Isomer Separation of Positively Labeled N-glycans by CE-ESI-MS

Similar documents
Higher throughput glycosylation analysis of biopharmaceuticals by mass spectrometry

Supporting Information for MassyTools-assisted data analysis of total serum N-glycome changes associated with pregnancy

Applying a Novel Glycan Tagging Reagent, RapiFluor-MS, and an Integrated UPLC-FLR/QTof MS System for Low Abundant N-Glycan Analysis

Application Note. Abstract. Author. Biotherapeutics & Biosimilars. Sonja Schneider Agilent Technologies, Inc. Waldbronn, Germany

Supporting information

GlycanPac AXR-1 Columns

Mass Spectrometry at the Laboratory of Food Chemistry. Edwin Bakx Laboratory of Food Chemistry Wageningen University

Separation of 15 Underivatized Saccharide and Sialic Acid USP Standards

Barry Boyes 1,2, Shujuan Tao 2, and Ron Orlando 2

Current Glycoprotein Analysis. Glycan Characterization: Oligosaccharides. Glycan Analysis: Sample Preparation. Glycan Analysis: Chromatography

Separation of 2AA-Labeled N-Linked Glycans from Glycoproteins on a High Resolution Mixed-Mode Column

Thermo Fisher Scientific, Sunnyvale, CA, USA; 2 Thermo Fisher Scientific, San Jose, CA, USA

New Instruments and Services

A Novel HILIC Column for High Speed N-linked Glycan Analysis

Comparison of mass spectrometers performances

Analysis of N-Linked Glycans from Coagulation Factor IX, Recombinant and Plasma Derived, Using HILIC UPLC/FLR/QTof MS

Mass Spectrometry. Actual Instrumentation

A computational framework for discovery of glycoproteomic biomarkers

Profiling the Distribution of N-Glycosylation in Therapeutic Antibodies using the QTRAP 6500 System

Thank you for joining us! Our session will begin shortly Waters Corporation 1

TECHNICAL BULLETIN. R 2 GlcNAcβ1 4GlcNAcβ1 Asn

Analysis of Glycopeptides Using Porous Graphite Chromatography and LTQ Orbitrap XL ETD Hybrid MS

Analysis of Choline and its Metabolites on the Finnigan LTQ

Structural Analysis of Labeled N-Glycans from Proteins by LC-MS/MS Separated Using a Novel Mixed-Mode Stationary Phase

High Throughput Accurate Mass Screening of Monoclonal Antibodies

Advances in Hybrid Mass Spectrometry

Determination of Benzodiazepines in Urine by CE-MS/MS

Profiling of Endogenous Metabolites Using Time-of-Flight LC/MS with Ion Pair Reverse Phase Chromatography

New Instruments and Services

Online 2D-LC Analysis of Complex N-Glycans in Biopharmaceuticals Using the Agilent 1290 Infinity 2D-LC Solution

Determination of Amphetamine and Derivatives in Urine

Glycan and Monosaccharide Workshop Eoin Cosgrave David Wayland Bill Warren

High Resolution Glycopeptide Mapping of EPO Using an Agilent AdvanceBio Peptide Mapping Column

Bioanalytical Quantitation of Biotherapeutics Using Intact Protein vs. Proteolytic Peptides by LC-HR/AM on a Q Exactive MS

MALDI Imaging Drug Imaging Detlev Suckau Head of R&D MALDI Bruker Daltonik GmbH. December 19,

MS/MS as an LC Detector for the Screening of Drugs and Their Metabolites in Race Horse Urine

Ludger Guide to Sialylation: II. Highly Sialylated Glycoproteins

Automating Mass Spectrometry-Based Quantitative Glycomics using Tandem Mass Tag (TMT) Reagents with SimGlycan

SimGlycan. A high-throughput glycan and glycopeptide data analysis tool for LC-, MALDI-, ESI- Mass Spectrometry workflows.

An Alternative Approach: Top-Down Bioanalysis of Intact Large Molecules Can this be part of the future? Lecture 8, Page 27

John Haselden 1, Gordon Dear 1, Jennifer H. Granger 2, and Robert S. Plumb 2. 1GlaxoSmithKline, Ware, UK; 2 Waters Corporation, Milford, MA, USA

Analysis of 2-Aminobenzamide (AB) Labeled Glycans Using HPLC with Fluorescence Detection

The Road to Glycan Analysis Without Compromise WCBP 2015 Waters Technical Seminar Jan 27, 2015 Washington, DC

FOURIER TRANSFORM MASS SPECTROMETRY

Can we learn something new about peptide separations after 40 years of RP and HILIC chromatography? Martin Gilar April 12, MASSEP 2016

LOCALISATION, IDENTIFICATION AND SEPARATION OF MOLECULES. Gilles Frache Materials Characterization Day October 14 th 2016

Thermo Scientific. GlycanPac AXR-1. Column Product Manual. P/N: April, Part of Thermo Fisher Scientific

Determination of B-vitamins in Energy Drinks by CE/MS/MS

Glycosylation analysis of blood plasma proteins

MASS SPECTROMETRY BASED METABOLOMICS. Pavel Aronov. ABRF2010 Metabolomics Research Group March 21, 2010

Flow-Through Electron Capture Dissociation in a novel Branched RF Ion Trap

Challenges in Separation Technologies

Biotherapeutics. Biopharmaceutical Sciences Group Waters Corporation Waters Corporation 1

QSTAR Operation. May 3, Bob Seward

Oligosaccharide Analysis by High-Performance Anion- Exchange Chromatography with Pulsed Amperometric Detection

LC/MS Method for Comprehensive Analysis of Plasma Lipids

Glycosylation analyses of recombinant proteins by LC-ESI mass spectrometry

for the Identification of Phosphorylated Peptides

Analyze Biogenic Amines in Salmon and Shrimp by Capillary Electrophoresis-Tandem MS

PHOSPHOPEPTIDE ANALYSIS USING IMAC SAMPLE PREPARATION FOLLOWED BY MALDI-MS and MALDI PSD MX

Application Note # ET-17 / MT-99 Characterization of the N-glycosylation Pattern of Antibodies by ESI - and MALDI mass spectrometry

Comparison of Relative Quantification of Monoclonal Antibody N-glycans Using Fluorescence and MS Detection

SYNAPT G2-S High Definition MS (HDMS) System

N-Glycan Sequencing Kit

Phospholipid characterization by a TQ-MS data based identification scheme

amazon speed Innovation with Integrity Ion Trap Performance Beyond Imagination Ion Trap MS

Isomeric Separation of Permethylated Glycans by Porous Graphitic Carbon (PGC)-LC-MS/MS at High- Temperatures

[ APPLICATION NOTE ] High Sensitivity Intact Monoclonal Antibody (mab) HRMS Quantification APPLICATION BENEFITS INTRODUCTION WATERS SOLUTIONS KEYWORDS

CESI-MS of Intact Proteins

Supporting information

Metabolomics: quantifying the phenotype

Analyzing Phenyl Ureas and Carbamates with HPLC/API-MS. Presented by Chen-Kai Meng, Ph.D. Applications Chemist

LC/MS Analysis of Various Hydrophilic Compounds Using a Polymer-Based Amino Column - Shodex TM HILICpak TM VG-50 2D

Introduction to Proteomics 1.0

BlotGlyco Glycan purification and labeling kit

Mass spectra of peptides and proteins - and LC analysis of proteomes Stephen Barnes, PhD

Sample Preparation is Key

Metabolite identification in metabolomics: Metlin Database and interpretation of MSMS spectra

Automated Sample Preparation/Concentration of Biological Samples Prior to Analysis via MALDI-TOF Mass Spectroscopy Application Note 222

A NOVEL METHOD OF M/Z DRIFT CORRECTION FOR OA-TOF MASS SPECTROMETERS BASED ON CONSTRUCTION OF LIBRARIES OF MATRIX COMPONENTS.

Extended Mass Range Triple Quadrupole for Routine Analysis of High Mass-to-charge Peptide Ions

Automated Detection and Identification of N- and O-glycopeptides

More structural information with MS n

A CZE Method for the Identification of Therapeutic Antibodies and Quality Control of Infusion Bags at the Hospital

A systematic investigation of CID Q-TOF-MS/MS collision energies to allow N- and O-glycopeptide identification by LC-MS/MS

A Fully Integrated Workflow for LC-MS/MS Analysis of Labeled and Native N-Linked Glycans Released From Proteins

REDOX PROTEOMICS. Roman Zubarev.

O O H. Robert S. Plumb and Paul D. Rainville Waters Corporation, Milford, MA, U.S. INTRODUCTION EXPERIMENTAL. LC /MS conditions

Application Note # LCMS-89 High quantification efficiency in plasma targeted proteomics with a full-capability discovery Q-TOF platform

Ion Exchange and Reversed Phase interactions in selective Bio-SPME extractions of designer drugs

Structural Elucidation of N-glycans Originating From Ovarian Cancer Cells Using High-Vacuum MALDI Mass Spectrometry

Electron transfer dissociation (ETD)

Mass Spectrometry Infrastructure

Breaking the Sensitivity Barrier in Triple Quad LC/MS Performance

Quantitative Analysis of Vit D Metabolites in Human Plasma using Exactive System

Novel Glycan Column Technology for the LC-MS Analysis of Labeled and Native N-Glycans Released from Proteins and Antibodies

Ionization Methods. Neutral species Charged species. Removal/addition of electron(s) Removal/addition of proton(s)

PHOTOCATALYTIC DECONTAMINATION OF CHLORANTRANILIPROLE RESIDUES IN WATER USING ZnO NANOPARTICLES. DR. A. RAMESH, Ph.D, D.Sc.,

Multiple Reaction Monitoring for Direct Quantitation of Intact Proteins using a Triple Quadrupole Mass Spectrometer

Determination of Chlorophenoxyacetic Acid and Other Acidic Herbicides Using a QuEChERS Sample Preparation Approach and LC-MS/MS Analysis

Transcription:

Isomer Separation of Positively Labeled N-glycans by CE-ESI-MS G.S.M. Kammeijer Center for Proteomics and Metabolomics CE IN THE BIOTECHNOLOGY & PHARMACEUTICAL INDUSTRIES 19 TH SYMPOSIUM ON THE PRACTICAL APPLICATIONS FOR THE ANALYSIS OF PROTEINS, NUCLEOTIDES AND SMALL MOLECULES (CE PHARM 017) LATE BREAKING SESSION 18 TH OF SEPTEMBER 017

GLYCOSYLATION Highly prevalent co- and posttranslational protein modification (PTM) Thought to be the most complex PTM More than 50% of human proteins are glycosylated Large influence on protein function Associated with physiological conditions and the effect of biopharmaceuticals IgG1 [P01857] G.S.M. Kammeijer - g.s.m.kammeijer@lumc.nl

GLYCOPROTEOMICS The most abundant monosaccharides in humans are: Glucose 16.058 Da Galactose 16.058 Da Mannose 16.058 Da Fucose 146.0579 Da N-Acetyl-Dglucosamine 03.0794 Da N-Acetyl-Dgalactosamine 03.0794 Da N-Acetylneuraminic acid 91.0954 Da 3 G.S.M. Kammeijer - g.s.m.kammeijer@lumc.nl

ANALYSIS APPROACHES INTACT GLYCOPROTEINS GLYCOPEPTIDES RELEASED GLYCANS Different isoforms Protein specific Site-specific Protein specific Analysis of complex samples Not site-specific Requires isolated proteins Fast increase of complexity of the data Not site-specific Not protein-specific 4 G.S.M. Kammeijer - g.s.m.kammeijer@lumc.nl

OUTLINE GLYCAN CHARACTERIZATION IMPROVING SENSITIVITY? IMPROVING SEPARATION 5 G.S.M. Kammeijer - g.s.m.kammeijer@lumc.nl

IN-HOUSE METHODS GLYCAN ANALYSIS CE-ESI-MS Sample PNGase F release Sample PNGase F release Di-methyl amidation Labeling CE-ESI-MS 6 G.S.M. Kammeijer - g.s.m.kammeijer@lumc.nl

TPNG PROFILE WITH CE-ESI-MS BARE-FUSED SILICA CAPILLARY Intens. x10 5 6.0 4.0.0 0.0 0 5 10 15 0 5 30 35 40 45 Time [min] Intens. x10 5 Injection: 5 psi 60sec 40 nl 6.0 4.0.0 0.0 30 31 3 33 34 35 36 37 38 39 Time [min] BFS capillary 90 cm, 30µm id, BGE composition: 10 % AA, capillary coolant: 0 C, voltage: 0 kv, injection sample: 5 psi, 60 sec (40 nl) 7 Kammeijer, G.S.M. et al. Manuscript in preparation

TPNG PROFILE WITH CE-ESI-MS BARE-FUSED SILICA CAPILLARY VS VS Intens. x10 5 Injection: 5 psi 60sec 40 nl 6.0 4.0.0 0.0 30 31 3 33 34 35 36 37 38 39 Time [min] BFS capillary 90 cm, 30µm id, BGE composition: 10 % AA, capillary coolant: 0 C, voltage: 0 kv, injection sample: 5 psi, 60 sec (40 nl) 8 Kammeijer, G.S.M. et al. Manuscript in preparation

TPNG PROFILE WITH CE-ESI-MS BFS VS DYNAMIC COATED NEUTRAL CAPILLARY Intens. x10 6 0.8 Bare-Fused Silica Capillary Injection: 5 psi 60sec (40 nl) 0.6 0.4 0. 0.0 30 31 3 33 34 35 36 37 38 39 Time [min] BFS capillary 90 cm, 30µm id,, BGE: 10 % AA, capillary coolant: 0 C, voltage: 0 kv, injection sample: 5 psi, 60 sec (40 nl) Intens. x10 7.5.0 1.5 1.0 0.5 Dynamic Coated Neutral Capillary Injection: 5 psi 60sec (40 nl) 0.0 37 38 39 40 41 4 43 44 45 46 Time [min] Dynamic neutral coated BFS capillary 90 cm, 30µm id,, BGE: 10 % AA, capillary coolant: 0 C, voltage: 0 kv, injection sample: 5 psi, 60 sec (40 nl) 9 Kammeijer, G.S.M. et al. Manuscript in preparation

IN SOURCE DECAY Intens. x10 5 Advantage of using CE for glycan characterization In-source decay can be easily detected and corrected 4 3 1 0 39.0 39.5 40.0 40.5 41.0 41.5 Time [min] 10 G.S.M. Kammeijer - g.s.m.kammeijer@lumc.nl

IN-SOURCE DECAY Advantage of using CE for glycan characterization In-source decay can be easily detected and corrected Derivatization method 1 Derivatization method Courtesy of Sander Wagt 11 Kammeijer, G.S.M. et al. Manuscript in preparation

DATA AUTOMATION LACYTOOLS Jansen, B.C. et al. J. Proteome Res., 016, 15 (7), pp 198-10 1 Kammeijer, G.S.M. et al. Manuscript in preparation

DATA AUTOMATION ALIGNMENT 13 Kammeijer, G.S.M. et al. Manuscript in preparation

DATA AUTOMATION ALIGNMENT Alignment of reference file (Run#1) Alignment of analysis (Run #) Alignment of analysis (Run #3) 14 Kammeijer, G.S.M. et al. Manuscript in preparation

DATA AUTOMATION DATA INTEGRATION PEP PEP PEP PEP Aligned mzxml file will be used for further data integration Reference file Provide composition list Expected migration time Migration window Min. charge state # Peak RT Mass Window Time Window Min Charge Max Calibrant protonloss1gip1h5n 3104 50 protonloss1gip1h3n4f1 307 45 protonloss1gip1h4n4 333 55 protonloss1gip1h4n4f1 374 60 protonloss1gip1h4n5f1 38 50 protonloss1gip1h5n4f1 3338 50 protonloss1gip1h5n4e1 3395 55 protonloss1gip1h5n4f1e1 346 55 protonloss1gip1h5n4e 3475 55 protonloss1gip1h5n4am1e1 348 70 protonloss1gip1h5n4f1e 3498 55 protonloss1gip1h5n5f1e 3504 55 protonloss1gip1h6n5am1e 3617 60 protonloss1gip1h7n6am3e1 374 70 15 Kammeijer, G.S.M. et al. Manuscript in preparation

OUTLINE GLYCAN CHARACTERIZATION IMPROVING SENSITIVITY? IMPROVING SEPARATION 16 G.S.M. Kammeijer - g.s.m.kammeijer@lumc.nl

INCREASING SENSITIVITY OF GLYCAN ANALYSIS WITH CE-ESI-MS 17 Significant increase in sensitivity with nano-lc-ms in combination with acetonitrile enriched nitrogen (DEN)- gas ` Nitrogen gas coming in Nitrogen gas passes the headspace of the acetonitrile bottle Dopant enriched nitrogen gas is introduced in the ESI source Acetonitrile in bottle The solvent vapor acts as a dopant for enrichment. The charge state of multiple charged ions are modified optimizing the signal intensity. Improvement factor of approximately one order of magnitude Application Note # LCMS-93 amazon speed ETD: Exploring glycopeptides in protein mixtures using Fragment Triggered ETD and CaptiveSpray nanobooster-014 17 Kammeijer, G.S.M. et al. Anal. Chem., 016, 88 (11), pp 5849-5856

INCREASING SENSITIVITY OF GLYCAN ANALYSIS WITH CE-ESI-MS Applicable on CE-ESI-MS? 18 Kammeijer, G.S.M. et al. Anal. Chem., 016, 88 (11), pp 5849-5856

INCREASING SENSITIVITY OF GLYCAN ANALYSIS WITH CE-ESI-MS Background MS signal Intens. x10 4 0.8 0.6 0.4 0. A CE-ESI-MS 536.16 79.157 391.8 37.006 430.41 9.000 Intens. x10 5 5 4 3 1 B 0 0 10 0 30 40 50 60 Time [min] 0.0 x10 4 0.8 0.6 0.4 C CE-ESI-MS with DEN-gas 311.973 An overall lower background observed especially in the higher mass region Intens. x10 5 5 4 3 1 D 0 0 10 0 30 40 50 60 Time [min] 0. 0.0 430.4 6.030 00 400 600 800 1000 100 1400 1600 1800 m/z 19 Kammeijer, G.S.M. et al. Manuscript in preparation

INCREASING SENSITIVITY OF GLYCAN ANALYSIS WITH CE-ESI-MS Improvement (total plasma N-glycome) 0 Kammeijer, G.S.M. et al. Manuscript in preparation

INCREASING SENSITIVITY OF GLYCAN ANALYSIS WITH CE-ESI-MS Improvement (total plasma N-glycome) 1 Kammeijer, G.S.M. et al. Manuscript in preparation

INCREASING SENSITIVITY OF GLYCAN ANALYSIS WITH CE-ESI-MS Improvement (total plasma N-glycome) 3x Kammeijer, G.S.M. et al. Manuscript in preparation

GLYCOMICS LOD DETERMINATION Sample PNGase F release Derivatization α,3 N-Acetylneuraminic acid α,6 N-Acetylneuraminic acid VS Purification and enrichment - Cotton HILIC Labeling - Addition of label with cationic charge CE-ESI-MS analysis 3 Haan, de N., et al., Anal. Chem., 015, 87 (16), pp 884 891, DOI: 10.101/acs.analchem.5b046cc

LOD EXPERIMENTAL SET-UP GLYCAN STANDARDS Dilution factor MALDI-TOF-MS Volume 1 µl Dilution series CE-ESI-MS Injection volume 44 nl Concentration Amount used Concentration (addition of LE, 9:1) Injected amount 1 1000 fmol/µl 1000 fmol 900 fmol/µl 39.6 fmol 10 100 fmol/µl 100 fmol 90 fmol/µl 3.96 fmol 0 50 fmol/µl 50 fmol 45 fmol/µl 1.98 fmol 100 10 fmol/µl 10 fmol 9 fmol/µl 0.396 fmol 00 5 fmol/µl 5 fmol 4.5 fmol/µl 0.198 fmol 1000 1 fmol/µl 1 fmol 0.9 fmol/µl 0.040 fmol 000 0.5 fmol/µl 0.5 fmol 0.45 fmol/µl 0.00 fmol 10000 0.1 fmol/µl 0.1 fmol 0.09 fmol/µl 0.004 fmol 4 Kammeijer, G.S.M. et al. Manuscript in preparation

Relative peak area LOD EXPERIMENTAL SET-UP GLYCAN STANDARDS 000x CE-ESI-MS 1000x CE-ESI-MS 00x CE-ESI-MS 100x CE-ESI-MS 0x CE-ESI-MS 10x CE-ESI-MS 1x CE-ESI-MS 1x MALDI-TOF-MS 10x MALDI-TOF-MS 0x MALDI-TOF-MS 000x CE-ESI-MS 1000x CE-ESI-MS 00x CE-ESI-MS 100x CE-ESI-MS 0x CE-ESI-MS 10x CE-ESI-MS 1x CE-ESI-MS 1x MALDI-TOF-MS 10x MALDI-TOF-MS 0x MALDI-TOF-MS 70% 60% 50% 40% 30% 0% 10% 00% 5 Kammeijer, G.S.M. et al. Manuscript in preparation

LOD EXPERIMENTAL SET-UP GLYCAN STANDARDS MALDI-TOF-MS Dilution series Dilution series CE-ESI-MS MALDI-TOF-MS CE-ESI-MS Volume µl µl Injectionvolume volume 44 44 nl nl Dilution Dilution factor Concentration Concentration Amount used used Concentration Concentration Injected Injected amount factor (addition of LE; 9:1) amount 0 6.39 pmol/µl 1.8 pmol 3.83 pmol/µl 169 fmol 1 1000 fmol/µl 000 fmol 900 fmol/µl 39.6 fmol 10 3.0 pmol/µl 100 fmol/µl 6.39 pmol 00 fmol 1.9 pmol/µl 90 fmol/µl 84.3 fmol 3.96 fmol 5 0 1.8 pmol/µl 50 fmol/µl.56 pmol 100 fmol 0.77 pmol/µl 45 fmol/µl 33.7 fmol 1.98 fmol 10 100 0.64 pmol/µl 10 fmol/µl 1.8 pmol 0 fmol 0.38 pmol/µl 9 fmol/µl 16.9 fmol 0.396 fmol 0 0.3 pmol/µl 0.64 pmol 0.19 pmol/µl 8.4 fmol 00 5 fmol/µl 10 fmol 4.5 fmol/µl 0.198 fmol 50 0.13 pmol/µl 0.6 pmol 0.07 pmol/µl 3. fmol 1000 1 fmol/µl fmol 0.9 fmol/µl 0.040 fmol 100 000 0.06 pmol/µl 0.5 fmol/µl 0.13 pmol 1 fmol 0.04 pmol/µl 0.45 fmol/µl 1.6 fmol 0.00 fmol 10000 0.1 fmol/µl 0. fmol 0.09 fmol/µl 0.004 fmol CE-ESI-MS with DEN-gas shows a ~100x higher sensitivity compared to MALDI-TOF-MS 6 Kammeijer, G.S.M. et al. Manuscript in preparation

7 OUTLINE GLYCAN CHARACTERIZATION IMPROVING SENSITIVITY? IMPROVING SEPARATION 7 G.S.M. Kammeijer - g.s.m.kammeijer@lumc.nl

OPTIMIZATION DYNAMIC NEUTRALLY COATED CAPILLARY 8 BGE COMPOSITION 10 % AA 0 % AA 0 % AA 10 % MeOH TEMPERATURE COOLANT 15 C 0 C 5 C VOLTAGE 0 kv 5 kv 30 kv Flow 0 psi 0.3 psi 0.5 psi

TPNG PROFILE WITH CE-ESI-MS NEUTRALS Intens. x10 7.0 Dynamic Coated Neutral Capillary Injection: 5 psi 60sec (40 nl) 1.5 1.0 0.5 0.0 5 30 35 40 45 50 Time [min] Dynamic neutrally coated BFS capillary, 90 cm 30µm id, BGE: 10 % AA, capillary coolant: 5 C, voltage: 0 kv, injection sample: 5 psi, 60 sec (40 nl) Intens. x10 6 3 Static Coated Neutral Capillary Injection: 1 psi 60sec (9 nl) 1 0 45 50 55 60 65 70 Time [min] Static neutrally coated BFS capillary, 90 cm 30µm id, BGE: 10 % AA, capillary coolant: 5 C, voltage: 0 kv, injection sample: 1 psi, 60 sec (9 nl) 9 Kammeijer, G.S.M. et al. Manuscript in preparation

TPNG PROFILE WITH CE-ESI-MS NEUTRALS Intens. x10 7.0 Dynamic Coated Neutral Capillary Injection: 5 psi 60sec (40 nl) 1.5 1.0 0.5 0.0 5 30 35 40 45 50 Time [min] Intens. x10 6 3 Static Coated Neutral Capillary Injection: 1 psi 60sec (9 nl) 1 0 45 50 55 60 65 70 Time [min] 30 Kammeijer, G.S.M. et al. Manuscript in preparation

Intens. x10 6 3 x10 6 x10 6 x10 6 1 0 8 6 4 0 5 4 3 1 0 6 4 ZERO-FLOW PRINCIPLE 10 min 0 min 30 min 0 x10 6 5 4 3 50 min 1 0 0 0 40 60 80 100 Time [min] 31 Kammeijer, G.S.M. et al. Manuscript in preparation

HIGH MANNOSE EFFECT OF ZERO-FLOW ON THE SEPARATION OF ISOMERIC N- GLYCANS GALACTOSYLATION Intensx10 5 0.40 0 min Intensx10 5 0.75 0 min Intensx10 4 0 min 0.0 0.50 1 0.5 Intensx10 5 55.0 56.0 57.0 10 min Time [min] Intensx10 5 54.5 55.5 56.5 10 min Time [min] Intensx10 4 53.0 54.0 55.0 Time [min] 10 min 1.00 VS.00 4 0.50 1.00 0.00 63.5 64.5 Time [min] 0.00 6.0 63.0 64.0 Time [min] 0 60.0 61.0 6.0 Time [min] Intensx10 5 0.75 0.50 0 min Intensx10 5 1.50 1.00 0 min VS Intensx10 4 3 0 min VS 0.5 0.50 1 0.00 67.5 68.5 69.5 Time [min] 0.00 67.0 68.0 69.0 Time [min] 65.0 66.0 67.0 Time [min] Intensx10 5 1.00 0.50 30 min VS Intensx10 5 1.50 1.00 0.50 30 min Intensx10 4 4 30 min 0.00 Intensx10 5 74.0 75.0 76.0 50 min Time [min] 0.00 Intensx10 5 73.5 74.5 75.5 50 min Time [min] Intensx10 4 71.0 7.0 73.0 Time [min] 50 min 0.75 0.50 0.5 1.00 0.50 3 1 0.00 8.5 83.5 84.5 Time [min] 0.00 8.0 83.0 84.0 Time [min] 80.0 81.0 8.0 Time [min]

EFFECT OF ZERO-FLOW ON THE SEPARATION OF ISOMERIC N- GLYCANS BISECTION/GALACTOSYLATION SIALYLATION Intensx10 4 Intensx10 4 Intensx10 4 Intensx10 4 Intensx10 4 3 1 6 5 4 3 1 0 6 5 4 3 1 0 6 4 0 4 3 1 0 min 54.5 55.5 56.5 10 min 67.5 68.5 69.5 0 min 67.5 68.5 69.5 30 min 73.5 74.5 75.5 50 min Time [min] Time [min] Time [min] Time [min] 8.5 83.5 84.5 Time [min] VS VS Intensx10 6.0 1.5 1.0 0.5 0.0 Intensx10 6 4.0.0 0.0 Intensx10 6 3.0.0 1.0 0.0 Intensx10 6 4.0.0 0.0 Intensx10 6 3.0.0 1.0 0.0 0 min 6.0 63.0 Time [min] 10 min 71.5 7.5 Time [min] 0 min 77.5 78.5 Time [min] 30 min 84.5 85.5 86.5 Time [min] 50 min 94.5 95.5 96.5 Time [min] Intensx10 6 0.40 0.0 0.00 Intensx10 6 1.00 0.50 0.00 Intensx10 6 0.75 0.50 0.5 0.00 Intensx10 6 0.75 0.50 0.5 0.00 Intensx10 4 0.40 0.0 0.00 0 min 61.5 6.5 63.5 Time [min] 10 min 71.0 7.0 73.0 Time [min] 0 min 77.0 78.0 79.0 Time [min] 30 min 84.5 85.5 86.5 Time [min] 50 min 94.5 95.5 96.5 Time [min] VS

34 GLYCAN ANALYSIS WITH CESI-MS IN POSITIVE IONIZATION MODE o Glycan analysis is possible after derivatization and labeling o CE-ESI-MS found to be ~100 times more sensitive than MALDI-TOF-MS o CE-ESI-MS shows great potential for characterization of N-linked glycosylation in complex mixtures o Usage of static coated neutral capillary shows high potential o Isomeric separation visible for several N-glycan species Center for Proteomics and Metabolomics June 15, 016

35 PERSPECTIVES Characterization of various analytes o Investigation usage for biopharmaceutical characterization o Investigate the usage for limited sample amounts o Further explore the potential of isomeric separation using zero-flow o Comparison between positive and negative ionization mode o Investigate different labels o Identification of the different isomers

ACKNOWLEDGEMENTS Center for Proteomics and Metabolomics Manfred Wuhrer Noortje de Haan Sander Wagt Pablo Mohaupt Jan Nouta Karli Reiding Gerda Vreeker Bas Jansen Ludger Ltd. Rad Kozak Daniel Spencer Richard Gardner Darryl Fernandes Department of Chemistry & Chemical Biology Alexander Ivanov