Removal of Triton X-100 from Plasma Samples Using Mixed-Mode Solid Phase Extraction (SPE)

Similar documents
Matrix Factor Determination with the Waters Regulated Bioanalysis System Solution

O O H. Robert S. Plumb and Paul D. Rainville Waters Corporation, Milford, MA, U.S. INTRODUCTION EXPERIMENTAL. LC /MS conditions

Simultaneous Analysis of Intact Human Insulin and Five Analogs in Human Plasma Using μelution SPE and a CORTECS UPLC Column

A Definitive Lipidomics Workflow for Human Plasma Utilizing Off-line Enrichment and Class Specific Separation of Phospholipids

Challenges in Developing an Ultra-Sensitive Bioanalytical Method for Ethinylestradiol in Human Plasma

Rapid Analysis of Water-Soluble Vitamins in Infant Formula by Standard-Addition

Providing a Universal, One-step Alternative to Liquid-Liquid Extraction in Bioanalysis

Analysis of Testosterone, Androstenedione, and Dehydroepiandrosterone Sulfate in Serum for Clinical Research

[ APPLICATION NOTE ] High Sensitivity Intact Monoclonal Antibody (mab) HRMS Quantification APPLICATION BENEFITS INTRODUCTION WATERS SOLUTIONS KEYWORDS

Development of a High Sensitivity SPE-LC-MS/MS Assay for the Quantification of Glucagon in Human Plasma Using the ionkey/ms System

Direct Analysis of Urinary Opioids and Metabolites by Mixed-Mode µelution SPE Combined with UPLC/MS/MS for Forensic Toxicology

Reducing Sample Volume and Increasing Sensitivity for the Quantification of Human Insulin and 5 Analogs in Human Plasma Using ionkey/ms

Rapid Analysis of Bisphenols A, B, and E in Baby Food and Infant Formula Using ACQUITY UPLC with the Xevo TQD

A High Sensitivity UPLC/MS/MS Method for the Analysis of Clopidogrel and Clopidogrel Carboxylic Acid Metabolite in Human K 2 EDTA Plasma

Reduced Ion Suppression and Improved LC/MS Sensitivity with Agilent Bond Elut Plexa

Analysis of the Non-Ionic Surfactant Triton-X Using UltraPerformance Convergence Chromatography (UPC 2 ) with MS and UV Detection

UPLC-MS/MS Analysis of Azole Antifungals in Serum for Clinical Research

John Haselden 1, Gordon Dear 1, Jennifer H. Granger 2, and Robert S. Plumb 2. 1GlaxoSmithKline, Ware, UK; 2 Waters Corporation, Milford, MA, USA

Development of a Bioanalytical Method for Quantification of Amyloid Beta Peptides in Cerebrospinal Fluid

Analysis of Rosuvastatin in Dried Blood Spot and Plasma Using ACQUITY UPLC with 2D Technology

Method Development for the Analysis of Endogenous Steroids Using Convergence Chromatography with Mass Spectrometric Detection

Dr. Erin E. Chambers Waters Corporation. Presented by Dr. Diego Rodriguez Cabaleiro Waters Europe Waters Corporation 1

[ APPLICATION NOTE ] Oasis PRiME HLB Cartridge for Cleanup of Infant Formula Extracts Prior to UPLC-MS/MS Multiresidue Veterinary Drugs Analysis

UPLC/MS Monitoring of Water-Soluble Vitamin Bs in Cell Culture Media in Minutes

Rapid, Simple Impurity Characterization with the Xevo TQ Mass Spectrometer

Applying a Novel Glycan Tagging Reagent, RapiFluor-MS, and an Integrated UPLC-FLR/QTof MS System for Low Abundant N-Glycan Analysis

Probing for Packaging Migrants in a Pharmaceutical Impurities Assay Using UHPLC with UV and Mass Detection INTRODUCTION

Rapid Lipid Profiling of Serum by Reverse Phase UPLC-Tandem Quadrupole MS

Author. Introduction. Small Molecule Pharmaceuticals & Generics

Performance of an ultra low elution volume 96-well plate

A RAPID AND SENSITIVE UPLC/UV/MS METHOD FOR SIMVASTATIN AND LOVA S TAT IN IN SU P P O RT O F C L E A NING VA L I DAT IO N S T U DIES

USP Method Transfer of Ziprasidone HCl from HPLC to UPLC

Comparison of a UPLC Method across Multiple UHPLC Systems

The Development of LC/MS Methods for Determination of Polar Drugs of Abuse in Biological Samples

Quantification of Budesonide Using UPLC and Xevo TQ-S

A UPLC/MS Approach for the Diagnosis of Inborn Errors of Metabolism

Jose Castro-Perez, Henry Shion, Kate Yu, John Shockcor, Emma Marsden-Edwards, Jeff Goshawk Waters Corporation, Milford, MA, U.S. and Manchester, UK

Quantitative Analysis of Drugs of Abuse in Urine using UHPLC Coupled to Accurate Mass AxION 2 TOF Mass Spectrometer

Meeting Challenging Requirements for the Quantitation of Regulated Growth Promoters Dexamethasone and Betamethasone in Liver and Milk

Simplifying Solid-Phase Extraction [ OASIS SOLID-PHASE EXTRACTION PRODUCTS ]

Dienes Derivatization MaxSpec Kit

The Development of LC/MS Methods for Determination of MDMA (Ecstasy) and Metabolites in Biological Samples

Summary Chapter 8 CHAPTER 8. Summary. Page 173

A RAPID AND SENSITIVE ANALYSIS METHOD OF SUDAN RED I, II, III & IV IN TOMATO SAUCE USING ULTRA PERFORMANCE LC MS/MS

A Novel Solution for Vitamin K₁ and K₂ Analysis in Human Plasma by LC-MS/MS

[ APPLICATION NOTE ] APPLICATION BENEFITS INTRODUCTION WATERS SOLUTIONS KEYWORDS

[ APPLICATION NOTE ] Profiling Mono and Disaccharides in Milk and Infant Formula Using the ACQUITY Arc System and ACQUITY QDa Detector

Fast Separation of Triacylglycerols in Oils using UltraPerformance Convergence Chromatography (UPC 2 )

Lipid Class Separation Using UPC 2 /MS

Using Hydrophilic Interaction Chromatography (HILIC) for the Retention of Highly Polar Analytes

Profiling Flavonoid Isomers in Highly Complex Citrus Juice Samples Using UPLC Ion Mobility Time-of-Flight Mass Spectrometry

Protein Precipitation for Biological Fluid Samples Using Agilent Captiva EMR Lipid 96-Well Plates

Analysis of Food Sugars in Various Matrices Using UPLC with Refractive Index (RI) Detection

[ application note note ] ]

Determination of β2-agonists in Pork Using Agilent SampliQ SCX Solid-Phase Extraction Cartridges and Liquid Chromatography-Tandem Mass Spectrometry

Neosolaniol. [Methods listed in the Feed Analysis Standards]

[ APPLICATION NOTE ] A Generic Kit-Based Approach for LC-MS/MS Quantification of Urinary Albumin for Clinical Research APPLICATION BENEFITS

LC-MS/MS Method for the Determination of Tenofovir from Plasma

[ APPLICATION NOTE ] APPLICATION BENEFITS INTRODUCTION WATERS SOLUTIONS KEYWORDS

Mycotoxin Analysis in Infant Formula Using Captiva EMR Lipid Cleanup and LC/MS/MS

[ APPLICATION NOTE ] UPLC-MS/MS Analysis of 45 Amino Acids Using the Kairos Amino Acid Kit for Biomedical Research INTRODUCTION APPLICATION BENEFITS

Extraction of 25-hydroxy Vitamin D from Serum Using ISOLUTE. PLD+ Prior to LC-MS/MS Analysis

Jody Dunstan, 1 Antonietta Gledhill, 1 Ailsa Hall, 2 Patrick Miller, 2 Christian Ramp 3. Waters Corporation, Manchester, UK 2

ACQUITY UPLC WITH PDA DETECTION: DETERMINING THE SENSITIVITY LIMITS OF OXYBUTYNIN AND RELATED COMPOUNDS

Vitamin D Metabolite Analysis in Biological Samples Using Agilent Captiva EMR Lipid

Analysis of N-Linked Glycans from Coagulation Factor IX, Recombinant and Plasma Derived, Using HILIC UPLC/FLR/QTof MS

Determination of Amantadine Residues in Chicken by LCMS-8040

Comprehensive Study of SLE as a Sample. Preparation Tool for Bioanalysis

Analysis of Acrylamide in French Fries using Agilent Bond Elut QuEChERS AOAC kit and LC/MS/MS

Noora Perkola Finnish Environment Institute. Nordic MS Symposium November 9, 2011, Båstad, Sweden

Author. Introduction. Abstract

[ APPLICATION NOTE ] The Separation of 8 -THC, 9 -THC, and Their Enantiomers by UPC 2 Using Trefoil Chiral Columns INTRODUCTION APPLICATION BENEFITS

IC-MS Environmental Applications - Water Testing. Application Notebook

Chemical Analysis Business Operations Waters Corporation Milford MA

Analyze Barbiturates in Urine with Agilent 6430 LC/MS/MS and Poroshell 120 EC-C18

A Metabolomics Approach to Profile Novel Chemical Markers for Identification and Authentification of Terminalia Species

Determination of 6-Chloropicolinic Acid (6-CPA) in Crops by Liquid Chromatography with Tandem Mass Spectrometry Detection. EPL-BAS Method No.

A Robustness Study for the Agilent 6470 LC-MS/MS Mass Spectrometer

Systematic Evaluation of Solid Phase Extraction (SPE) Chemistries for the Determination of Acidic, Neutral, and Basic Drugs

Supplementary Information

Application Note. Author. Abstract. Introduction. Food Safety

High Throughput Extraction of Opiates from Urine and Analysis by GC/MS or LC/MS/MS)

INTRODUCTION CH 3 CH CH 3 3. C 37 H 48 N 6 O 5 S 2, molecular weight Figure 1. The Xevo QTof MS System.

SPE-LC-MS/MS Method for the Determination of Nicotine, Cotinine, and Trans-3-hydroxycotinine in Urine

Sample Preparation Techniques for Biological Matrices: Finding the right balance to achieve optimal results

SEPARATION OF BRANCHED PFOS ISOMERS BY UPLC WITH MS/MS DETECTION

The Application of UPLC/MS E for the Analysis of Bile Acids in Biological Fluids

Application Note. Abstract. Authors. Pharmaceutical

LC-MS/MS analysis of Chlorates in Milk and Whey Powder using the Agilent 6470 QQQ

CHARACTERIZATION AND DETECTION OF OLIVE OIL ADULTERATIONS USING CHEMOMETRICS

Overview of Matrix Effects in Bioanalysis

DETERMINATION OF CANNABINOIDS, THC AND THC-COOH, IN ORAL FLUID USING AN AGILENT 6490 TRIPLE QUADRUPOLE LC/MS

Extraction of Multiple Mycotoxins From Nuts Using ISOLUTE Myco prior to LC-MS/MS Analysis

Fast and simultaneous analysis of ethanol metabolites and barbiturates using the QTRAP 4500 LC-MS/MS system

Extraction of Multiple Mycotoxins From Grain Using ISOLUTE Myco prior to LC-MS/MS Analysis

Mycotoxin Analysis in Peanut Butter Using Captiva EMR Lipid Cleanup and LC/MS/MS

Paul Silcock 1, Anna Karrman 2, and Bert van Bavel 2. Aim. Introduction. Sample preparation

A Comprehensive Screening of Illicit and Pain Management Drugs from Whole Blood Using SPE and LC/MS/MS

Extraction of Aflatoxin M1 From Infant Formula Using ISOLUTE Myco SPE Columns prior to LC-MS/MS Analysis

Transcription:

Removal of Triton X- from Plasma Samples Using Mixed-Mode Solid Phase Extraction (SPE) Jonathan P. Danaceau, Erin Chambers, and Kenneth J. Fountain Waters Corporation, 34 Maple Street, Milford, MA USA APPLICATION BENEFITS Removal of Triton X- from plasma Elimination of Triton X- related ion suppression in early PK time points Quick and easy sample preparation and cleanup without method manipulation INTRODUCTION Pharmaceutical dosing vehicle excipients such as Triton X- are often added to formulations to facilitate dissolution in dosing media. Unfortunately, these compounds can cause significant matrix effects, typically ion suppression, in LC/MS/MS analyses. The use of fast LC gradients, common in drug discovery, can result in co-elution of target analytes with these compounds. Early pharmacokinetic (PK) time points, when the concentration of these excipients is elevated, can be particularly troublesome as this co-elution has been shown to be a major contributing factor to excipient related ion suppression. 1-3 Several approaches have been investigated to attempt to minimize this problem, including LC gradient manipulation, 2,3 alternative analytical column choices, 1 different sample preparation strategies, 1-3 sample dilution, 5 and even the development of a novel formulating agent. 4 While some of these strategies have been successful, they each have their limitations. Clearly, the choice of formulation excipient is often beyond the control of the analyst. LC optimization, either by gradient or mobile phase manipulation, or by alternative column selection can solve this problem for some analytes, but not always, and requires additional method development. In addition, extensive manipulation of LC conditions is not always conducive to a high-throughput screening environment. This work represents a fast, simple, and elegant solution to this problem through the use of Oasis mixed-mode cation exchange (MCX) SPE. Basic analytes are bound to the sorbent by strong cation exchange, while non-ionic excipients such as Triton bind by reverse phase, and can be selectively removed before analyte elution. Waters solutions Oasis MCX 96-well plate ACQUITY UPLC columns key words Excipient removal, Triton X- removal, SPE, LC/MS, ESI, ion suppression, matrix effects 1

EXPERIMENTAL Sample Preparation A basic drug mixture was prepared that consisted of acebutolol, doxylamine, labetolol, metoprolol, midazolam, and pindolol. This was either added to plasma samples prior to extraction to achieve plasma concentrations of 200 ng/ml or used to post spike blank extracted plasma eluates for recovery calculations. Triton X- was either added to plasma prior to extraction at a concentration of 5 mg/ml or used to post-spike extracted blank plasma eluates for determination of % removal. Triton X- was also used to post-spike extracted plasma samples to determine matrix factors associated with this excipient. Samples were extracted according to the basic Protocol for Oasis MCX. Briefly, 0.5 ml of rabbit plasma was acidified with 0.5 ml of 4% H 3 PO 4. (Note: 0.5 ml of plasma was used in this study; smaller volumes may also be used). After conditioning MCX plates with 1.0 ml MeOH and 1.0 ml H2O, acidified samples were loaded onto the sorbent bed. Loaded wells were then washed with 1.0 ml of 2% formic acid, followed by 2 x 1.0 ml of MeOH. The samples were then eluted with 2 x 250 µl of MeOH containing 5% NH 4 OH. Post spike (PS) samples were prepared by extracting blank rabbit plasma and post-spiking the final eluate with either the basic drug mix or a combination of the basic drug mix and Triton X-. Extracted samples were prepared by adding either 200 ng/ml basic drug mix or 200 ng/ml basic drug mix + 5 mg/ml Triton X- to plasma prior to extraction. Drug recovery and determination of Triton removal were determined by the following equation: % Recovery = (peak area in extracted samples/peak area in post-spike samples) x 10 For analysis of Triton X- removal, samples were diluted 1:20 in mobile phase to avoid contaminating the mass spectrometer with high concentrations of Triton X-. RESULTS AND DISCUSSION Figure 1 shows the chromatography of the 6 test compounds. These analytes (acebutolol, doxylamine, labetolol, metoprolol, midazolam, and pindolol) are represented by SIR traces of the MH + ion, with the exception of midazolam, in which the MH+ is combined with (M-35)H +. Figure 2 shows two chromatograms of Triton X-. The peak for Triton X- actually represents the combined TICs of the molecular ions from the most abundant components of Triton. This includes individual polymers with masses of 531, 575, 619, 663, 707, 751, and 795. Panel A indicates the level of Triton that would be present in an extracted plasma sample without removal by SPE. It was prepared by spiking Triton into the final plasma eluate post-extraction. Panel B is a chromatogram from a plasma sample containing 5 mg/ml Triton that was extracted using the standard MCX protocol, and demonstrates the nearly complete removal of Triton from the plasma sample. Figure 3 shows the average Triton peak area from each sample group in the experiment and demonstrates that 99% of the Triton was removed from plasma by the MCX extraction procedure. 1.85 Doxylamine 1.90 2.04 Acebutolol 2.08 Metoprolol 2.21 Labetalol 2.32 Midazolam min Figure 1. Basic Drug Mix Chromatography a. Extracted plasma Triton added post-extraction Pindolol b. Extracted plasma Triton added pre-extraction min Figure 2. 5 mg/ml Triton X- Post-spike and Extracted 2 Removal of Triton X- from plasma by Oasis MCX

METHOD CONDITIONS SPE Conditions SPE Plate: Oasis MCX 96-well plate 30 µm (30 mg) Part Number: 186000248 LC Conditions LC System: Waters ACQUITY UPLC system Detection: Waters SQD Vials: 2 ml 96 well collection plate Part Number: WAT058958 Column: ACQUITY UPLC BEH C 18 1.7 µm, 2.1 x 50 mm column Part Number: 186002350 Column Temp.: 30 C Sample Temp.: 10 C Injection Volume: 10 µl Flow Rate: 0.5 ml/min. Mobile Phase A (MPA): 0.1% HCOOH Mobile Phase B (MPB): Acetonitrile containing 0.1% HCOOH The initial mobile phase conditions were 95:5 MPA:MPB. Following a 0.5 min hold, MPB was increased to 95% over 2.5 min. and held for 1 min. The percentage of MPB was then returned to 5% and held for 2 minutes to re-equilibrate the column. The total run time was 6.0 min. MS Conditions MS System: Waters SQD Ionization Mode: ESI Positive Acquisition Range: SIR Capillary Voltage: 2.5 kv Cone Voltage: Compound specific (optimized for each analyte) Desolvation Gas: 700 L/min. Cone Gas: 0 L/min. Data Management Chromatography: MassLynx v4.1 SCN714 and MS Software Peak Area 35000000 30000000 25000000 20000000 15000000 0000 500000 0 Post Spike Plasma Samples Figure 3. Removal of Triton from Plasma by MCX Average Peak Area for Triton N=4 Triton added Pre- Extraction Analyte recovery was calculated according to the formula described in the methods section. Figure 4 shows that all analytes had recoveries that ranged between 99 and 105% using the basic MCX protocol. The average analyte extraction recovery was 102% for the six analytes. The presence of 5 mg/ml Triton X- in the plasma did not affect analyte recovery. The average recovery in the presence of Triton was 96%. Peak Area 12 10 8 6 4 2 Recovery in the absense of Triton Figure 4. Removal of Triton from Plasma by MCX Average Peak Area for Triton N=4 Recovery in the presense of Triton Midazolam Labetolol Acebutolol Metoprolol Pindolol Doxylamine One of the key goals of Triton X- removal from plasma is the elimination of excipient related ion suppression. Matrix factors were calculated according to the equation below, as described in a recent AAPS article, 6 and found to be close to 1 for all analytes (0.9-1.01; mean = 0.96) in the presence of Triton. This is most likely due to the fact that none of the analytes co-elute with Triton in this method, as matrix effects from dosing excipients generally occur during the elution of the excipient. 1-3 Matrix factor = (peak response in presence of Triton/peak response in absence of Triton) Therefore, in order to determine the expected impact of matrix effects if analytes were to co-elute with Triton, it was necessary to conduct a post-column infusion study. Briefly, the drug mixture was co-infused with the column effluent into the MS source. By comparing the target ion traces of the individual compounds, we were able to assess the degree to which Triton X- affected the signal intensity Removal of Triton X- from plasma by Oasis MCX 3

of the analytes. An example of these experiments is shown in Figure 5. Panel A shows three traces of the MH+ ion for pindolol, at a concentration of 500 ng/ml, infused at 10 µl/min with the column effluent. The green trace is from a plasma sample in which the drug mixture was added before extraction. The purple trace is from a plasma sample in which the drug mixture and 5 mg/ml Triton X- were added before extraction. The red trace is from a sample in which Triton X- was post-spiked into the sample eluent after extraction. Panel B shows the chromatography of Triton X- in the post-spike sample for comparison. This figure shows if Triton is not removed from the sample, it would result in a signal reduction of 80-9 for pindololol (red trace). This suppression is eliminated when Triton is removed by MCX (purple trace). The other analytes showed similar results. Triton associated ion suppression ranged between 50-85% and was eliminated after MCX extraction. Most importantly, it complements the data from Figures 2 and 3 and shows that MCX not only removes 99% of the Triton from plasma samples, but completely eliminates the ion suppression caused when Triton is not removed. a. Triton added post extraction Triton added pre-extraction No Triton added (plasma only) 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3.80 b. Triton X- Significant signal suppression 2.60 2.80 3.00 3.20 3.40 3.60 3.80 min Figure 5. Removal of Triton-induced Ion Suppression (Pindolol) 4 Removal of Triton X- from plasma by Oasis MCX

CONCLUSIONS Waters Oasis MCX extraction plates represent a simple, quick and elegant method for the removal of high concentrations of Triton X- from plasma samples, eliminating matrix effects (and thus ion suppression) often seen in early time points of pharmacokinetic studies. Furthermore, this problem is solved without any additional chromatographic method development, sample dilution or other time consuming or cumbersome procedures, which makes it suitable and broadly applicable for a high-throughput environment. REFERENCES 1. Tong X, Wang J, Zheng S, Pivnichny J, Griffin P, Shen X, Donnelly M, Vakerich K, Nunes C, and Fenyk-Melody J., Effect of signal interference from dosing excipients on pharmacokinetic screening of drug candidates by liquid chromatography/mass spectrometry, Anal Chem 2002 74:6305-6313. 2. Weaver R and Riley R., Identification and reduction of ion suppression effects on pharmacokinetic parameters by polyethylene glycol 400, Rapid Comm Mass Spec 2006 20:2559-2564. 3. Shou W and Naidong W., Post-column infusion stude of the dosing vehicle effect in the liquid chromatography/tandem mass spectrometric analysis of discovery pharmacokinetic samples, Rapid Comm. Mass Spec 2003 17:589-597. 4. Temesi D, Law B, and Howe N., Synthesis and evaluation of PEG414, a novel formulating agent that avoids analytical problems associated with polydispersive vehicles such as PEG400, J. Pharmaceutical Sciences 2003 92(12):2512-2518. 5. Larger P, Breda M, Fraier D, Hughes H, and James C., Ion-suppression effects in liquid chromatography-tandem mass spectrometry due to a formulation agent, a case study in drug discovery bioanalysis, J. Pharm. Biomed. Anal. 2005 39:206-216. 6. Bansal S and DeStefano A., Key elements of bioanalytical method development validation for small molecules, The AAPS Journal 2007 9(1):E109-E114. Waters, The Science of What s Possible, Oasis, ACQUITY UPLC, and MassLynx are trademarks of Waters Corporation. All other trademarks are the property of their respective owners. 2011 Waters Corporation. Produced in the U.S.A. October 2011 720004157EN LS-PDF Waters Corporation 34 Maple Street Milford, MA 01757 U.S.A. T: 1 508 478 2000 F: 1 508 872 1990 www.waters.com