcer or amputation fell into risk category 3. This risk classification system is based on previously published systems by Armstrong et al., the International Working Group on the Diabetic Foot, and Peters and Lavery (17 19). Patients in the high-risk groups were scheduled for group diabetes education, evaluation by a pedorthist, and regular foot care by staff podiatrists. High-risk patients were scheduled for regular podiatry evaluation and treatment at least every 12 weeks. In addition, they were evaluated and fitted with therapeutic shoes and insoles by a certified pedorthist at the conclusion of their initial evaluation by the podiatrist. Insoles were replaced three times a year or as needed, and therapeutic shoes were replaced at least on a yearly basis. We used a t test for independent samples to evaluate the difference between continuous variables between groups and a 2 test with 95% CIs and odds ratios (ORs) to evaluate dichotomous variables. To compare differences between race and peak plantar pressures, risk level and plantar pressures, and increasing plantar pressures based on numbers of deformity, we used an ANOVA with a post hoc Tukey Studentized Range Test for multiple comparisons. We also used a 2 test for trend ( 2 trend) to assess the proportion of patients with increased plantar pressures who presented with one, two, and three forefoot deformities. For selecting the optimal diagnostic cutoff points on the scale of pressure measurement, ROC curves were used (16,20). This is a graphical method of representing sensitivity and specificity for a given test. For all analyses, we used an of 0.05. All values are expressed as means SD (21). RESULTS Of the entire population, 263 patients (15.8%) developed an ulcer during the 24-month follow-up period. Characteristics of the study population Table 1 Population descriptive characteristics N 1,666 Age (years) 69.1 11.1 % male 50.4 Weight (kg) 83.8 19.7 Duration of diabetes 11.1 9.5 (years) Peak plantar 86.6 27.4 pressure (N/cm 2 ) Vibration perception 22.5 11.7 threshold (V) Data are means SD unless otherwise indicated. are provided in Table 1. The distributions of pressure for patients with and without neuropathy show a bimodal distribution (Fig. 1). Individuals with neuropathy have a distribution that is significantly skewed to the right compared with the group without neuropathy (neuropathic group: skewness coefficient 4, nonneuropathic group: coefficient 0.1). We also evaluated differences in individuals with and without ulceration. As expected, peak plantar pressure was significantly higher in patients who developed ulcers during the follow-up period than in patients who did not develop ulcers (95.5 26.4 vs. 85.1 27.3 N/cm 2, P 0.001). We assessed peak plantar pressures based on level of foot risk using the International Diabetic Foot Risk Classification Scheme (18,19) (Fig. 2). Patients with neuropathy and deformity and patients with a history of ulceration or amputation had significantly higher peak plantar Figure 1 Distribution of foot pressures in neuropathic and nonneuropathic patients. The neuropathic group was significantly skewed toward higher plantar pressures (skewness coefficient 4.0, skewness 0.4, SE of skewness 0.1). The nonneuropathic group was not significantly skewed (coefficient 0.1). 1070 DIABETES CARE, VOLUME 26, NUMBER 4, APRIL 2003

Lavery and Associates (17.4 vs. 9.6%, P 0.0001, OR 2.0, 95% CI 1.4 2.9). A useful ROC curve should look like a hump up toward the upper left corner of the curve, and the area under the ROC curve should be significantly larger than 50%. The ROC curve from this study (Fig. 4) looks like a 45 line, and the area under the ROC curve is only 57%. Figure 2 Peak pressure by foot risk category. There was a trend toward higher foot pressures as the foot risk group classification increased in severity. pressures than patients without neuropathy (P 0.0001 for both associations). However, we could not detect a significant difference in peak plantar pressure between patients with a history of ulceration or amputation (risk group 3) and patients who had neuropathy and deformity without an ulcer or amputation history (risk group 2) (P 0.64). Patients with a history of ulceration or amputation had higher mean peak plantar pressures than patients with neuropathy alone (P 0.01). These data are illustrated in Fig. 2. The presence of structural forefoot deformity among patients with neuropathy had a strong correlation with elevated foot pressures. For instance, individuals with hallux valgus (bunion) deformity were 1.5 times more likely to have elevated foot pressures than individuals without deformity (41.2 vs. 32.6%, P 0.007, OR 1.5, 95% CI 1.1 1.9). Patients with hallux limitus (limited motion at the metatarsophalangeal joint) (59.6 vs. 49.6%, P 0.005, OR 1.5, 95% CI 1.1 2.0) and hammer or claw toe deformity (45.0 vs. 35.7%, P 0.002, OR 1.5, 95% CI 1.1 1.9) were also more likely to have elevated pressures than individuals without these deformities. It appears that multiple deformities may lead to increased pressures. There was a significant trend toward higher plantar foot pressures as the number of forefoot deformities increased ( 2 trend 18.6, P 0.0001). Furthermore, the magnitude of plantar pressure increased with increasing numbers of deformities (Fig. 3). The presence or absence of callus was also a factor associated with elevated pressure. In this population, individuals with callus had elevated foot pressures 2.4 times more frequently than individuals without callus (65.9 vs. 44.2%, P 0.0001, OR 2.4, 95% CI 1.9 3.2). Individuals with callus had 18.2% higher plantar forefoot pressure than individuals presenting without callus (92.7 26.4 vs. 78.4 26.4 N/cm 2, P 0.0001). After eliminating patients without a loss of protective sensation, using ROC analysis, the optimal cut point, as determined by a balance of sensitivity and specificity, was 87.5 N/cm 2, yielding a sensitivity of 63.5% and a specificity of 46.3% (Fig. 4). At peak pressures 87.5 N/cm 2, the positive predictive value was 17.4% and the negative predictive value was 90.4% (Fig. 5). Patients with pressures 87.5 N/cm 2 were twice as likely to develop an ulcer in the follow-up period CONCLUSIONS The data from this evaluation continue to support the notion that elevated foot pressure is an important risk factor for foot complications. In our study, individuals with diabetes and elevated foot pressures were two times more likely to develop a foot ulcer than subjects with lower foot pressures. As expected, foot pressures were higher in individuals with neuropathy, deformity, callus, and previous foot ulceration or amputation (22 25). However, the ROC curve suggests that foot pressure is a poor tool by itself to predict foot ulcers. As stated above, data in this article indicate that among individuals with diabetes and sensory neuropathy, peak plantar pressures alone are not an especially valuable tool for predicting foot ulceration. Sensitivities and specificities approaching 64 and 40% (Fig. 5) for peak pressures in the range described by our group and other authors as pathological suggest strongly that pressure cannot be the sole factor associated with development of skin breakdown. Clearly, there are other factors at play that increase predictive potential when combined with plantar foot pressure assessment. We think that issues such as pressure time integral (the time that the patient spends at a point of high pressure) or activity level (the number of repetitions at the point of high pressure per unit time) may Figure 3 The influence of forefoot deformity on plantar pressure. *Pressure with 0 deformities pressure with 2 deformities, P 0.001; 0 deformities 3 deformities, P 0.0001. **Pressure with 1 deformity pressure with 2 deformities: P 0.04; 1 deformity 3 deformities: P 0.005. DIABETES CARE, VOLUME 26, NUMBER 4, APRIL 2003 1071

Value of plantar foot pressure Figure 4 ROC curve for neuropathic subjects with diabetes. Area under the curve 0.57, P 0.03 (95% CI 0.51 0.62). be candidates for increasing predictive potential when combined with plantar pressure. There are a number of factors that contribute to the development of foot ulceration that we were unable to capture. The combination of neuropathy, repetitive injury, and elevated pressure and shear forces on the sole of the foot often results in unrecognized injury, inflammation, and damage to sequential tissue layers (26). Unfortunately, there are very few data to describe the effect of shear forces on the sole of the foot or to quantify the number of repetitive cycles of injury (foot steps per day) that put a patient at risk for ulceration. Without these additional factors (as mentioned before), the independent role of foot pressures remains incomplete. Most prevention treatments have logically focused on reduction of pressure because this has been the easiest factor to evaluate (2,7,13). Evaluating and modifying activity (steps per unit time) has generally not been addressed in any widespread fashion. The number of cycles of stress may be a more important factor than absolute pressure or sheer. Perhaps a metric combining pressure, shear and activity volume in the high-risk neuropathic foot will prove to be a more useful instrument. With the advent of computerized activity monitors, this information can be readily available to most consumers. This type of dynamic data would also allow patients to monitor their activity just as they might check their Figure 5 Plantar foot pressures and neuropathic foot ulceration: positive and negative predictive values., Positive predictive value (%); f, negative predictive value (%). Predictive value of a positive test is the proportion of patients with a positive diagnosis who develop the outcome (ulcer). This measures how well the diagnostic tool predicts the outcome. It appears that positive predictive value is poor. Predictive value of a negative test is the proportion of patients with a negative diagnosis who do not develop the outcome. The negative predictive value is good. This supports the conclusion that high peak pressure alone is not useful for screening high-risk patients. blood glucose on a home monitoring device. We believe that future studies evaluating large samples of patients using plantar pressure assessment and activity monitoring might yield a more clinically meaningful prognostic instrument as well as an additional tool for prevention. References 1. Boulton AJ: The pathogenesis of diabetic foot problems: an overview. Diabet Med 13:S12 S16, 1996 2. Cavanagh PR, Ulbrecht JS, Caputo GM: Biomechanical aspects of diabetic foot disease: aetiology, treatment, and prevention. Diabet Med 13:S17 S22, 1996 3. Lavery LA, Armstrong DG, Vela SA, Quebedeaux TL, Fleischli JG: Practical criteria for screening patients at high risk for diabetic foot ulceration. Arch Intern Med 158:158 162, 1998 4. Lavery LA, Vela SA, Lavery DC, Quebedaux TL: Reducing dynamic foot pressures in high risk diabetics with foot ulcerations: a comparison of treatments. Diabetes Care 19:818 821, 1996 5. Pham HT, Armstrong DG, Harvey C, Harkless LB, Giurini JM, Veves A: Screening techniques to identify the at risk patients for developing diabetic foot ulcers in a prospective multicenter trial. Diabetes Care 23:606 611, 2000 6. Armstrong DG, Abu Rumman PL, Nixon BP, Boulton AJM: Continuous activity monitoring in persons at high risk for diabetes-related lower extremity amputation. J Am Podiatr Med Assoc 91:451 455, 2001 7. Armstrong DG, Nguyen HC, Lavery LA, van Schie CH, Boulton AJM, Harkless LB: Offloading the diabetic foot wound: a randomized clinical trial. Diabetes Care 24: 1019 1022, 2001 8. Frykberg RG, Lavery LA, Pham H, Harvey C, Harkless L, Veves A: Role of neuropathy and high foot pressures in diabetic foot ulceration. Diabetes Care 21:1714 1719, 1998 9. Boulton AJ, Hardisty CA, Betts RP, Franks CI, Worth RC, Ward JD, Duckworth T: Dynamic foot pressure and other studies as diagnostic and management aids in diabetic neuropathy. Diabetes Care 6:26 33, 1983 10. Armstrong DG, Lavery LA, Bushman TR: Peak foot pressures influence healing time of diabetic ulcers treated with total contact casting. J Rehabil Res Dev 35:1 5, 1998 11. Armstrong DG, Peters EJG, Athanasiou KA, Lavery LA: Is there a critical level of plantar foot pressure to identify patients at risk for neuropathic foot ulceration? J Foot Ankle Surg 37:303 307, 1998 1072 DIABETES CARE, VOLUME 26, NUMBER 4, APRIL 2003

Lavery and Associates 12. Armstrong DG, Lavery LA, Vela SA, Quebedeaux TL, Fleischli JG: Choosing a practical screening instrument to identify patients at risk for diabetic foot ulceration. Arch Intern Med 158:289 292, 1998 13. Armstrong DG, Stacpoole-Shea S, Nguyen HC, Harkless LB: Lengthening of the Achilles tendon in diabetic patients who are at high risk for ulceration of the foot. J Bone Joint Surg (Am) 81A:535 538, 1999 14. Quaney B, Meyer K, Cornwall MW, McPoil TG: A comparison of the dynamic pedobarograph and EMED systems for measuring dynamic foot pressures. Foot Ankle Int 16:562 566, 1995 15. Meyers-Rice B, Sugars L, McPoil T, Cornwall MW: Comparison of three methods for obtaining plantar pressures in nonpathologic subjects. J Am Podiatr Med Assoc 84:499 504, 1994 16. Tsuji L, Nakamoto K, Hasegawa T, Gohdes DM, Inawashiro H, Fukao A: Receiver operating characteristic analysis on fasting plasma glucose, HbA 1c, and fructosamine on diabetes screening. Diabetes Care 14:1075 1077, 1992 17. Armstrong DG, Lavery LA, Harkless LB: Who is at risk for diabetic foot ulceration? Clin Podiatr Med Surg 15:11 19, 1998 18. International Working Group on the Diabetic Foot: International Consensus on the Diabetic Foot. Maastricht, The Netherlands, International Working Group on the Diabetic Foot, 1999 19. Peters EJ, Lavery LA: Effectiveness of the diabetic foot risk classification system of the International Working Group on the Diabetic Foot. Diabetes Care 24:1442 1447, 2001 20. Bortheiry AL, Malerbi DA, Franco LJ: The ROC curve in the evaluation of fasting capillary blood glucose as a screening test for diabetes and IGT. Diabetes Care 11: 1269 1272, 1994 21. Kirkwood BR: Essentials of Medical Statistics. Oxford, U.K., Blackwell, 1988 22. Boulton AJ, Betts RP, Franks CI, Newrick PG, Ward JD, Duckworth T: Abnormalities of foot pressure in early diabetic neuropathy. Diabet Med 4:225 228, 1987 23. Boulton AJ, Betts RP, Franks CI, Ward JD, Duckworth T: The natural history of foot pressure abnormalities in neuropathic diabetic subjects. Diabetes Res 5:73 77, 1987 24. Armstrong DG, Lavery LA: Plantar pressures are higher in diabetic patients following partial foot amputation. Ostomy Wound Manage 44:30 32, 34, 36 passim, 1998 25. Armstrong DG, Lavery LA: Elevated peak plantar pressures in patients who have Charcot arthropathy. J Bone Joint Surg Am 80:365 369, 1998 26. American Diabetes Association: Consensus Development Conference on Diabetic Foot Wound Care (Review Article). Diabetes Care 22:1354 1369, 1999 DIABETES CARE, VOLUME 26, NUMBER 4, APRIL 2003 1073