International Journal of Pharmaceutical Sciences and Drug Research 2018; 10(1): 46-50

Similar documents
Department of Pharmaceutical Analysis, Amrutvahini College of Pharmacy, Tal: Sangamner, Dist: Ahmednagar, Maharashtra, India 2.

Pelagia Research Library

RP-HPLC Method Development and Validation of Abacavir Sulphate in Bulk and Tablet Dosage Form

Effect of Candesartan on Pharmacokinetics and Pharmacodynamics of Sitagliptin in Diabetic Rats

METHOD DEVELOPMENT AND VALIDATION BY RP-HPLC FOR ESTIMATION OF ZOLPIDEM TARTARATE

Bioequivalence Studies of Two Formulations of Famciclovir Tablets by HPLC Method

AMERICAN JOURNAL OF BIOLOGICAL AND PHARMACEUTICAL RESEARCH

Online at JPBR, 2014, Vol.2(1): 63-68

Development and Validation of RP-HPLC Method for the Estimation of Gemigliptin

International Journal of Pharma and Bio Sciences DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR THE ESTIMATION OF STRONTIUM RANELATE IN SACHET

Development and validation of RP-HPLC method for simultaneous estimation of gliclazide and metformin in pure and tablet dosage form

Method Development and Validation for the Estimation of Saroglitazar in Bulk and Pharmaceutical Dosage Form by RP-HPLC

2. REVIEW OF LITERATURE

Hyderabad, India. Department of Pharmaceutical Chemistry, Glocal University, Saharanpur, India.

DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR ESTIMATION OF LACOSAMIDE IN BULK AND ITS PHARMACEUTICAL FORMULATION

Development and validation of stability indicating RP-LC method for estimation of calcium dobesilate in pharmaceutical formulations

Simultaneous estimation of Metformin HCl and Sitagliptin in drug substance and drug products by RP-HPLC method

Asian Journal of Pharmaceutical Analysis and Medicinal Chemistry Journal home page:

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

J Pharm Sci Bioscientific Res (4): ISSN NO

Asian Journal of Research in Chemistry and Pharmaceutical Sciences

DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD ESTIMATION OF TOLVAPTAN IN BULK PHARMACEUTICAL FORMULATION

International Journal of Pharma and Bio Sciences

Spectrophotometric Method for Estimation of Sitagliptin Phosphate in Bulk...

ISSN (Print)

Pelagia Research Library

A REVIEW ON CHROMATOGRAPHIC AND SPECTROPHOTOMETRIC METHODS FOR ESTIMATION OF GLIFLOZIN IN BULK AND IN DIFFERENT DOSAGE FORMS

Journal of Chemical and Pharmaceutical Research, 2018, 10(2):1-5. Research Article. RP- HPLC Method for Estimation of Furosemide in Rabbit Plasma

Method development and validation for the simultaneous estimation of saxagliptin and metformin in tablet dosage form by RP-HPLC method

Simultaneous Determination and Pharmacokinetic Study of Metformin and Rosiglitazone in Human Plasma by HPLC ESI-MS

International Journal of Research in Pharmaceutical and Nano Sciences Journal homepage:

Simultaneous Estimation of Gemcitabine Hydrochloride and Capecitabine Hydrochloride in Combined Tablet Dosage Form by RP-HPLC Method

Chapter 5 Herb-Drug Interactions: Glibenclamide

Reverse Phase HPLC Analysis of Atomoxetine in Pharmaceutical Dosage Forms

Screening of Antihistamine Agents (Diphenhydramine) with Blood and Urine Samples by REMEDi-HS System

SIMULTANEOUS ESTIMATION OF VALSARTAN AND HYDROCHLOROTHIAZIDE IN TABLETS BY RP-HPLC METHOD

Pharmacologyonline 2: (2009) Pharmacodynamic Drug Interaction of Gliclazide and Mexiletine in Rats

Analysis of HMF by HPLC

Received: 10 March 2014, Accepted: 30 May 2014, Published Online: 19 June 2014 Abstract

KYAMC Journal Vol. 2, No.-2, January Bioequivalence study of Flunac and Diflucan in healthy Bangladeshi male volunteers

RP-HPLC METHOD DEVELOPMENT AND VALIDATION FOR CILOSTAZOL IN TABLET DOSAGE FORM

IJPAR Vol.3 Issue 4 Oct-Dec-2014 Journal Home page:

Sheikh R J et al. IRJP 1 (1)

Scholars Research Library

ISSN: ; CODEN ECJHAO E-Journal of Chemistry 2011, 8(3),

Determination of Clarithromycin in Human Plasma by LC-EI Tandem Mass Spectrometry: Application to Bioequivalence Study

Development, Estimation and Validation of Lisinopril in Bulk and its Pharmaceutical Formulation by HPLC Method

Vol-3, Issue-4, Suppl-2, Nov 2012 ISSN: Sheth et al PHARMA SCIENCE MONITOR

New RP - HPLC Method for the Determination of Valproic acid in Human Plasma

Asian Journal of Pharmaceutical Analysis and Medicinal Chemistry Journal home page:

DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR ASSAY AND DISSOLUTION OF METOPROLOL SUCCINATE EXTENDED RELEASE TABLETS

RP-HPLC Analysis of Temozolomide in Pharmaceutical Dosage Forms

RP- HPLC and Visible Spectrophotometric methods for the Estimation of Meropenem in Pure and Pharmaceutical Formulations

Pelagia Research Library

SIMULTANEOUS DETERMINATION OF ATORVASTATIN AND EZETIMIBE BY RP-HPLC IN PURE AND PHARMACEUTICAL DOSAGE FORM

Journal of Global Trends in Pharmaceutical Sciences

A New Stability-Indicating and Validated RP-HPLC Method for the Estimation of Liraglutide in Bulk and Pharmaceutical Dosage Forms

36 J App Pharm Vol. 6; Issue 1: 36-42; January, 2014 Rao et al., 2014

International Journal of Medicine and Pharmaceutical Research. International Journal of Medicine and Pharmaceutical Research

Simultaneous For the Estimation of Metformin and Empagliflozin in Pharmaceutical Dosage Form by HPLC Method

DEVELOPMENT OF RP-HPLC METHOD FOR ESTIMATION OF DROTAVERINE HYDROCHLORIDE IN PHARMACEUTICAL FORMULATIONS

REVERSE PHASE HPLC METHOD FOR THE ANALYSIS OF ALFUZOSIN HYDROCHLORIDE IN PHARMACEUTICAL DOSAGE FORMS

Development and Validation for Simultaneous Estimation of Sitagliptin and Metformin in Pharmaceutical Dosage Form using RP-HPLC Method

MEDAK DIST. ANDHRA PRADESH STATE, INDIA. Research Article RECEIVED ON ACCEPTED ON

International Journal of Pharma and Bio Sciences


FABRICATION AND EVALUATION OF GLIMEPIRIDE CORDIA DICHOTOMA G.FORST FRUIT MUCILAGE SUSTAINED RELEASE MATRIX TABLETS

Journal of Chemical and Pharmaceutical Research, 2018, 10(3): Research Article

Original Article Analytical method development and validation for some oral hypoglycemic drugs

Development of a Validated RP-HPLC Method for the Analysis of Citicoline Sodium in Pharmaceutical Dosage Form using Internal Standard Method

Influence of Lansoprozole on the pharmacokinetics and pharmacodynamics of Glimepiride in normal and diabetic rats

Sanjog Ramdharane 1, Dr. Vinay Gaitonde 2

DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR QUANTITATIVE ANALYSIS TOLBUTAMIDE IN PURE AND PHARMACEUTICAL FORMULATIONS

TENOFOVIR TABLETS: Final text for addition to The International Pharmacopoeia (June 2010)

AMIODARONE and DESETHYLAMIODARONE IN PLASMA BY UV FAST CODE Z33610

A stability indicating RP-HPLC method for simultaneous estimation of darunavir and cobicistat in bulk and tablet dosage form

Development and validation of related substances method for Varenicline and its impurities

Estimation of Etoricoxib in Tablet Dosage form by RP- HPLC using Internal Standard with Emphasize on Specificity Parameter Method

HPLC method for Pharmacokinetics of cis and trans isomer of cefprozil diastereomers in human plasma

DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR SIMULTANEOUS ESTIMATION OF ETORICOXIB AND THIOCOLCHICOSIDE IN PHARMACEUTICAL DOSAGE FORMS

VITAMINES A / E IN PLASMA BY UV - FAST CODE Z18610

HPLC-UV Determination of Abacavir Sulphate in Pharmaceutical Dosage Forms

Method development and validation for the simultaneous estimation of sitagliptin and metformin in tablet dosage form by RP-HPLC

Shuguang Li, Jason Anspach, Sky Countryman, and Erica Pike Phenomenex, Inc., 411 Madrid Ave., Torrance, CA USA PO _W

Determination of propranolol in dog plasma by HPLC method

CHAPTER-2. Table of Contents. S.No. Name of the Sub-Title Page No. 2.1 Literature survey for simultaneous estimation of selected drugs by RP-HPLC

Simultaneous Determination of Halobetasol and Salicylic Acid Related Substances by Reversed Phase High Performance Liquid Chromatographic Method

Method Development and Validation for Simultaneous Estimation of Atorvastatin and Ezetimibe in Pharmaceutical Dosage Form by HPLC

DEVELOPMENT AND VALIDATION OF NEW HPLC METHOD FOR THE ESTIMATION OF PALIPERIDONE IN PHARMACEUTICAL DOSAGE FORMS

High Performance Liquid Chromatographic Determination of Cyclooxygenase II Inhibitor Rofecoxib in Rat and Human Plasma

Volume 2 (6), 2014, Page CODEN (USA)-IJPRUR, e-issn: International Journal of Pharma Research and Health Sciences

RP-HPLC Method for the Simultaneous Estimation of Sitagliptin Phosphate and Metformin Hydrochloride in Combined Tablet Dosage Forms

SUMMARY, CONCLUSION & RECOMMENDATIONS

Quantitative estimation of Rosuvastatin in bulk and tablet dosage form by using area under curve method

5.1 Summary. Summary & Conclusions

International Journal of Drug Research and Technology

Stability indicating RP-HPLC method development and validation of Etizolam and Propranolol hydrochloride in pharmaceutical dosage form

Available online at Scholars Research Library

Sample Preparation is Key

Available online Research Article

Transcription:

Available online at www.ijpsdr.com International Journal of Pharmaceutical Sciences and Drug Research 2018; 10(1): 46-50 Research Article ISSN: 0975-248X CODEN (USA): IJPSPP Pharmacokinetic Drug - Drug Interactions between Concomitantly Used Metformin with Pravastatin T. S. Abdul Haseeb, T. Rama Mohan Reddy * Mewar University, NH-79, Gangrar, Chhitorgarh-312901, Rajasthan, India Copyright 2018 T. S. Abdul Haseeb et al. This is an open access article distributed under the terms of the Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms. ABSTRACT The present study is aimed to investigate the safety and reliability of anti diabetic drug Metformin and possible drug interaction with Pravastatin when they were administered as combination treatment. The study was conducted on healthy Wistar and streptozotocin induced. A simple and sensitive high performance liquid chromatographic method was developed for the simultaneous estimation of Metformin and Pravastatin in rat plasma and also to estimate possible pharmacokinetic parameters of these drugs after oral administration. There was no significant difference in the t max of Metformin alone and combination with Pravastatin on day 1 and day 8 respectively. These were no significant increase in both AUC (0 24 h) and AUC (0 - ) of Metformin alone and combination of Pravastatin on day 1 and day 8 respectively. Similarly there was no significant enhancement in the C max between Metformin alone and combination with Pravastatin on day 1 and day 8 respectively. There is however no significant difference in C max, t½, values. Similarly there was no significant difference in the t max of Pravastatin alone and combination with Metformin on day 1 and day 8 respectively and no significant enhancement in C max, t max, t1/2, values between Pravastatin alone and combination with Metformin on day 1 and day 8 respectively. In the present study, based on the results it can be concluded that the concurrent administration of these two drugs have potential benefit in the treatment of Diabetes and hyperlipidemia. In addition, due to their insignificant pharmacokinetic interaction the combinational therapy can be safe and highly advantageous in hyperlipidemia patients with diabetes. Keywords: Metformin, Pravastatin, hyperlipidemia, Diabetes mellitus. DOI: 10.25004/IJPSDR.2018.100108 Int. J. Pharm. Sci. Drug Res. 2018; 10(1): 46-50 *Corresponding author: Dr. T. Rama Mohan Reddy Address: Mewar University, NH-79, Gangrar, Chhitorgarh-312901, Rajasthan, India Tel.: +91-8686377725 E-mail : roshansalfi@yahoo.com Relevant conflicts of interest/financial disclosures: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. Received: 08 December, 2017; Revised: 28 December, 2017; Accepted: 06 January, 2018; Published: 15 January, 2018 INTRODUCTION Diabetes mellitus (DM) is a chronic metabolic disorder characterized by a hyperglycemia caused by insulin deficiency, often combined with insulin resistance. In diabetes, the homeostasis of carbohydrate and lipid metabolism is improperly regulated by the pancreatic 46

hormone, insulin; resulting in an increased blood glucose level. [1] Hyperglycemia occurs because of uncontrolled hepatic glucose output and reduced uptake of glucose by skeletal muscle with reduced glycogen synthesis. Diabetes mellitus is classified on the basis of the pathogenic process that leads to the hyperglycemia. The broad categories of DM are designated type 1 and type 2. [2] Metformin lowers blood glucose concentration and improves insulin sensitivity by reducing hepatic gluconeogenesis and enhancing insulin-simulated peripheral glucose uptake. It also inhibits adipose tissue lipolysis, thereby reducing circulating levels of free fatty acids (FFA). [3] Metformin, an oral anti-diabetic drug, is being considered increasingly for treatment and prevention of cancer, obesity as well as for the extension of healthy life span. [4] Metformin is not metabolized at all but is completely excreted in urine. Metformin may therefore accumulate and cause lactic acidosis if other medications have induced renal failure. [5] When patients are diagnosed with diabetes, a large number of medications become appropriate therapy. These include medications for dyslipidemia, hypertension, anti-platelet therapy, and glycemic control which may lead to drug interactions with antidiabetic drugs. [6] Metformin has many drug-disease interactions that can increase the risk of metformin-associated lactic acidosis (MALA). [6] Drug interactions are often categorized as pharmacodynamic or pharmacokinetic in nature. [6] A pharmacodynamic drug interaction is related to the drug s effect on the body. Pharmacodynamic drug interactions can be either beneficial or detrimental to patients. [6] Any drug that has the potential to raise blood glucose may produce apparent inefficacy of an oral hypoglycaemic drug. Stopping a drug which causes hyperglycaemia may produce a significant fall in blood glucose. This may require a parallel reduction in the dose of a hypoglycemic drug. [5] Some drugs can lower blood glucose, but the mechanisms of action are not well understood. Taking one of these drugs with a hypoglycemic drug might cause clinically significant hypoglycaemia. The patient may need a lower dose or even have to cease the oral hypoglycemic drug. Conversely stopping a drug with the potential to lower blood glucose might produce relative inefficacy of a hypoglycemic drug and create a need for an increased dose. [5] Hyderabad. Animals were randomly divided into four groups each group contains six animals. Each rat was maintained under controlled lab environment atmosphere humidity of 50%, fed with standard pellet diet and water ad libitum. The protocol of animal study was approved by the institutional animal ethical committee with No. IAEC/1292/VCP/Y6/Ph D-16/61. Study Design [7] The rats were grouped as follows Group I : Metformin alone in single dose/day in. Group II: Pravastatin alone in single dose/day in. Group III: Pravastatin alone in single dose/day in normal healthy rats Group IV: Metformin and Pravastatin concomitant administration as a single dose/day in. Collection of Blood Samples After administration of the drugs, blood samples of 0.5 ml were drawn from each anesthetized (isoflurane) rat at pre-determined time intervals was collected from the retro-orbital plexus using a capillary tube into prelabelled eppendorf tubes containing 10% of K 2EDTA anticoagulant (20μL). The time intervals for the sample collection were 0 (Pre dose), 0.5, 1, 2, 4, 6, 8, 10, 12, 16, 18 and 24 hours (post dose), Equal amount of saline was administered to replace blood volume at every blood withdrawal time. Plasma was obtained by centrifuging blood samples by using cooling centrifuge (REMI ULTRA) at 3000 rpm for 5 minutes. The obtained plasma samples were transferred into pre-labelled micro centrifuge tubes and stored at 30 C until bio analysis of pharmacokinetic and pharmacodynamic parameters. As described above, all the procedures were followed on day 8 also. Pharmacokinetic parameters were calculated by noncompartmental analysis by using Win Nonlin 5.1 software. Concentrations obtained from the above bioanalytical method were compiled. Method of Analysis Preparation of Plasma Samples for HPLC Analysis Rat plasma (0.5 ml) samples were prepared for chromatography by precipitating proteins with 2.5 ml of ice-cold absolute ethanol for each 0.5 ml of plasma. After centrifugation the ethanol was transferred into a clean tube. The precipitate was re suspended with 1 ml of Acetonitrile by vortexing for 1 min. After centrifugation (5000 6000 rpm for 10 min), the Acetonitrile was added to the ethanol and the organic mixture was taken to near dryness by a steam of nitrogen at room temperature. Samples were reconstituted in 200 1 of mobile phase was injected for HPLC analysis. For HPLC an Inertsil ODS 3V, 250 4.6 mm, C18 column with 5μm particle size and the mobile phase consisting of A mixture of Phosphate buffer and Methanol in the ratio of 60:40 v/v, the flow rate was maintained at 1ml/min and the eluent was monitored MATERIALS AND METHODS Materials Drugs and chemicals Metformin and Pravastatin were procured from aurobindo laboratories as a gift sample. All HPLC grade solvents (methanol and water) were procured from finar chemicals Ltd., Ahmadabad. All chemicals used were analytical grade. Animal study Male Wistar rats (weighing 200-220 g) were procured from the animal house CMR College of Pharmacy, at 215 nm. Phenformin used as internal standard. The Int. J. Pharm. Sci. Drug Res. January-February, 2018, Vol 10, Issue 1 (46-50) 47

retention times of Metformin, Pravastatin and Phenformin were found to be 7.2, 4.6 and 3.2 min respectively. Standard calibration curve of Metformin and Pravastatin in rat plasma Different concentration (0.05, 0.1, 0.5, 1, 5, 10, 20, 40 ng/ml) of Metformin, Pravastatin in plasma were prepared for calibration curve. The samples were treated as above for protein precipitation method and peak areas of Metformin and Pravastatin were noted down. The peak area ratios obtained at different concentrations of the Metformin, Pravastatin were plotted using UV Vis detector at 220 nm. Pharmacokinetic Analysis The pharmacokinetic parameters, peak plasma concentrations (C max) and time to reach peak concentration (t max) were directly obtained from concentration time data. In the present study, AUC 0-t refers to the AUC from 0 to 24 hours, which was determined by linear trapezoidal rule and AUC 0- refers to the AUC from time at zero hours to infinity. The AUC 0- was calculated using the formula AUC 0-t + [C last/k] where C last is the concentration in g/ml at the last time point and K is the elimination rate constant. Various pharmacokinetic parameters like area under the curve [AUC], elimination half life [t½]. Volume of distribution (V/f) total clearance (Cl/f) and mean residence time for each subject using a noncompartmental analysis by using Win Nonlin 5.1 software. Statistical Analysis Statistical comparisons for the pharmacokinetic Pharmacodynamic study among, Metformin, Pravastatin alone and in combination groups and plasma concentration response study among concentrations and time were carried out with student s paired T-Test a value of P<0.05 was considered to be statistically significant. Data were reported as mean S.E.M linear regressions were used to determine the relationship between total plasma concentrations and pharmacokinetic and pharmacodynamic parameters. The mean concentration versus time profile of Metformin and Pravastatin in rat plasma is shown in Figures 1, 2, 3, 4, 5 and 6. RESULTS AND DISCUSSION In the present study, Metformin is completely absorbed after oral administration with peak plasma concentration of 24.34 0.3 g/ml after 2 hours of dosing on day 1. In combination with Metformin and Pravastatin on day 1, the peak plasma concentration of Metformin 26.03 0.12 g/ml occurred 2 hours after dosing. There was no significant increase in peak plasma concentration levels. Similarly Pravastatin is completely absorbed after oral administration with peak plasma concentration 3.02 ± 0.03 g/ml occurred 2 hour after dosing on day 1 in combination with Metformin and Pravastatin on day 1. Fig. 1: Mean ± S.E.M, plasma levels (µg/ml) of Metformin alone and in Combination with Pravastatin on day 1 Fig. 2: Mean ± S.E.M, plasma levels (µg/ml) of Metformin alone and in Combination with Pravastatin on day 8 Fig. 3: Mean ± S.E.M, plasma levels (µg/ml) of Pravastatin in diabetic versus healthy male Wistar rats on day 1 Fig. 4: Mean ± S.E.M, plasma levels (µg/ml) of Pravastatin in diabetic versus healthy male Wistar rats on day 8 Int. J. Pharm. Sci. Drug Res. January-February, 2018, Vol 10, Issue 1 (46-50) 48

healthy rats on day 1 and day 8 treatment (P<0.05) respectively. Table 1: Mean ± S.E.M, pharmacokinetic parameters of Metformin alone and in Combination with Pravastatin on day 1 Parameters Metformin alone Metformin combination with Pravastatin Cmax 25.74 ± 0.39 26.03 ± 0.12 AUCo-t (µg/ml/h) 272.45 ± 0.74 276.37 ± 0.52 AUCo-inf (µg/ml/h) 368.82 ± 2.50 356.15 ± 1.85 T1/2 (h) 6.56 ± 0.28 6.64 ± 0.09 Fig. 5: Mean ± S.E.M, plasma levels (µg/ml) of Pravastatin alone and in Combination with Metformin on day 1 Table 2: Mean ± S.E.M, pharmacokinetic parameters of Metformin alone and in Combination with Pravastatin on day 8 Parameters Metformin alone Metformin combination with Pravastatin Cmax 31.92 ± 0.22 32.41 ± 0.1 AUCo-t (µg/ml/h) 337.36 ± 0.38 343.38 ± 0.49 AUCo-inf (µg/ml/h) 396.36 ± 0.63 413.49 ± 0.74 T1/2 (h) 6.496 ± 0.024 6.08 ± 0.018 Fig. 6: Mean ± S.E.M, plasma levels (µg/ml) of Pravastatin alone and in Combination with Metformin on day 8 The peak plasma concentration of Pravastatin 4.80 ± 0.04 g/ml occurred 2 hours after dosing. There was no significant increase in the peak plasma concentration levels similarly on day 8 of Metformin alone and with combination of Metformin with Pravastatin on day 8. Peak plasma concentration are 31.92 0.22 g/ml and 32.41 0.10 S g/ml respectively similarly Pravastatin on day 8 and combination with Metformin concentrations are 4.80 0.04 g/ml and 4.615 0.04 g/ml respectively. There was no significant difference in peak plasma concentration on day 8 (P>0.05). There was no significant differences were observed between diabetic and healthy Pravastatin treated rats on day 1 and day 8 respectively (P<0.05) on oral administration of Pravastatin alone and with combination of Metformin. With Pravastatin on day 1 showed a 2% increase in the AUC 0 24 of Metformin compared to combinational treatment similarly. Pravastatin on day 1 and with combination Metformin with Pravastatin on day 1 administration resulted in an increase in the AUC 0 24 of Pravastatin compared with combinational treatment. Similarly on day 8 of Metformin and Pravastatin in combination treatment were 1.65% and 2.8% increase in the AUC 0 24 respectively. The mean AUC 0 24 of Pravastatin in diabetic (HL) rats was 33.49 0.20 g/ml /h and 44.11 0.22 g/ml/h which was reduced to 21.9 0.11 g/ml/h and 38.22 0.09 g/ml/h Pravastatin in Table 3: Mean ± S.E.M, pharmacokinetic parameters of Pravastatin in diabetic versus healthy male Wistar rats on day 1 Parameters Pravastatin in Pravastatin in healthy rats Cmax 3.92 ± 0.03 2.72 ± 0.03 AUCo-t (µg/ml/h) 33.49 ± 0.20 21.9 ± 0.118 AUCo-inf (µg/ml/h) 52.23 ± 1.36 27.49 ± 0.808 T1/2 (h) 5.22 ± 0.49 5.03 ± 1.11 Table 4: Mean ± S.E.M, pharmacokinetic parameters of Pravastatin in diabetic versus healthy male Wistar rats on day 8 Parameters Pravastatin in Pravastatin in non Cmax 4.80 ± 0.04 3.65 ± 0.06 AUCo-t (µg/ml/h) 44.11 ± 0.225 38.22 ± 0.09 AUCo-inf (µg/ml/h) 61.57 ± 0.43 67.37 ± 0.336 T1/2 (h) 5.49 ± 0.186 5.92 ± 0.0908 Table 5: Mean ± S.E.M, pharmacokinetic parameters of Pravastatin alone and in Combination with Metformin in on day 1 Parameters Pravastatin alone Pravastatin with Metformin Cmax 3.92 ± 0.03 3.783 ± 0.02 AUCo-t (µg/ml/h) 33.49 ± 0.016 31.62 ± 0.20 AUCo-inf (µg/ml/h) 52.33 ± 1.37 42.16 ± 0.52 T1/2 (h) 5.22 ± 0.49 5.57 ± 0.27 Table 6: Mean ± S.E.M, pharmacokinetic parameters of Pravastatin alone and in Combination with Metformin in Diabetic rats on day 8 Parameters Pravastatin alone Pravastatin with Metformin Cmax 4.80 ± 0.04 4.615.± 0.04 AUCo-t (µg/ml/h) 33.5 ± 0.2253 41.6 ± 0.25 AUCo-inf (µg/ml/h) 52.6 ± 0.43 59.76 ± 0.88 T1/2 (h) 15.23 ± 0.18 12.89 ± 0.29 The half life was similar with alone and combination treatment on day 1 and day 8. All these changes were not statistically significant (P>0.05). All the results were showed in Table 1-6. In the present study, based on the results obtained from kinetic study it is evident that the single dose of Int. J. Pharm. Sci. Drug Res. January-February, 2018, Vol 10, Issue 1 (46-50) 49

Metformin, Pravastatin individually and concomitantly treated did not show any bio statistically significant interactions in its pharmacokinetic parameters. So, it can be concluded that the concurrent administration of these two drugs have potential benefit in the management of diabetic patients with hyperlipidemia. In addition, due to their insignificant pharmacokinetic interaction the combinational therapy can be safe and highly advantageous in patients with diabetes and constipation. REFERENCES 1. Poonam T, Prakash PG, Kumar VL. Interaction of Momordica charantia with metformin in. American Journal of Pharmacology and Toxicology. 2013; 8(3):102 6. 2. Undale VR, Bhosale AV, Upasani CD. Study of Pharmacodynamic Interaction between a Polyherbal Formulation BSL-150 and Metformin. Pharmaceutical Crops. 2014; 5:67 76. 3. Chetan DBG, Bhat KM, Shivprakash. Estimation and pharmacokinetics of metformin in human volunteers. Indian J Pharm Educ Res. 2007; 41(2): 3-10. 4. Berstein LM. Metformin in obesity, cancer and aging: addressing controversies. Aging (Albany NY). 2012; 4(5):320 9. 5. Shenfield GM. Drug interactions with oral hypoglycaemic drugs. Australian Prescriber. 2001; 24(4): 20-24. 6. Triplitt C. Drug Interactions of Medications Commonly Used in Diabetes. Diabetes Spectrum. 2006; 19:4(4):202 11. 7. Rama rao V, Sriharsha SN, Rajesham VV. Pharmacokinetic drug interactions of gliclazide and itopride in normal and. Int J Pharm Pharm Sci. 2015; 7(10): 307-311. HOW TO CITE THIS ARTICLE: Abdul Haseeb TS, Rama Mohan Reddy T. Pharmacokinetic Drug - Drug Interactions between Concomitantly Used Metformin with Pravastatin. Int. J. Pharm. Sci. Drug Res. 2018; 10(1): 46-50. DOI: 10.25004/IJPSDR.2018.100108 Int. J. Pharm. Sci. Drug Res. January-February, 2018, Vol 10, Issue 1 (46-50) 50