Wanchai Wongkornrat Cardiovascular Thoracic Surgery Siriraj Hospital Mahidol University

Similar documents
5. What is the cause of this patient s metabolic acidosis? LACTIC ACIDOSIS SECONDARY TO ANEMIC HYPOXIA (HIGH CO LEVEL)

Outline. ABG Interpretation: A Respirologist s approach. Acid-Base Disturbances. What use is an ABG? Acid-Base Disturbances. Alveolar Ventilation

Arterial Blood Gas Analysis

SIMPLY Arterial Blood Gases Interpretation. Week 4 Dr William Dooley

OXYGENATION AND ACID- BASE EVALUATION. Chapter 1

Arterial Blood Gases. Dr Mark Young Mater Health Services

PICU Resident Self-Study Tutorial Interpreting Blood Gases

Oxygen and ABG. Dr Will Dooley

Physiological Causes of Abnormal ABG s

Interpretation of Arterial Blood Gases. Prof. Dr. W. Vincken Head Respiratory Division Academisch Ziekenhuis Vrije Universiteit Brussel (AZ VUB)

Carbon Dioxide Transport. Carbon Dioxide. Carbon Dioxide Transport. Carbon Dioxide Transport - Plasma. Hydrolysis of Water

i. Zone 1 = dead space ii. Zone 2 = ventilation = perfusion (ideal situation) iii. Zone 3 = shunt

ACUTE RESPIRATORY DISTRESS SYNDROME (ARDS) Rv

ARF, Mechaical Ventilation and PFTs: ACOI Board Review 2018

Images have been removed from the PowerPoint slides in this handout due to copyright restrictions.

RESPIRATORY SYSTEM and ACID BASE

Arterial Blood Gases Interpretation Definition Values respiratory metabolic

9/14/2017. Acid-Base Disturbances. Goal. Provide an approach to determine complex acid-base disorders

Basic facts repetition Regulation of A-B balance. Pathophysiology of clinically important disorders

3. Which of the following would be inconsistent with respiratory alkalosis? A. ph = 7.57 B. PaCO = 30 mm Hg C. ph = 7.63 D.

3/17/2017. Acid-Base Disturbances. Goal. Eric Magaña, M.D. Presbyterian Medical Center Department of Pulmonary and Critical Care Medicine

Mechanical Ventilation. Assessing the Adequacy of Tissue Oxygenation. Tissue Oxygenation - Step 1. Tissue Oxygenation

1. What is the acid-base disturbance in this patient?

Acid/Base Disorders 2015

Blood Gases 2: Acid-Base and Electrolytes Made Simple. Objectives. Important Fact #1

Identification and Treatment of the Patient with Sleep Related Hypoventilation

Acid-Base Balance Workshop. Dr. Najla Al Kuwaiti Dr. Abdullah Al Ameri Dr. Amar Al Shibli

ARDS: an update 6 th March A. Hakeem Al Hashim, MD, FRCP SQUH

Critical Care Monitoring. Assessing the Adequacy of Tissue Oxygenation. Tissue Oxygenation - Step 1. Tissue Oxygenation

Respiratory Pathophysiology Cases Linda Costanzo Ph.D.

1. When a patient fails to ventilate or oxygenate adequately, the problem is caused by pathophysiological factors such as hyperventilation.

Interpretation of Arterial Blood Gases (ABG)

Dr. Suzana Voiculescu

Acids, Bases, and Salts

Capnography. Capnography. Oxygenation. Pulmonary Physiology 4/15/2018. non invasive monitor for ventilation. Edward C. Adlesic, DMD.

7/4/2015. diffuse lung injury resulting in noncardiogenic pulmonary edema due to increase in capillary permeability

Biochemistry of acid-base disorders. Alice Skoumalová

Respiratory Failure. Causes of Acute Respiratory Failure (ARF): a- Intrapulmonary:

The new ARDS definitions: what does it mean?

Lecture Notes. Chapter 2: Introduction to Respiratory Failure

The relationship between H+,PaCO₂ and HCO₃ are expressed in the equation of:

There are number of parameters which are measured: ph Oxygen (O 2 ) Carbon Dioxide (CO 2 ) Bicarbonate (HCO 3 -) AaDO 2 O 2 Content O 2 Saturation

/ABG. It covers acid-base disturbance, respiratory failure, and a small summary for some other derangements. Causes of disturbance

RESPIRATORY FAILURE. Michael Kelly, MD Division of Pediatric Critical Care Dept. of Pediatrics

NIV in Acute Respiratory Failure: Where we fail? Dr Shrikanth Srinivasan MD,DNB,FNB,EDIC Consultant, Critical Care Medicine Medanta, The Medicity

Objective 2/9/2012. Blood Gas Analysis In The Univentricular Patient: The Need For A Different Perspective. VENOARTERIAL CO2 GRADIENT

UNIT VI: ACID BASE IMBALANCE

INDICATIONS FOR RESPIRATORY ASSISTANCE A C U T E M E D I C I N E U N I T P - Y E A R M B B S 4

Prone ventilation revisited in H1N1 patients

Acute Respiratory Failure

Case Scenarios. Dr Shrikanth Srinivasan MD,DNB,FNB,EDIC. Consultant, Critical Care Medicine Medanta, The Medicity

Prepared by : Bayan Kaddourah RN,MHM. GICU Clinical Instructor

ACID-BASE BALANCE. It is important to remember that more than one of the above processes can be present in a patient at any given time.

Sample Case Study. The patient was a 77-year-old female who arrived to the emergency room on

Are you ready to have fun?

to optimize By Jin Xiong Lian, BSN, RN, CNS

Slide 1. Slide 2. Slide 3. Learning Outcomes. Acid base terminology ARTERIAL BLOOD GAS INTERPRETATION

Acid-Base Tutorial 2/10/2014. Overview. Physiology (2) Physiology (1)

Acid and Base Balance

Pulmonary Problems of the Neonate. Jon Palmer, VMD, DACVIM Chief, Neonatal Intensive Care Service New Bolton Center, University of Pennsylvania, USA

Interpretation of ABG. Chandra Shekhar Bala, FCPS( Medicine) Junior Consultant NINS and Hospital, Dhaka

Author: Thomas Sisson, MD, 2009

Introduction. Invasive Hemodynamic Monitoring. Determinants of Cardiovascular Function. Cardiovascular System. Hemodynamic Monitoring

Case discussion Acute severe asthma during pregnancy. J.G. van der Hoeven

Blood Gases, ph, Acid- Base Balance

Dr. Suzana Voiculescu Discipline of Physiology and Fundamental Neurosciences Carol Davila Univ. of Medicine and Pharmacy

ARTERIAL BLOOD GASES PART 1 BACK TO BASICS SSR OLIVIA ELSWORTH SEPT 2017

Objectives. Health care significance of ARF 9/10/15 TREATMENT OF ACUTE RESPIRATORY FAILURE OF VARIABLE CAUSES: INVASIVE VS. NON- INVASIVE VENTILATION

Acid-Base Imbalance-2 Lecture 9 (12/4/2015) Yanal A. Shafagoj MD. PhD

Chapter 21. Flail Chest. Mosby items and derived items 2011, 2006 by Mosby, Inc., an affiliate of Elsevier Inc.

For more information about how to cite these materials visit

UNIT 9 INVESTIGATION OF ACID-BASE DISTURBANCES

Case scenario V AV ECMO. Dr Pranay Oza

i-stat Alinity v Utilization Guide

Lung Wit and Wisdom. Understanding Oxygenation and Ventilation in the Neonate. Jennifer Habert, BHS-RT, RRT-NPS, C-NPT Willow Creek Women s Hospital

INTRODUCTION The effect of CPAP works on lung mechanics to improve oxygenation (PaO 2

Acute respiratory failure

Chronic Obstructive Pulmonary Disease

Inter Inter Pretation of Acid Base Disturbance in Critically ill Patients. By :-: Dr. Vinay Bhomia M.D.

THE ACUTE RESPIRATORY DISTRESS SYNDROME. Daniel Brockman, DO

Blood Gases / Acid-Base

Information Often Given to the Nurse at the Time of Admission to the Postanesthesia Care Unit

Acute Liver Failure: Supporting Other Organs

Acid Base Balance by: Susan Mberenga RN, BSN, MSN

Effects of PPV on the Pulmonary System. Chapter 17

BUFFERING OF HYDROGEN LOAD

APPENDIX VI HFOV Quick Guide

9/13/2015. Laboratory. HPI and PE

Carver College of Medicine University of Iowa

APRV Ventilation Mode

ACVECC Small Animal Benchmark, May 2012

Test Bank Pilbeam's Mechanical Ventilation Physiological and Clinical Applications 6th Edition Cairo

Emergency Medicine High Velocity Nasal Insufflation (Hi-VNI) VAPOTHERM POCKET GUIDE

Management of refractory ARDS. Saurabh maji

Best of Pulmonary Jennifer R. Hucks, MD University of South Carolina School of Medicine

What is Acute Respiratory Distress Syndrome? Acute Respiratory Distress Syndrome (ARDS)

Acute Respiratory Distress Syndrome (ARDS) What is Acute Respiratory Distress Syndrome?

Tissue Hypoxia and Oxygen Therapy

ICU management and referral guidelines for severe hypoxic respiratory failure

Transcription:

Wanchai Wongkornrat Cardiovascular Thoracic Surgery Siriraj Hospital Mahidol University

Assess adequacy of ventilation and oxygenation Aids in establishing a diagnosis and severity of respiratory failure Assess changes in acid- base homeostasis Helps in management of ICU patients

4 Steps in ABG analysis 1. ABG or VBG 2. Oxygenation 3. Ventilation 4. Acid-Base disorder

ABG ph 7.35-7.45 PaO2 80-100 mmhg PaCO2 35-45 mmhg O2 sat 97-100 % HCO3 24 ± 2 meq/l VBG ph 7.32-7.42 PvO2 35-45 mmhg PvCO2 40-50 mmhg O2 sat 70-75 % HCO3 24 ± 2 meq/l O2 sat from ABG = O2 sat from pulse oximetry O2 sat from VBG

Usually this in patients with shock Should doubt when PO2 is significantly lower than O2 sat from pulse oximetry draw venous blood to check comparison redraw arterial blood

1. PaO2 (room air, FiO2=0.2) 2. A-a gradient (room air, FiO2=0.2) 3. PaO2 / FiO2

Normal room air PaO2 80-100 mmhg Normal room air PaO2 = 100 Age/4 Hypoxemia (room air, FiO2 = 0.2) PaO2 (mmhg) O2 sat (%) Mild 60-80 90-95 Moderate (tachycardia, hypertension, cool extremities) Severe (severe arrhythmias, brain injury, death) 40-60 75-90 < 40 <75

A = Alveoli a = arterial A-a gradient = PAO2 PaO2 PAO2 = 713 FiO2 PaCO2/0.8 Normal room air A-a gradient = 5 25 mmhg Normal room air A-a gradient = 2.5 + Age/4 Wide A-a gradient = lung parenchymal disease

Normal PaO2/FiO2 = 100/0.2 = 500 PaO2 / FiO2 < 300 = lung pathology (PaO2/FiO2)I = (PaO2/FiO2)II O2 flow (L/min) FiO2 Room air - 0.2 O2 nasal cannula 1-5 0.24-0.40 O2 mask 6-8 0.40-0.60 O2 mask with bag 6-10 0.60-0.99

ARDS is characterized by an acute onset within 1 week, bilateral radiographic pulmonary infiltrates, respiratory failure not fully explained by heart failure or volume overload, and a PaO2/FiO2 ratio < 300 severity PaO2 / FiO2 ratio 200 300 - Mild ARDS 100 200 Moderate ARDS < 100 - Severe ARDS

Hypoxemia Normal A-a gradient (FiO2=0.2) Normal PaO2/FiO2 (FiO2>0.2) Wide A-a gradient (FiO2=0.2) Low PaO2/FiO2 (FiO2>0.2) Decreased FiO2 FiO2 Hypoventilation minute ventilation (TV, RR) V/Q mismatch Dead space (PE, PHT) Intrapulmonary shunt (pneumonia, atelectasis) Extrapulmonary shunt (cyanotic heart disease, pulmonary AVF) Diffusion defect (defect at alveolar capillary membrane, pulmonary fibrosis, interstitial lung disease ) Low SvO2 Low O2 delivery (shock, anemia) High O2 consumption (fever, shivering, convulsion) 100% O2 Thrombolytic, anticoagulant, pulmonary vasodilator PEEP, inverse I:E ratio, prone position Disease specific treatment 100% O2 Disease specific treatment

30 YO male Fever RR 12/min Room air ph 7.28 PaO2 = 65 mmhg PaCO2 = 55 mmhg HCO3 = 27 meq/l Mild hypoxemia (PaO2 60-80 mmhg) PAO2 = 713 FiO2 PaCO2/0.8 = 713x0.2 55/0.8 = 73.85 A-a gradient = PAO2 PaO2 = 73.85 65 = 8.85 Normal A-a gradient = 2.5 + Age/4 = 2.5 + 30/4 = 10 No lung parenchymal disease PaCO2 > 45 mmhg = Hypoventilation Normal ABG ph 7.35-7.45 PaO2 80-100 mmhg PaCO2 35-45 mmhg O2 sat 97-100 % HCO3 24 ± 2 meq/l

30 YO male Pneumonia RR 28/min Room air ph 7.50 PaO2 70 mmhg PaCO2 25mmHg HCO3 19 meq/l Mild hypoxemia (PaO2 60-80 mmhg) PAO2 = 713 FiO2 PaCO2/0.8 = 713x0.2 25/0.8 = 111.35 A-a gradient = PAO2 PaO2 = 111.35 70 = 41.35 Normal A-a gradient = 2.5 + Age/4 = 2.5 + 45/4 = 13.75 lung parenchymal disease (V/Q mismatch) PaCO2 < 35 mmhg = Hyperventilation Normal ABG ph 7.35-7.45 PaO2 80-100 mmhg PaCO2 35-45 mmhg O2 sat 97-100 % HCO3 24 ± 2 meq/l

ARDS, FiO2 = 1.0 O2 sat 100%, PaO2 = 100 mmhg O2sat 90%, PaO2 =?, FiO2 =? O2sat 90%, PaO2 = 60 mmhg (PaO2/FiO2)I = (PaO2/FiO2)II (100/1) = (60/FiO2) FiO2 = 0.6

Normal PaCO2 35-45 mmhg PaCO2 < 35mmHg = Hyperventilation PaCO2 > 45 mmhg = Hypoventilation (PaCO2 x TV x RR)I = (PaCO2 x TV x RR)II PaCO2 = 0.8 x CO2 production RR (TV Dead space)

Normal PaCO2 35-45 mmhg PaCO2 < 35mmHg = Hyperventilation PaCO2 > 45 mmhg = Hypoventilation PaCO2 = 0.8 x CO2 production RR ( TV Dead space)

Normal PaCO2 35-45 mmhg PaCO2 < 35mmHg = Hyperventilation PaCO2 > 45 mmhg = Hypoventilation PaCO2 = 0.8 x CO2 production RR ( TV Dead space) Cut the ET tube shorter Longer expiratory time ( decrease auto PEEP )

Pneumonia, FiO2=0.6 TV=400 ml, RR=15/min, PaCO2=50 mmhg PaCO2=40 mmhg, TV=?, RR=? (PaCO2 x TV x RR)I = (PaCO2 x TV x RR)II 50x400x15 = 40xTVxRR TVxRR = 7500 ml/min (minute ventilation) TV, keep inspiratory < 35 mmhg RR, beware air trapping

1. Metabolic acidosis 2. Metabolic alkalosis 3. Respiratory acidosis (acute, chronic) 4. Respiratory alkalosis (acute, chronic)

1. In seconds: buffer systems 2. In minutes: CO2 excretion by the lungs 3. In hours to days: renal excretion of H+, reabsorption of HCO3

H HCO3 RR PaCO2 Predicted PaCO2 = 1.5 HCO3 + 8 ± 2 Anion gap = Na Cl HCO3 Normal AG = 12 ± 4 AG (Corrected) = AG + 2.5 (4 Albumin) Wide anion gap (>16) metabolic acidosis Lactic acidosis Ketoacidosis (diabetic, starvation, alcoholic) Uremia Rhabdomyolysis Drug intoxication (salicylate, ethanol, ethylene glycol) Normal anion gap (<16) metabolic acidosis Diarrhea Renal tubular acidosis Early renal insufficiency Excessive saline loading Amino acid infusion ureterosigmoidostomy

HCO3 H RR PaCO2 Predicted PaCO2 = 0.7 HCO3 + 20 ± 2

Hypoventilation PaCO2 H kidney HCO3 Respiratory acidosis PaCO2 Predicted HCO3 Predicted ph acute 10 mmhg 1 meq/l 0.08 chronic 10 mmhg 4 meq/l 0.03

Hyperventilation PaCO2 H kidney HCO3 Respiratory alkalosis PaCO2 Predicted HCO3 Predicted ph acute 10 mmhg 2 meq/l 0.08 chronic 10 mmhg 5 meq/l 0.03

ph = 7.20 PaCO2 = 20 mmhg HCO3 = 8 meq/l Acidosis (ph<7.40) Metabolic (HCO3 < 22 ) Predicted PaCO2 = 1.5 HCO3 + 8 ± 2 = 20 ± 2 Pure metabolic acidosis Normal ABG ph 7.35-7.45 PaO2 80-100 mmhg PaCO2 35-45 mmhg O2 sat 97-100 % HCO3 24 ± 2 meq/l

ph = 7.15 PaCO2 = 30 mmhg HCO3 = 8 meq/l Acidosis (ph<7.40) Metabolic (HCO3 < 22 ) Predicted PaCO2 = 1.5 HCO3 + 8 ± 2 = 20 ± 2 Metabolic acidosis + Respiratory acidosis Normal ABG ph 7.35-7.45 PaO2 80-100 mmhg PaCO2 35-45 mmhg O2 sat 97-100 % HCO3 24 ± 2 meq/l

ph = 7.25 PaCO2 = 15 mmhg HCO3 = 8 meq/l Acidosis (ph<7.40) Metabolic (HCO3 < 22 ) Predicted PaCO2 = 1.5 HCO3 + 8 ± 2 = 20 ± 2 Metabolic acidosis + Respiratory alkalosis Normal ABG ph 7.35-7.45 PaO2 80-100 mmhg PaCO2 35-45 mmhg O2 sat 97-100 % HCO3 24 ± 2 meq/l

ph = 7.50 PaCO2 = 42 mmhg HCO3 = 30 meq/l alkalosis (ph>7.40) Metabolic (HCO3 > 26 ) Predicted PaCO2 = 0.7 HCO3 + 20 ± 2 = 41 ± 2 Pure metabolic alkalosis Normal ABG ph 7.35-7.45 PaO2 80-100 mmhg PaCO2 35-45 mmhg O2 sat 97-100 % HCO3 24 ± 2 meq/l

ph = 7.45 PaCO2 = 50 mmhg HCO3 = 30 meq/l alkalosis (ph>7.40) Metabolic (HCO3 > 26 ) Predicted PaCO2 = 0.7 HCO3 + 20 ± 2 = 41 ± 2 Metabolic alkalosis + Respiratory acidosis Normal ABG ph 7.35-7.45 PaO2 80-100 mmhg PaCO2 35-45 mmhg O2 sat 97-100 % HCO3 24 ± 2 meq/l

ph = 7.60 PaCO2 = 35 mmhg HCO3 = 30 meq/l alkalosis (ph>7.40) Metabolic (HCO3 > 26 ) Predicted PaCO2 = 0.7 HCO3 + 20 ± 2 = 41 ± 2 Metabolic alkalosis + Respiratory alkalosis Normal ABG ph 7.35-7.45 PaO2 80-100 mmhg PaCO2 35-45 mmhg O2 sat 97-100 % HCO3 24 ± 2 meq/l

ph = 7.24 PaCO2 = 60 mmhg HCO3 = 28 meq/l acidosis (ph<7.40) respiratory (PaCO2 > 45 ) Respiratory acidosis Acute (ph ) Predicted HCO3 = (24 ± 2) + (60-40)/10 = 26 ± 2 Pure acute respiratory acidosis Respiratory acidosis PaCO2 Predicted HCO3 Predicted ph acute 10 mmhg 1 meq/l 0.08 chronic 10 mmhg 4 meq/l 0.03 Normal ABG ph 7.35-7.45 PaO2 80-100 mmhg PaCO2 35-45 mmhg O2 sat 97-100 % HCO3 24 ± 2 meq/l

ph = 7.18 PaCO2 = 60 mmhg HCO3 = 22 meq/l acidosis (ph<7.40) respiratory (PaCO2 > 45 ) Respiratory acidosis Acute (ph ) Predicted HCO3 = (24 ± 2) + (60-40)/10 = 26 ± 2 + Metabolic acidosis Respiratory acidosis PaCO2 Predicted HCO3 Predicted ph acute 10 mmhg 1 meq/l 0.08 chronic 10 mmhg 4 meq/l 0.03 Normal ABG ph 7.35-7.45 PaO2 80-100 mmhg PaCO2 35-45 mmhg O2 sat 97-100 % HCO3 24 ± 2 meq/l

ph = 7.30 PaCO2 = 60 mmhg HCO3 = 32 meq/l acidosis (ph<7.40) respiratory (PaCO2 > 45 ) Respiratory acidosis Acute (ph ) Predicted HCO3 = (24 ± 2) + (60-40)/10 = 26 ± 2 + Metabolic alkalosis Respiratory acidosis PaCO2 Predicted HCO3 Predicted ph acute 10 mmhg 1 meq/l 0.08 chronic 10 mmhg 4 meq/l 0.03 Normal ABG ph 7.35-7.45 PaO2 80-100 mmhg PaCO2 35-45 mmhg O2 sat 97-100 % HCO3 24 ± 2 meq/l

ph = 7.56 PaCO2 = 20 mmhg HCO3 = 18 meq/l alkalosis (ph>7.40) respiratory (PaCO2 < 35 ) Respiratory alkalosis Acute (ph ) Predicted HCO3 = (24 ± 2) (40-20)2/10 = 20 ± 2 Pure acute respiratory alkalosis Respiratory alkalosis PaCO2 Predicted HCO3 Predicted ph acute 10 mmhg 2 meq/l 0.08 chronic 10 mmhg 5 meq/l 0.03 Normal ABG ph 7.35-7.45 PaO2 80-100 mmhg PaCO2 35-45 mmhg O2 sat 97-100 % HCO3 24 ± 2 meq/l

ph = 7.50 PaCO2 = 20 mmhg HCO3 = 12 meq/l alkalosis (ph>7.40) respiratory (PaCO2 < 35 ) Respiratory alkalosis Acute (ph ) Predicted HCO3 = (24 ± 2) - (40-20)2/10 = 20 ± 2 + Metabolic acidosis Respiratory alkalosis PaCO2 Predicted HCO3 Predicted ph acute 10 mmhg 2 meq/l 0.08 chronic 10 mmhg 5 meq/l 0.03 Normal ABG ph 7.35-7.45 PaO2 80-100 mmhg PaCO2 35-45 mmhg O2 sat 97-100 % HCO3 24 ± 2 meq/l

ph = 7.62 PaCO2 = 20 mmhg HCO3 = 25 meq/l alkalosis (ph>7.40) respiratory (PaCO2 < 35 ) Respiratory alkalosis Acute (ph ) Predicted HCO3 = (24 ± 2) - (40-20)2/10 = 20 ± 2 + Metabolic alkalosis Respiratory alkalosis PaCO2 Predicted HCO3 Predicted ph acute 10 mmhg 2 meq/l 0.08 chronic 10 mmhg 5 meq/l 0.03 Normal ABG ph 7.35-7.45 PaO2 80-100 mmhg PaCO2 35-45 mmhg O2 sat 97-100 % HCO3 24 ± 2 meq/l

ph = 7.40 PaCO2 = 15 mmhg HCO3 = 12 meq/l Acidosis? Alkalosis? (ph =7.40) Metabolic acidosis (HCO3 < 22) Respiratory alkalosis (PaCO2 < 35 ) Normal ABG ph 7.35-7.45 PaO2 80-100 mmhg PaCO2 35-45 mmhg O2 sat 97-100 % HCO3 24 ± 2 meq/l

ph = 7.40 PaCO2 = 60 mmhg HCO3 = 36 meq/l Acidosis? Alkalosis? (ph =7.40) Metabolic alkalosis (HCO3 > 26) Respiratory acidosis (PaCO2 > 45 ) Normal ABG ph 7.35-7.45 PaO2 80-100 mmhg PaCO2 35-45 mmhg O2 sat 97-100 % HCO3 24 ± 2 meq/l

Thank you

40 YO male, IE at AV S/P AVR and Ao root replacement for 2 days Post op pneumonia On ET tube, VCV mode, FiO2=0.8, TV=400ml, RR 18/min ph=7.14, PaCO2=50 mmhg, PaO2=60 mmhg Na=140, K=5.5, Cl=102, HCO3=15 meq/l BUN 50, Cr 3.0 CXR - bilateral pulmonary infiltration ABP 90/50 mmhg, P100/min regular Low dose inotropic drug CVP 8 mmhg, PA pressure 30/15 mmhg Oxygenation Ventilation Acid-Base disorder Management

40 YO male, IE at AV S/P AVR and Ao root replacement for 2 days Post op pneumonia On ET tube, VCV mode, FiO2=0.8, TV=400ml, RR 18/min ph=7.14, PaCO2=50 mmhg, PaO2=60 mmhg Na=140, K=5.5, Cl=102, HCO3=15 meq/l BUN 50, Cr 3.0 CXR - bilateral pulmonary infiltration ABP 90/50 mmhg, P100/min regular Low dose inotropic drug CVP 8 mmhg, PA pressure 30/15 mmhg Oxygenation FiO2=0.8, PaO2=60 mmhg, O2 sat 90% PO2/FiO2 = 60/0.8 = 75 severe ARDS FiO2 X, PEEP, inverse I:E ratio, prone position Ventilation PaCO2=50 mmhg, RR 18/min, hypoventilation? severe pneumonia mild form pneumonia hyperventilation, acute respiratory alkalosis) PEEP Acid-Base disorder Acidosis (ph<7.40) Metabolic (HCO3 < 22 ) Predicted PaCO2 = 1.5 HCO3 + 8 ± 2 = 30.5 ± 2 Metabolic acidosis + Respiratory acidosis Anion gap = Na Cl HCO3 = 140-102-15 = 23 Wide anion gap (>16) metabolic acidosis Lactic acidosis, sepsis, ARF treatment