Research Article Determination of Aflatoxin B1 Levels in Organic Spices and Herbs

Similar documents
Prevalence of Aflatoxin Contamination in Herbs and Spices in Different Regions of Iran

Validation of the Total Aflatoxin ELISA test in cereals, peanut and feed.

Presence of Aflatoxin M1 in Raw Milk for Human Consumption in Palestine

RIDA QUICK Aflatoxin. Immunchromatographischer Test zum Nachweis von Aflatoxin. Immunochromatographic test for the detection of Aflatoxin

STUDY OF AFLATOXINS CONTAMINATION IN WHEAT AND MAIZE FROM ALBANIA

VALIDATION REPORT Ochratoxin A ELISA (According to the Commission Regulation (EU) No 519/2014)

Alternative Methods for the Control of Mycotoxins

ANALYTICAL METHODS IN DETERMINING AFLATOXIN B1 IN FOOD

Overview of Mycotoxins in India with special reference to Aflatoxins. F Waliyar

Aflatoxins in Malaysian food

Slaven Zjalić, Department of ecology, agronomy and aquaculture, University of Zadar, Croatia

Incidence of aflatoxins and fumonisins in cereal food from Serbian market

Risk Assessment Studies Report No.5. Chemical Hazards Evaluation AFLATOXIN IN FOODS. April Food and Environmental Hygiene Department HKSAR

East and Central African Journal of Pharmaceutical Sciences Vol. 12 (2009) 47-51

Monitoring & Surveillance Series

Ochratoxin-A: Its Cancer Risk and Potential for Exposure

Introducing The One and Only Super Antioxidant Smoothie Booster

Aflatoxin Contamination in Foods and Foodstuffs

Research Article Determination of Aflatoxin M 1 in Milk by ELISA Technique in Mashad (Northeast of Iran)

Aflatoxin B 1 production in chillies (Capsicum annuum L.) kept in cold stores

UNOFFICIAL TRANSLATION

STUDIES ON FUNGAL POPULATION OF CUMIN (NIGELLA SATIVA L.) FROM DIFFERENT PARTS OF MARATHWADA.

An integrated approach to mycotoxin testing in the poultry feed chain. Bankok, March 2010

Application Note. Introduction. Analysis of Total Aflatoxins in Food by HPLC and UHPLC

Aflatoxin Contamination in Wheat Flour Samples from Golestan Province, Northeast of Iran

INCIDENCE OF AFLATOXIN CONTAMINATION AND ASSESSMENT OF PHYSICO-CHEMICAL PARAMETERS IN BREAKFAST CEREALS

Aflatoxins pose a serious health risk to humans and livestock

VALIDATION REPORT (According to the Commission Regulation (EU) No 519/2014) AFLATOXIN B1 ELISA

HPLC, CHARM II AND ELISA: ADVANTAGES AND DISADVANTAGES FOR THE ANALYSIS OF TETRACYCLINES IN HONEY

PEANUT KERNEL : MAXIMUM LEVEL OF AFLATOXIN

Research Area 2 Plant based Antimicrobial compounds against Aspergillus flavus and A. parasiticus in Peanuts

Development and Validation of an UPLC-MS/MS Method for Quantification of Mycotoxins in Tobacco and Smokeless Tobacco Products

Ochratoxin A In Freshly Harvested and Stored Durum and Hard Red Spring Wheat

Medicinal Plants used for Tea, Mycological and Mycotoxicological Potential Sorana MATEI, Andrei SZAKACS, Adrian MACRI*

Nanofeed Detector A Simple Gadget that Protects the Health of Farm Animals and it s Industry from Contaminated Feeds. Dr. Gil Nonato C.

Preliminary report of Dehulling effect on the occurrence and distribution of Aspergillus flavus in maize grains stored in Mubi market

Genetic Enhancement of Groundnut for Resistance to Aflatoxin Contamination

Mycotoxins, MRL s & food chain contaminations

mycotoxin-contaminated contaminated food or feed

Extraction of Multiple Mycotoxins From Grain Using ISOLUTE Myco prior to LC-MS/MS Analysis

Legal Requirements for the Control of Contaminants in Herbal Medicinal Products and Related Areas

Accurate quantification of regulated mycotoxins by UHPLC-MS/MS and screening for 200+ mycotoxins in food and feed.

Survey of market samples of food grains and grain flour for Aflatoxin B 1 contamination

Correspondence author:

Reduction of mycotoxins in cereals through an Integrated Crop Management approach

Fate of T-2/HT-2 toxins during durum wheat processing. Occurrence of T-2/HT-2 toxins in durum wheat and pasta

THE VARIATION OF AFLATOXINE IN FEW FODDER AND FOOD PRODUCTS IN BRASOV COUNTY. Abstract

MATERIALS AND METHODS 68

SCIENTIFIC OPINION. Statement of the Panel on Contaminants in the Food Chain. (Question No EFSA-Q )

Fusarium species and Deoxynivalenol in maize product of Moqan region

APPLICATION NOTE Determination of Aflatoxin M1 via FREESTYLE ThermELUTE with Online HPLC-Measurement

Original Herbs Co. Medicinal Herbs Spices Herbs seeds From our fields in Egypt

Results of border checks carried out by the EU Member States and Norway on imports of feed and food of non-animal origin subject to increased level

Fumonisins are a significant health risk to livestock, and potentially also to humans , B 2

AFLATOXIN M1 CAT. NO. 961AFLMO1M

IN VIVO TRIALS ON RUMINANTS

Comparative study of aflatoxins in brown rice samples of local and import quality

International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July ISSN

Determination of Aflaxtoxin in Some Edible Oils Obtained from Makurdi Metropolis, North Central Nigeria

MYCOTOXIN PREVENTION CLUSTER

EUROPEAN COMMISSION ENTERPRISE AND INDUSTRY DIRECTORATE-GENERAL. EudraLex The Rules Governing Medicinal Products in the European Union

Effects of Four Essential Oils on the Growth of Aflatoxin Producing Fungi

MYCOTOXINS INCIDENCE IN WHEAT CULTURE

Aflatoxin Material Properties

Possible climate change impact on occurrence of Aspergillus flavus on spelt wheat in Serbia

EVALUATION OF MICROBIOLOGICAL PARAMETERS OF CEREALS EN ROUTE OF PRESERVATION PROCESS

Food Safety Issues Relating to. products. ITC Ltd. Foods Division

Increased checks on import of food of non-animal origin. Overview Controls carried out by the EU Member States. Food Safety

Food Safety Risk Assessment and Risk Management at a European Level

Aflatoxin B1 (In Food)

Nutrition and Food Sciences Research Vol 3, No 3, Jul-Sep 2016, pages: 25-30

The Problems of Mycotoxins in Dairy Cattle Rations

RISTEK. Risk-Based Approach for Aflatoxin Control. Roy Sparringa. State Ministry of Research and Technology

HOME FOOD PROCESSING FACT SHEET

R-Biopharm news. RIDA SMART APP: The simple mycotoxin analysis in your hand. New

National reporting 2014 Pesticide residues in food Federal Republic of Germany

Food Safety Produce Rules How Preventive Controls work From Farm to Fork

Beverages. Ensure safe and high quality goods

AFLATOXIN: OCCURRENCE, PREVENTION AND GAPS IN BOTH FOOD AND FEED SAFETY IN NORTH CAROLINA. Jennifer L. Godwin. Food and Feed Administrator

Mycotoxin Testing Solutions

Investigation of Farm Gate Cow Milk for Aflatoxin M 1

Mycotoxins in high moisture grain silages and ensiled grain by-products

Mycoflora epidemiology in postharvest maize along different actors in Jimma Zone, SW Ethiopia: Implication for Mycotoxins producing fungi management

Washington State Department of Agriculture Organic Program

Extraction of Multiple Mycotoxins From Nuts Using ISOLUTE Myco prior to LC-MS/MS Analysis

Aflatoxin B 1 in chilies from the Punjab region, Pakistan

MYCOTOXIN PRODUCT LINE MULTI-RESIDUE MYCOTOXIN ANALYSIS PHOTOCHEMICAL REACTOR AUTOMATED SAMPLE CLEAN-UP IMMUNOAFFINITY SAMPLE CLEAN-UP ELISA TEST KITS

Overview of European Legislation on Food Contaminants. Dr Iona Pratt, Food Safety Authority of Ireland

EUROPEAN COMMISSION ENTERPRISE AND INDUSTRY DIRECTORATE-GENERAL. EudraLex The Rules Governing Medicinal Products in the European Union

Research Article Mycobiota and Natural Incidence of Aflatoxins, Ochratoxin A, and Citrinin in Indian Spices Confirmed by LC-MS/MS

Fusarium-toxins. Frans Verstraete European Commission DG Health and Consumer Protection

CULINARY HERBS AND SPICES

TOXIMet. Advanced, globally proven mycotoxin testing system. enhancing food safety from producer to consumer

OCCURRENCE OF AFLATOXIN M1 IN DAIRYPRODUCTS CIRCULATED IN JORDAN MARKET USING ELISA

Asian Journal of Food and Agro-Industry ISSN Available online at

BLACKLISTED JOURNALS BY MALAYSIA MINISTRY OF EDUCATION (MOE)

AFLATOXIN Most references to mycotoxin, unspecified, refer to Aflatoxin.

Safety Assessment of Paprika Extract EXS0570IND. Contact person(s): Céline Burgaud; Pharmanager Ingredients Céline Pozza, Pharmanager development

Aflatoxin B1 in rice bran as feed material and following contamination of consumer milk in Sweden: case study

Transcription:

The Scientific World Journal Volume 2013, Article ID 874093, 4 pages http://dx.doi.org/10.1155/2013/874093 Research Article Determination of Aflatoxin B1 Levels in Organic Spices and Herbs Halil Tosun 1 and Recep Arslan 2 1 Department of Food Engineering, Faculty of Engineering, Celal Bayar University, Manisa 45140, Turkey 2 Graduate School of Natural and Applied Science, Celal Bayar University, Manisa 45140, Turkey Correspondence should be addressed to Halil Tosun; haliltosun@hotmail.com Received 27 March 2013; Accepted 12 May 2013 Academic Editors: E. Garcia-Moruno and D. Zhou Copyright 2013 H. Tosun and R. Arslan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Organically produced spices and herbs were analyzed for determination of aflatoxin B1 (AFB1) by ELISA using immunoaffinity column. For this purpose 93 organic spices and 37 organic herbs were randomly selected from organic markets and organic shops in Turkey. AFB1 was detected in 58 organic spice and 32 organic herb samples. Among organic spice samples, the maximum value was detected in cinnamon sample (53μg/kg). AFB1 was not detected in thyme samples. AFB1 levels of 41 organic spice samples were above the EU regulatory limit (5 μg/kg). Among organic herb samples the highest concentration of AFB1 (52.5 μg/kg) was detected in a rosehip sample. AFB1 levels of 21 organic herb samples were above the regulatory limits of the European Union. These results showed that more stringent measures must be taken for the prevention of mold contamination in the production of organic spices and herbs. 1. Introduction Because of their preharvest, postharvest, and storage conditions, spices and herbs can be contaminated with mycotoxins. It has been reported that 5 10% of agricultural products in the world are contaminated by moulds to the extent that these products cannot be consumed by humans and animals [1]. Spices are largely produced in countries with tropical climates that have high range of temperature, humidity, and rainfall [2]. Furthermore, improper storage, extended drying times, and elevated moisture contents may cause development of mycotoxins in spices and herbs. Aflatoxin is the most common mycotoxins in spices, and aflatoxin contamination in spices has been studied by several researches [3 5]. Aflatoxins are mycotoxins produced by the fungi Aspergillus flavus, Aspergillus parasiticus, andaspergillus nomius. These mycotoxins are teratogenic, mutagenic, and carcinogenic in humans and animals [6, 7]. The most toxic and carcinogenic member of this family, aflatoxin B1, is acutely poisonous, highly mutagenic, and intensely carcinogenic in rodents and other animals and is classified by the International Agency forresearchoncancerinthegroupofmoleculesthatare carcinogenic for both human, and animals [8, 9]. Organic foods are grown without synthetic antifungals [10]. In fact organic crops are claimed to be more vulnerable to mold contamination because synthetic fungicides cannot be used in their production. TheobjectiveofthisstudywastoinvestigateAFB1contamination in organic spices and herbs. 2. Materials and Methods 2.1. Sample Collection. Between May 2010 and May 2011, 93 organic spice and 37 organic herb samples were randomly obtained from organic product markets and organic shops from Turkey. All the samples have organic food label. Samples were stored at 4 C until further analysis. 2.2. Analysis of AFB1 by ELISA. Preparation of the samples and separation with immunoaffinity column procedure were performed according to the method described by R- Biopharm [11].

2 The Scientific World Journal Organic spices n Table 1: Aflatoxin B1 content of organic spice samples. Positive samples n (%) No. of samples above EU limit n (%) Range of AFB1 concentration in positive Mean of positive Laurel leaves 7 2 (29) 2 (29) 16.5 20.3 18.4 Cumin 8 5 (62) 2 (25) 0.5 26.3 10.7 Mint 5 4 (80) 2 (40) 4.2 26.7 14.7 Rosemary 6 3 (50) 2 (33) 3.3 10 6.7 Basil 6 6 (100) 2 (33) 0.8 18.1 7.5 Cinnamon 5 5 (100) 5 (100) 49.4 53 51.6 Poppy seeds 7 3 (43) 0 (0) 0.98 3.2 2.4 Thyme 6 0 (0) 0 (0) ND ND Ginger 4 3 (75) 2 (50) 3.8 23.1 16.5 Anise 6 4 (67) 3 (50) 4.9 8.4 7.1 Sumac 10 8 (80) 7 (70) 51.2 52.5 45.8 Black pepper 6 4 (67) 4 (67) 24.6 30 27.6 Red pepper flakes 7 4 (57) 3 (43) 3.5 30.3 23.4 Red pepper 8 6 (75) 6 (75) 23.4 46.6 41.5 Coriander 2 1 (50) 1 (50) 15.6 15.6 15.6 Total 93 58 (62) 41 (44) ND: not detected. 2.3. Evaluation of Data. AFB1 levels of samples were evaluated according to the Gen5 computer program prepared by Biotek Instruments, Inc. The detection limit of the kit for spices and herbs was 0.025 μg/kg and recovery rate was 70 110%. 2.4. Preparation of Samples. 5 g of ground sample was added to 25 ml methanol (70%), and the solution was extracted by shaking for 10 min. The extract was filtered through a fluted paper filter, and 15 ml distilled water was added to 5 ml of the filtered solution. Afterwards, 0.25 ml Tween 20 was added to the filtered solution, and it was stirred for 2 min. 2.5. Separation with Immunoaffinity Column. The immunoaffinitycolumnwasrinsedwith2mldistilledwater,and then the column was filled with approximately 1 ml prepared sample solution. Suitable adapter was attached on top of the column, and syringe was used as sample reservoir. Then, syringewasfilledwiththeresidualsamplesolution.sample extract was passed slowly and continuously through the column (flow rate: approximately 1 drop/sec). The column was rinsed with 10 ml distilled water, and the passed solution was discarded. The column was dried by passing air through thecolumnfor10s.thesyringewasremoved,andacleanand closable vial directly was placed below the column. 0.5 ml of methanol was passed slowly through the column (flow rate: approximately 1 drop/sec). Toxin containing eluate was diluted tenfold with distilled water (50 μl + 450 μl distilled water) and used 50 μlperwellintheassay. 2.6. Test Procedure. According to Ridascreen Aflatoxin B1 (Art No: 1211) test kit manual, 50μL standard or prepared samples was pipetted into separate wells in duplicate. Then, 50 μl ofenzymeconjugateand50μl of anti-aflatoxin antibody solution were added to each well, mixed gently, and incubated for 30 min at 25 Cinthedark.Theliquidwas pouredoutofthewells,andthenwellswerewashedtwice with250μl washingbuffer.100μl substrate/chromogen was addedtoeachwell.platewasincubatedfor15minat25 Cin the dark. Finally 100 μl of stop solution was added to each well, and the absorbance was measured at 450 nm (ELx 800, BioTek Instruments, USA). 3. Results and Discussion The AFB1 content of the organic spices and organic herbs is summarized in Tables 1 and 2. AFB1 was detected in 58 of 93 organic spice samples (62%) and 32 of 37 organic herb samples(86%).afb1levelsin41(44%)of93organicspice samples and 21 (57%) of 37 organic herb samples were above the regulatory limit, which had been set at 5 μg/kg for AFB1 in European Commission [12]. AFB1 was detected in all the basil, cinnamon, camomile, and sage samples. AFB1 was not detected in any of the thyme samples analyzed. In organic spices, cinnamon had the highest mean concentration of AFB1 (51.6 μg/kg) while in organic herbs, rosehip had the highest mean concentration of AFB1 (44.5 μg/kg). The popularity of organic foods continues to grow dramatically. Consumers purchasing organic foods may do so for a number of reasons, including perceived benefits to the environment, animal welfare, and worker safety and the perception that organic foods are safer and more nutritious [10]. This perception is mainly associated with organic food production techniques. In organic food production the use

The Scientific World Journal 3 Organic herbs n Positive samples n (%) Table 2: Aflatoxin B1 content of organic herb samples. No. of samples above EU limit n (%) Range of AFB1 concentration in positive samples (μg/ kg) Mean of positive Linden 5 3 (60) 1 (20) 0.05 40.6 14 Fennel seeds 7 6 (86) 3 (43) 1.1 11 5.7 Camomile 10 10 (100) 9 (90) 3.4 38.9 28.7 Sage 9 9 (100) 4 (44) 0.2 32.2 8.9 Rosehip 6 4 (67) 4 (67) 20.7 52.5 44.5 Total 37 32 (86) 21 (57) of synthetic fertilizers or sewage sludge is prohibited [13]. Organic foods, despite the assumption that they are safe, can also carry risks as much as conventional foods. Some studies have concluded that organic foods are significantly more contaminated with mycotoxins than conventional foods [14 19]. In our study the results of the survey indicate that organically produced spices and herbs were heavily contaminated with AFB1, especially cinnamon, sumac, red pepper, camomile, and rosehip samples. Several studies have reported AFB1 contamination in spices and herbs. Ozbey and Kabak [5]reportedthatAFB1levelsinfourredchiliflakeandthree red chili powder samples were above the EU limit of 5 μg/kg. Aydin et al. [20] analyzed 100 powdered red pepper samples in Turkey, and AFB1 levels in 18 (18%) of 100 powdered red pepper samples were found to be higher than the legal limits of European Commission (>5 μg/kg). They reported high levels of AFB1 contamination in red pepper powder with levels of contamination up to 40.9 μg/kg. Kanbur et al. [21] reported that the AFB1 contamination in red pepper samples is from 1.48 to 70 μg/kg in Turkey. Erdogan [22]reportedthat 8 out of 44 red scale pepper samples were contaminated with AFB1 ranging from 1.1 to 97.5 μg/kg. Riordan and Wilkinson [23] tested 130 commercial spice preparations, and 96% of the samples contained aflatoxin <10 μg/kg. Maximum aflatoxin level was detected (27.5 μg/kg) in chili powder. Martins et al. [2] reported that cumin samples were contaminated with AFB1 in the range of 1 5 μg/kg in Portugal. In our study, among samples, poppy seeds, anise, and thyme had the lowest AFB1 value. The absence of AFB1 contamination in thyme samples may be attributed to inhibition of mold growth by indigenous antifungal activity of essential oils. R. Z. Soad and M. A. Soad [24] reported that thyme oil was effective against all the tested fungi, and thyme oil could be used as a suitable lead to design effective and specific new fungicides. Anise essential oil has also stronger antifungal activities as several studies have shown [25 27]. 4. Conclusion The mycotoxin risks of organically produced foods are real due to the increasing popularity of organic food. Organic farming methods can potentially lead to fungal contamination because synthetic fungicides are not allowed in organic production. Our study showed that organic spices and herbs could be contaminated by AFB1. Occurrence of AFB1 in organic spices and herbs indicated the importance of good organic agricultural practice including using new effective antifungal agents. Conflict of Interests Bothauthorshavereadandapprovedthepaperandtakefull responsibility for its content. The authors have no conflict of interests in regard to this research or its funding. Acknowledgment This research was financially supported by the Celal Bayar University Scientific Research Foundation, Project no: FBE 2010-068. References [1] S. Topal, Gıdalarda küf kontaminasyon riskleri ve önlemleri, Tübitak Marmara Yay Kocaeli,vol.124,pp.174 187,1993. [2] M.L.Martins,H.M.Martins,andF.Bernardo, Aflatoxinsin spices marketed in Portugal, Food Additives and Contaminants, vol.18,no.4,pp.315 319,2001. [3] S.H.Cho,C.H.Lee,M.R.Jangetal., Aflatoxinscontamination in spices and processed spice products commercialized in Korea, Food Chemistry,vol.107,no.3,pp.1283 1288, 2008. [4] M. Jalili and S. Jinap, Natural occurrence of aflatoxins and ochratoxin A in commercial dried chili, Food Control, vol.24, pp. 160 164, 2012. [5] F.OzbeyandB.Kabak, Naturalco-occurrenceofaflatoxinsand ochratoxin A in spices, Food Control,vol.28, no.2,pp. 354 361, 2012. [6] P. Bayman and P. J. Cotty, Genetic diversity in Aspergillus flavus: association with aflatoxin production and morphology, Canadian Botany,vol.71,pp.23 31,1993. [7] F. S. Chu, Mode of action of mycotoxins and related compounds, Advances in Applied Microbiology, vol. 22, pp. 83 143, 1977. [8] I.A.R.C., Some naturally occurring substances, food items and constituents, heterocyclic aromatic amines and mycotoxins, in MonographsontheEvaluationofCarcinogenicRisksToHumans, vol. 56, p. 245, World Health Organization, Lyon, France, 1993. [9] Y. Liu and F. Wu, Global burden of Aflatoxin-induced hepatocellular carcinoma: a risk assessment, Environmental Health Perspectives,vol.118,no.6,pp.818 824,2010.

4 The Scientific World Journal [10] C.K.WinterandS.F.Davis, Organicfoods, Food Science, vol. 71, no. 9, pp. R117 R124, 2006. [11] Enzyme Immunoassay for the quantitative analysis of aflatoxin, B1 Art. No: 1211 and Rida Aflatoxin column Art. No: R5001/5002. R-Biopharm AG, Darmstadt, Germany, 1999. [12] Anonymous, Commission Regulation (EC). Amending Regulation (EC) no. 466/2001 setting maximum levels for certain contaminants in foodstuffs, Official the European Communities,vol.75,no.472,pp.18 20,2002. [13] USDA Agricultural Marketing Service National Organic Program, 2005, http://www.ams.usda.gov/nop. [14] T. H. Jukes, Organic apple juice no antidote for alar, Journal of the American Dietetic Association, vol.90,no.3,article371, 1990. [15] S. B. Lovejoy, Are organic foods safer? Texas Botanical Garden Society (TBGS) Newsletter, Austin, Tex, USA, 1994, http://texasbot.tripod.com/lovejy.htm. [16] L. Malmauret, D. Parent-Massin, J. L. Hardy, and P. Verger, Contaminants in organic and conventional foodstuffs in France, Food Additives and Contaminants, vol. 19, no. 6, pp. 524 532, 2002. [17] H. Marx, B. Gedek, and B. Kollarczik, Comparative investigations on mycotoxicological status of alternatively and conventionally grown crops, Zeitschriftfür Lebensmittel-Untersuchung und -Forschung,vol.201,no.1,pp.83 86,1995. [18] M. Schollenberger, S. Suchy, T. H. Jara, W. Drochner, and H. M. Müller, A survey of Fusarium toxins in cereal-based foods marketed in an area of southwest Germany, Mycopathologia, vol.147,no.1,pp.49 57,1999. [19] M. Schollenberger, H. T. Jara, S. Suchy, W. Drochner, and H. M. Müller, Fusarium toxins in wheat flour collected in an area in southwest Germany, Food Microbiology,vol.72,no.1-2,pp.85 89,2002. [20] A. Aydin, E. M. Erkan, R. Baskaya, and G. Ciftcioglu, Determination of aflatoxin B1 levels in powdered red pepper, Food Control,vol.18,pp.1015 1019,2007. [21] M. Kanbur, B. C. Liman, G. Eraslan, and S. Altinordulu, Quantitative analysis of aflatoxin b1 by enyzme immuno assay (EIA) in red pepper marketed in Kayseri, The the Faculty of Veterinary Medicine,vol.3,no.1,pp.21 24,2006. [22] A. Erdogan, The aflatoxin contamination of some pepper types sold in Turkey, Chemosphere,vol.56,no.4,pp.321 325,2004. [23] M. J. O Riordan and M. G. Wilkinson, A survey of the incidence and level of aflatoxin contamination in a range of imported spice preparations on the Irish retail market, Food Chemistry, vol. 107, no. 4, pp. 1429 1435, 2008. [24] R.Z.SoadandM.A.Soad, Antifungalactivityofsomeessential oils and their major chemical constituents against some phytopathogenic fungi, Pest Control and Environmental Sciences,vol.13,pp.61 72,2005. [25] I. Kosalec, S. Pepeljnjak, and D. Kuatrak, Antifungal activity of fluid extract and essential oil from anise fruits (Pimpinella anisum L., Apiaceae), Acta Pharmaceutica, vol. 55, no. 4, pp. 377 385, 2005. [26] K. M. Soliman and R. I. Badeaa, Effect of oil extracted from some medicinal plants on different mycotoxigenic fungi, Food and Chemical Toxicology,vol.40,no.11,pp.1669 1675,2002. [27] M. Elgayyar, F. A. Draughon, D. A. Golden, and J. R. Mount, Antimicrobial activity of essential oils from plants against selected pathogenic and saprophytic microorganisms, Journal of Food Protection,vol.64,no.7,pp.1019 1024,2001.

Peptides BioMed Advances in Stem Cells International Virolog y Genomics Nucleic Acids Zoology Submit your manuscripts at The Scientific World Journal Signal Transduction Genetics Anatomy Enzyme Research Archaea Biochemistry Microbiology Evolutionary Biology Molecular Biology International Advances in Bioinformatics Marine Biology