STUDY OF THE FORMATION OF ACRYLAMIDE IN FRIED CASSAVA WITH COCONUT OIL, PALM OIL AND CORN OIL AS COOKING MEDIA

Similar documents
THE EFFECT OF USING COCONUT OIL, PALM OIL AND CORN OIL AS FRYING MEDIUM ON CONCENTRATION OF ACRYLAMIDE IN FERMENTED SOYBEANS PROCESSING*

Title Revision n date

Tentu Nageswara Rao et al. / Int. Res J Pharm. App Sci., 2012; 2(4): 35-40

Analysis of Acrylamide in French Fries using Agilent Bond Elut QuEChERS AOAC kit and LC/MS/MS

Simultaneous Estimation of Gemcitabine Hydrochloride and Capecitabine Hydrochloride in Combined Tablet Dosage Form by RP-HPLC Method

ISSN (Print)

Development and validation of stability indicating RP-LC method for estimation of calcium dobesilate in pharmaceutical formulations

RP-HPLC METHOD DEVELOPMENT AND VALIDATION FOR CILOSTAZOL IN TABLET DOSAGE FORM

A HIGH PERFORMANCE LIQUID CHROMATOGRAPHIC ASSAY FOR LERCANIDIPINE HYDROCHLORIDE

METHOD DEVELOPMENT AND VALIDATION BY RP-HPLC FOR ESTIMATION OF ZOLPIDEM TARTARATE

RP-HPLC analytical method development and optimization for quantification of donepezil hydrochloride in orally disintegrating tablet

World Journal of Pharmaceutical Research

IJPAR Vol.3 Issue 4 Oct-Dec-2014 Journal Home page:

Analysis of HMF by HPLC

Development, Estimation and Validation of Lisinopril in Bulk and its Pharmaceutical Formulation by HPLC Method

SIMULTANEOUS ESTIMATION OF VALSARTAN AND HYDROCHLOROTHIAZIDE IN TABLETS BY RP-HPLC METHOD

REVERSE PHASE HPLC METHOD FOR THE ANALYSIS OF ALFUZOSIN HYDROCHLORIDE IN PHARMACEUTICAL DOSAGE FORMS

Determination of β2-agonists in Pork Using Agilent SampliQ SCX Solid-Phase Extraction Cartridges and Liquid Chromatography-Tandem Mass Spectrometry

RP-HPLC Analysis of Temozolomide in Pharmaceutical Dosage Forms

Determination of Glabridin in Licorice Root (Glycyrrhiza glabral.) Using High Performance Liquid Chromatography

A New Stability-Indicating and Validated RP-HPLC Method for the Estimation of Liraglutide in Bulk and Pharmaceutical Dosage Forms

Journal of Chemical and Pharmaceutical Research

Scholars Research Library

RP- HPLC and Visible Spectrophotometric methods for the Estimation of Meropenem in Pure and Pharmaceutical Formulations

Flupyradifurone. HPLC Method

Application Note. Author. Abstract. Introduction. Food Safety

Amphetamines, Phentermine, and Designer Stimulant Quantitation Using an Agilent 6430 LC/MS/MS

METHOD 8316 ACRYLAMIDE, ACRYLONITRILE AND ACROLEIN BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC)

Development and Validation for Simultaneous Estimation of Sitagliptin and Metformin in Pharmaceutical Dosage Form using RP-HPLC Method

Pankti M. Shah et al, Asian Journal of Pharmaceutical Technology & Innovation, 04 (17); 2016; 07-16

Estimation of zolmitriptan by a new RP-HPLC method

PHOTOCATALYTIC DECONTAMINATION OF CHLORANTRANILIPROLE RESIDUES IN WATER USING ZnO NANOPARTICLES. DR. A. RAMESH, Ph.D, D.Sc.,

Asian Journal of Pharmaceutical Analysis and Medicinal Chemistry Journal home page:

DEVELOPMENT OF RP-HPLC METHOD FOR ESTIMATION OF DROTAVERINE HYDROCHLORIDE IN PHARMACEUTICAL FORMULATIONS

Journal of Chemical and Pharmaceutical Research, 2018, 10(3): Research Article

Corresponding Author:

Pelagia Research Library

RP-HPLC Method Development and Validation of Abacavir Sulphate in Bulk and Tablet Dosage Form

Relative Measurement of Zeaxanthin Stereoisomers by Chiral HPLC

Simultaneous determination of triacetin, acetic ether, butyl acetate and amorolfine hydrochloride in amorolfine liniment by HPLC

EXPERIMENT 9 LIPIDS: DETERMINATION OF FAT IN FRENCH FRIES. a fat molecule. Materials Needed

Fig.1. Denatonium benzoate (DB) chemical structure

INTERNATIONAL PHARMACOPOEIA MONOGRAPH ON LAMIVUDINE TABLETS

Research and Reviews: Journal of Pharmaceutical Analysis

Scholars Research Library. Der Pharmacia Lettre, 2016, 8 (6): (

J Pharm Sci Bioscientific Res (4): ISSN NO

Determination of 6-Chloropicolinic Acid (6-CPA) in Crops by Liquid Chromatography with Tandem Mass Spectrometry Detection. EPL-BAS Method No.

Simultaneous estimation of Metformin HCl and Sitagliptin in drug substance and drug products by RP-HPLC method

Pelagia Research Library

Development of a Validated RP-HPLC Method for the Analysis of Citicoline Sodium in Pharmaceutical Dosage Form using Internal Standard Method

EXPERIMENT 9 LIPIDS: DETERMINATION OF FAT IN FRENCH FRIES. a fat molecule. Materials Needed

STANDARD OPERATING PROTOCOL (SOP)

Development and Validation of RP-HPLC Method for the Estimation of Gemigliptin

AMERICAN JOURNAL OF BIOLOGICAL AND PHARMACEUTICAL RESEARCH

CHAPTER 2 SIMULTANEOUS DETRMINATION OF ANASTROZOLE AND TEMOZOLOMIDE TEMOZOLOMIDE CAPSULES 20 MG AND ANASTROZOLE TABLETS 1 MG

DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD ESTIMATION OF TOLVAPTAN IN BULK PHARMACEUTICAL FORMULATION

ARTESUNATE TABLETS: Final text for revision of The International Pharmacopoeia (December 2009) ARTESUNATI COMPRESSI ARTESUNATE TABLETS

Reverse Phase HPLC Analysis of Atomoxetine in Pharmaceutical Dosage Forms

Estimation of Zanamivir Drug present in Tablets using RP-HPLC Method

DETERMINATION OF LOTEPREDNOL ETABONATE AND TOBRAMYCIN IN COMBINED DOSAGE FORM USING RP-HPLC METHOD

Available online at Scholars Research Library

Cannabinoid Profiling and Quantitation in Hemp Extracts using the Agilent 1290 Infinity II/6230B LC/TOF system

Impact factor: 3.958/ICV: 4.10 ISSN:

RP-HPLC METHOD DEVELOPMENT AND VALIDATION FOR THE ANALYISIS OF RIFAXIMIN IN PHARMACEUTICAL DOSAGE FORMS

DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR QUANTITATIVE ANALYSIS TOLBUTAMIDE IN PURE AND PHARMACEUTICAL FORMULATIONS

Available online Research Article

Development and validation of RP-HPLC method for simultaneous estimation of gliclazide and metformin in pure and tablet dosage form

Screening of Antihistamine Agents (Diphenhydramine) with Blood and Urine Samples by REMEDi-HS System

S. G. Talele, D. V. Derle. Department of Pharmaceutics, N.D.M.V.P. College of Pharmacy, Nashik, Maharashtra, India

DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR ESTIMATION OF LACOSAMIDE IN BULK AND ITS PHARMACEUTICAL FORMULATION

Journal of Chemical and Pharmaceutical Research, 2013, 5(1): Research Article

Ankit et al Journal of Drug Delivery & Therapeutics; 2013, 3(2), Available online at RESEARCH ARTICLE

F. Al-Rimawi* Faculty of Science and Technology, Al-Quds University, P.O. Box 20002, East Jerusalem. Abstract

Application Note. Agilent Application Solution Analysis of ascorbic acid, citric acid and benzoic acid in orange juice. Author. Abstract.

DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR ASSAY AND DISSOLUTION OF METOPROLOL SUCCINATE EXTENDED RELEASE TABLETS

Determination of Amantadine Residues in Chicken by LCMS-8040

SIMULTANEOUS DETERMINATION OF ATORVASTATIN AND EZETIMIBE BY RP-HPLC IN PURE AND PHARMACEUTICAL DOSAGE FORM

International Journal of Pharma and Bio Sciences DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR THE ESTIMATION OF STRONTIUM RANELATE IN SACHET

Volume 6, Issue 1, January February 2011; Article-021

Validation of UV Spectrophotometric and HPLC Methods for Quantitative determination of Iloperidone in Pharmaceutical Dosage Form

Analytical method development and Validation for the Quantitative estimation of Cefditoren Pivoxil in tablet formulation by RP-HPLC

The Development of Analytical Method for the Determination of Azelaic Acid Content in Cosmetic Cream Products

Validation of Changes to the USP Assay Method for Ibuprofen Tablets

Asian Journal of Pharmaceutical Analysis and Medicinal Chemistry Journal home page:

Application Note Soy for Isoflavones by HPLC. Botanical Name: Glycine max L. Common Names: Parts of Plant Used: Beans.

Application Note. Treatment of poor memory, memory loss, Alzheimer s disease, peripheral vascular disease.

vii LIST OF TABLES TABLE NO DESCRIPTION PAGE 1.1 System Suitability Parameters and Recommendations Acidic and Alkaline Hydrolysis 15

Lutein Esters from Tagetes Erecta

Validation of Developed Analytical Method for Balofloxacin Floating Tablets by Reverse Phase High Performance Liquid Chromatography

Comparison of conventional HPLC with UPLC method for determination of albuterol sulfate and it s impurities in pharmaceutical formulation

DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR ESTIMATION OF FEBUXOSTAT IN BULK AND TABLET DOSAGE FORM

Selectivity Comparison of Agilent Poroshell 120 Phases in the Separation of Butter Antioxidants

DEVELOPMENT AND VALIDATION OF NEW HPLC METHOD FOR THE ESTIMATION OF PALIPERIDONE IN PHARMACEUTICAL DOSAGE FORMS

HPLC-UV Determination of Abacavir Sulphate in Pharmaceutical Dosage Forms

RITONAVIRI COMPRESSI RITONAVIR TABLETS. Final text for addition to The International Pharmacopoeia (July 2012)

Estimation of Etoricoxib in Tablet Dosage form by RP- HPLC using Internal Standard with Emphasize on Specificity Parameter Method

Transferring a Method for Analysis of DNPH-Derivatized Aldehydes and Ketones from HPLC to UHPLC

DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR SIMULTANEOUS ESTIMATION OF ETORICOXIB AND THIOCOLCHICOSIDE IN PHARMACEUTICAL DOSAGE FORMS

ASSAY AND IMPURITY METHOD FOR DURACOR TABLETS BY HPLC

Tenofovir disoproxil fumarate (Tenofoviri disoproxili fumaras)

Transcription:

STUDY OF THE FORMATION OF ACRYLAMIDE IN FRIED CASSAVA WITH COCONUT OIL, PALM OIL AND CORN OIL AS COOKING MEDIA Jutti Levita, Wiwiek Indriyati, Muchtaridi Faculty of Pharmacy, Padjadjaran University, Bandung ABSTRACT Research on the study of acrylamide analysis using high performance liquid chromatography to maintain the accuracy and precision of this method has been carried out.. Lichrocart C- 18 RP was used as the column with acetonitrile-water (5:95) ph 2.52 as the mobile phase. The time of retention was ± 7.3 minutes. Calibration curve showed a linear correlation between area under curve versus concentrations from 0.1 to 2 µg/ml with the correlation coefficient, r = 0.9999 and the equation of regression was y = 1973.9 + 21,8914 x. Limit of detection was 0.0125 µg/ml whereas limit of quantization was 0.0398 µg/ml. The optimum condition of analysis had the precision lower than 2% and average accuracy was between 99 to 101%. This method then was applied to study the formation of acrylamide in fried cassava with different cooking oils (coconut, palm and corn oils) as the media. The samples were extracted three times using dichloromethane-ethanol. Result showed that acrylamide was found in all samples which were 0.034 µg/g in coconut oil, 2.747 µg/g in palm oil and 0.41 µg/g in corn oil. The highest concentration of acrylamide was formed in palm oil. This paper is to be presented as Poster at International Conference on Mathematics and Natural Sciences (ICMNS) 2006 which will be held at Institut Teknologi Bandung, 29 & 30 November 2006. 1

I. INTRODUCTION Swedish National Food Administration and Stockholm University reported the occurrence of acrylamide in various foods, especially in food which contained carbohydrate. The research showed that the formation of acrylamide mainly correlated with the heating process of the food at high temperature, such as potato chips, pop corn and biscuits (Otles, 2004). Acrylamide (CH 2 =CHCONH 2 ) forms as white crystalline compound. Its melting point is 84,5 0 C 0,3 0 C whereas its boiling point is 125 0 C (at 33,3 hpa). Its molecular weight is 71.08. Acrylamide dissolves in water (215.5 g/100ml), in acetone (63.1 g/100ml), and in ethanol 86.2 g/100ml) (Othmer, 1963). The determination of acrylamide can be carried out using GC-MS and LC- MS (Othmer, 1963). High performance liquid chromatography is the most sensisitive method. It has sev eral advantages such as the various kinds of detectors for various samples, the mobile phase can be used repeatedly, and the accuracy and precision of this method are high. (Mulja, 1995). Several sources of hypothesis for the formation of acrolein are known. It may arise from degradation of amino acids and proteins, from degradation of carbohydrates, and from the Maillard reaction between amino acids or proteins and carbohydrates (3). Glycerol is degraded to acrolein, the unpleasant acrid black and irritating smoke, when the oil is heated above its smoke point (4). The smoke point is higher for oils with higher content of saturated fatty acids and lower content of polyunsaturated acids. The smoke points for some oils are as follows: palm 240 C, corn 160 C. Usually, the smoke starts to appear on the surface of heated oils before 175 C. The oil is first hydrolyzed into glycerol and fatty acids and then acrolein is produced by the elimination of water from glycerol by a heterolytic acid-catalyzed carbonium ion mechanism followed by oxidation (5). CH 2 (OH)-CH(OH)- CH 2 (OH) CH 2 =CH-CHO Glycerol Acrolein Acrolein can be converted into acrylamide by a series of fundamental reactions. However, both acrolein and acrylamide are reactive, because of their double bonds and the amino group of acrylamide. They can readily react further with other reactive groups present in the food matrix or formed during the heating process. For example, acrylamide can react with small reactive molecules, such as urea (CO(NH 2 ) 2 ) and formaldehyde (HCHO), or with glyoxal ((CHO) 2 ), aldehydes (RCHO), amines (R 2 NH), thiols (RSH) etc. Furthermore, the products shown in the following scheme can even react further in the same mode of reaction (5) The aim of this research was to study the formation of acrylamide with different kind of vegetable oils as the cooking media. Cassava was chosen as the frying model of carbohydrate food. II. Material and Methods Materials Chemicals. The following chemicals were obtained commercially : acrylamide pro analysis (99%, Merck), dichloromethane (Merck), ethanol grade HPLC (Merck), acetonitrile grade HPLC (Merck ), phosphoric acid grade HPLC (Merck), aquabidest pro injection (Ikapharmindo), KBr p.a (Merck).coconut oil, palm oil, corn oil, and cassava were obtained from a local grocery store. Instrument. HPLC: LC 10A-UV-vis SPD-10AV (Schimadzu), Vortex mixer 300, Ultrasonic shaker (NEY), Laboratory Shaker (IKA-HS 260), Spectrometry (Jena Specord 200), and ph meter. 2

The extraction method: The sample was weighed accurately about 15 grams then it was put into a flask shaker. About 60 ml of dichloromethane was added into the flask followed by 3 ml of ethanol then the mixture was shaken vigorously at 210 rpm for 50 minutes. The mixture was decanted. This procedure was repeated three times. The residue was washed with 20 ml of dichloromethane and was filtered. A mixture of acetonitrile and water used as mobile phase was added to 30 ml of filtrate. The solvent was evaporated in water bath at 80 0 C then the solution left was centrifuged at 4000 rpm for 30 minutes. The acrylamide was extracted in the acetonitrile layer. Acrylamide standard solution: 262 mg of acrylamide was weighed and put into 250 ml volumetric flask. The acrylamide was dissolved with a mixture f o acetonitrile : water (5 : 95) ph 2.5. The concentration of acrylamide in this flask was 100 µg/ml. Calibration curve of acrylamide was obtained from acrylamide standard solution with concentrations 2; 1; 0,8; 0,6; 0,4; 0,2; 0,1 mg/l respectively. Determination of acrylamide in the samples: The acrylamide extract was filtered through Whatman 0.45 µm and 20 µl of filtrate was injected to the HPLC column. The instrument used was Shimadzu SCL VP 10A equipped with Lichro CART RP-18 (125x4 mm internal diameter.), acetonitrile : water (5 :95) ph 2.5 as mobile phase, flow rate 0.5 ml/minutes, ultraviolet detector fixed at 210 nm. The volume injected was to the column was 20 µl. Recovery. The fried cassava was weighed accurately about 15 grams and were soaked in 10 ml of acrylamide standard solution 2 mg/l for 12 hours. The acrylamide in the samples was extracted with the same procedure as mentioned above. The acrylamide extract was filtered through Whatman 0.45 µm and 20 µl of filtrate was injected to the HPLC column. III. RESULT AND DISCUSSION The calibration curve of acrylamide was presented in Picture 1. AREA 500000 450000 400000 350000 300000 250000 200000 150000 100000 50000 0 y = 218914x + 1973.9 R 2 = 0.9999 0 0.5 1 1.5 2 2.5 Series1 Linear (Series1) Linear PPM Picture 1. Calibration curve of acrylamide 3

The recoveries of acrylamide were presented as followed: - 99,7217 ± 1,2153 %. at concentration 0,1016 µg/ml - 99,2439 ± 1,8217 % at concentration 0,508 µg/ml - 100,5914 ± 3,0576 % at concentration 1,016 µg/ml LOD and LOQ of the method were obtained from calibration curve and the injection of mobile phase 8 times (Ibrahim S, 2001). The calibration curve was obtained from 8 concentrations of acrylamide standard solution within 0.1016-2.032 µg/ml of range. The correlation coefficient (r) was 0.9999. LOD that was obtained from the measurement of blank signal was 0.0125 µg/ml and the LOQ was 0.0398 µg/ml. The validated method was applied to study the formation of acrylamide in fried cassava using three different oils which were coconut oil, palm oil and corn oil. The chromatogram of dichloromethaneethanol extract of fried cassava with different cooking oils were presented in Picture 2, Picture 3 and Picture 4. Volts 0.005 0.000-0.005 0.167 923 2. 3 3587 3.892 36715 4.317 9083 4.525 4586 4.93 10180 5.258 14091 5.83 5.73 3874 4652 7.592 640 0 1 2 3 4 5 6 7 8 9 10 Minutes Picture 2. Chromatogram of dichloromethane-ethanol extract of fried cassava in coconut oil The result of the determination of acrylamide formed in fried cassava with coconut oil as cooking media was presented in Table 1. Table 1. The Result of the Determination of Acrylamide Formed in Fried Cassava with Coconut Oil as Cooking Media Sample Area Concentration of acrylamide (µg/g) A 1 6640 0.035 A 2 6438 0.033 Mean : 0.034 µg/g Standard deviation : 1.414. 10-3 Coefficient of variance : 0.021. 10-3 4

0.03 Volts 0.02 0.01 0.00 0.242 128205 2. 3 1736 2.642 3451 7.725 36405 0 1 2 3 4 5 6 7 8 9 10 Minutes Picture 3. Chromatogram of dichloromethane-ethanol extract of fried cassava in palm oil The result of the determination of acrylamide formed in fried cassava with palm oil as cooking media was presented in Table 2. Table 2. The Result of the Determination of Acrylamide Formed in Fried Cassava with PalmOil as Cooking Media Sample Area Concentration of acrylamide (µg/g) B1 366405 2.774 B 2 352124 2.720 Mean : 2.747 µg/g Standard deviation : 0.038 Coefficient of variance : 1.05. 10-5 5

0.02 Volts 0.01 0.00 0.150 36975 1.875 1.93 2391 2581 2.183 7368 2.60 14524 7.708 347832 0 1 2 3 4 5 6 7 8 9 10 Minutes Picture 4. Chromatogram of dichloromethane-ethanol extract of fried cassava in corn oil The result of the determination of acrylamide formed in fried cassava with corn oil as cooking media was presented in Table 3. Table 3. The Result of the Determination of Acrylamide Formed in Fried Cassava with Corn Oil as Cooking Media Sample Area Concentration of acrylamide (µg/g) C1 56904 0.418 C2 52622 0.402 Mean : 0.41 µg/g Standard deviation : 0.011 Coefficient of variance : 2.01. 10-5 IV. CONCLUSIONS. Calibration curve showed a linear correlation between area under curve versus concentrations from 0.1 to 2 µg/ml with the correlation coefficient, r = 0.9999 and the equation of regression was y = 1973.9 + 21,8914 x. Limit of detection was 0.0125 µg/ml whereas limit of quantization was 0.0398 µg/ml. The optimum condition of analysis had the precision lower than 2% and average accuracy was between 99 to 101%. This method then was applied to study the formation of acrylamide in fried cassava wi th different cooking oils (coconut, palm and corn oils) as the media. The 6

samples were extracted three times using dichloromethane-ethanol. Result showed that acrylamide was found in all samples which were 0.034 µg/g in coconut oil, 2.747 µg/g in palm oil and 0.41 µg/g in corn oil. The highest concentration of acrylamide was formed in palm oil. ACKNOWLEDGEMENTS We certainly would like to express our gratitude and thankfulness to Toni Angga and Nina Resmini for their contributions in this research. LITERATURES Arthur, E.S., James, M.B., Roy, J.G., 1991. Kromatografi. Edisi II. Bandung : ITB. Brandl F. *, et. al,. A rapid and convenient procedure for the determination of acrylamide in food stuffs. 2002 :http : // ejeafche. Uvigo. Es / 1(3) 2002 /001132002F. Htm Depkes R.I. 1979. Farmakope Indonesia. Edisi ketiga Jakarta: Departemen Kesehatan. Hal. 143-144. Gritter. R.J., Bobbit, J.M., and Schwarting, A.E. 1991. Pengantar Kromatografi. Edisi kedua.bandung : ITB. Hal. 186-230. Ibrahim, S. 2001. Pengembangan Metode Analisis Menggunakan Kromatografi Cair Kinerja Tinggi. Seminar on HPLC Application for Analysis of Drugs, Food, and Environtment. Bandung : Dept. Farmasi F MIPA ITB. Hal. 1-19. Johnson, E. L. dan R, Stevenson. 1991. Dasar Kromatografi Cair. Terjemahan Padmawinata. Bandung : Penerbit ITB. Hal. 1-54, 230-255, 300-301. Mulja, M., dan Suharman. 1995. Analisis Instrumen. Surabaya: Airlangga University Press. Hal. 237-267. Othmer, K. 1963. Encyclopedia of Chemical Technology. Vol 1. Second edition. New York: John Wiley and son, Inc. Page : 274-283. Otles S. Acrylamide in Food (chemical structure of acrylami de). 2004: http://ejeafche.uvigo.es/3(5)2004/001352004.pdf. Satiadarma K. 2004. Asas Pengembangan Prosedur Analisis, Edisi pertama.. Surabaya : Airlangga University Press. Hal. 46-51 Snyder, L. R., J, L, Glajch., and J, J, Kirkland. 1997. Practical HPLC Method Development. New York : John Willey & Sons. Page : 63-71; 76; 205-230; 292-314; 685-713. Underwood A. L., et al. 1986. Analisis Kimia Kuantitatif. Penerjemah: Aloysius H.P. Jakarta: Elangga. Hal. 388-408 United State Pharmacopoeial Convention. 1997. Drug Information for The Health Care Professional. vol. I, 17 ed. Massachussets : United State Pharmacopoeial Convention Inc. Page : 791-793. 7

8

9