IDH Mutation Analysis in Ewing Sarcoma Family Tumors

Similar documents
Extraosseous Ewing s Sarcoma Presented as a Rectal Subepithelial Tumor: Radiological and Pathological Features

Detection of Anaplastic Lymphoma Kinase (ALK) gene in Non-Small Cell lung Cancer (NSCLC) By CISH Technique

Double primary lung adenocarcinoma diagnosed by epidermal growth factor receptor mutation status

Detection of IDH1 mutation in human gliomas: comparison of immunohistochemistry and sequencing

Predictive biomarker profiling of > 1,900 sarcomas: Identification of potential novel treatment modalities

IDH1 R132H/ATRX Immunohistochemical validation

The Global Histone Modification Patterns of Osteosarcoma

AmoyDx TM BRAF V600E Mutation Detection Kit

Cutaneous Mesenchymal Neoplasms with EWSR1 Rearrangement

Surgical Pathology Evening Specialty Conference USCAP 2015

iplex genotyping IDH1 and IDH2 assays utilized the following primer sets (forward and reverse primers along with extension primers).

RNA extraction, RT-PCR and real-time PCR. Total RNA were extracted using

Molecular biomarker profile of EGFR copy number, KRAS and BRAF mutations in colorectal carcinoma

Research Article Stromal Expression of CD10 in Invasive Breast Carcinoma and Its Correlation with ER, PR, HER2-neu, and Ki67

IDH1 and IDH2 Genetic Testing for Conditions Other Than Myeloid Neoplasms or Leukemia

Financial disclosures

Comparative genomic hybridization of primary skeletal Ewing's sarcoma

Immunohistochemical Classification of Primary and Secondary Glioblastomas

Key Words: Lung neoplasms; Receptor, epidermal growth factor; Mutation; Sequencing analysis, DNA; Peptide nucleic acids; Pyrosequencing

Significance of Chromosome Changes in Hematological Disorders and Solid Tumors

Significance of Chromosome Changes in Hematological Disorders and Solid Tumors

Klinisch belang van chromosomale translocatie detectie in sarcomen

QUANT BCL2/IGH Cat Real Time Quantitative PCR of t(14;18) (Bcl2/IgH) for diagnosis and monitoring of follicular Cell lymphoma

Giant cell tumor of bone (GCTB) accounts for 5% of all primary. Isocitrate dehydrogenase mutation is frequently observed in giant cell tumor of bone

J of Evolution of Med and Dent Sci/ eissn , pissn / Vol. 3/ Issue 19/May 12, 2014 Page 5307

Relation between the Peripherofacial Psoriasis and Scalp Psoriasis

Applications of IHC. Determination of the primary site in metastatic tumors of unknown origin

Personalized Medicine: Lung Biopsy and Tumor

The New WHO Classification and the Role of Integrated Molecular Profiling in the Diagnosis of Malignant Gliomas

Rare Cancers. Andrew J. Wagner, MD, PhD Center for Sarcoma and Bone Oncology Dana-Farber Cancer Institute Sarcoma Patient Symposium October 15, 2017

Disclosures. An update on ancillary techniques in the diagnosis of soft tissue tumors. Ancillary techniques. Introduction

Pulmonary inflammatory myofibroblastic tumor with TPM4-ALK translocation

Novel Therapeutics in Chondrosarcoma

SALSA MLPA probemix P315-B1 EGFR

Gastric Carcinoma with Lymphoid Stroma: Association with Epstein Virus Genome demonstrated by PCR

Molecular Genetics of Paediatric Tumours. Gino Somers MBBS, BMedSci, PhD, FRCPA Pathologist-in-Chief Hospital for Sick Children, Toronto, ON, CANADA

Matthew Smolkin, MD HCLD Medical Director Molecular Pathology Diagnostic Laboratory

Current and future applications of Molecular Pathology. Kathy Walsh Clinical Scientist NHS Lothian

Epidermal growth factor receptor mutation and pattern of brain metastasis in patients with nonsmall cell lung cancer

Corporate Medical Policy

Expression of the GLUT1 and p53 Protein in Atypical Mucosal Lesions Obtained from Gastric Biopsy Specimens

Updated Molecular Testing Guideline for the Selection of Lung Cancer Patients for Treatment with Targeted Tyrosine Kinase Inhibitors

Keywords solitary fibrous tumor, dedifferentiation, dedifferentiated solitary fibrous tumor, STAT6, GRIA2, cytokeratin, rhabdomyosarcomatous

Case 2. Dr. Sathima Natarajan M.D. Kaiser Permanente Medical Center Sunset

Title Cancer Drug Phase Status

SURGERY OF THE HAND. Basosquamous Carcinoma of the Hand in a Radiologist with Prolonged Radiation Exposure INTRODUCTION CASE REPORT CASE REPORT

Supplementary Appendix

Template for Reporting Results of Biomarker Testing for Myeloproliferative Neoplasms

A new classification system of nasal contractures

SUPPLEMENTARY INFORMATION FOR

Bin Liu, Lei Yang, Binfang Huang, Mei Cheng, Hui Wang, Yinyan Li, Dongsheng Huang, Jian Zheng,

Grading of Bone Tumors

Epidermal Growth Factor Receptor Mutations in Colorectal Cancer Patients

HER2 status assessment in breast cancer. Marc van de Vijver Academic Medical Centre (AMC), Amsterdam

UK Musculoskeletal Oncology: Something for All Ages. Lars Wagner, MD Pediatric Hematology/Oncology University of Kentucky

Dr Sneha Shah Tata Memorial Hospital, Mumbai.

HEK293FT cells were transiently transfected with reporters, N3-ICD construct and

Clinical Validation of Cytocell Pathology Probes

ORIGINAL ARTICLE. Adult Soft Tissue Ewing Sarcoma or Primitive Neuroectodermal Tumors

The Comparison of the Result of Epiduroscopic Laser Neural Decompression between FBSS or Not

Research Article Isocitrate Dehydrogenase-1 Mutations as Prognostic Biomarker in Glioblastoma Multiforme Patients in West Bohemia

Clinical Study Primary Malignant Tumours of Bone Following Previous Malignancy

TITLE: CYP1B1 Polymorphism as a Risk Factor for Race-Related Prostate Cancer

Metabolic enzymes (IDH, FH, SDH) and mesenchymal tumor(syndrome)s

The epidermal growth factor receptor (EGFR) gene encodes

Prediction of Cancer Incidence and Mortality in Korea, 2013

ISOGENIC CELL LINES. ATCC No. Designation Mutation Parental Cell Line Disease Cancer Model

Supporting Information

Soluble CD155 As A Biomarker For Malignant Bone And Soft Tissue Tumors

Primary enteric adenocarcinoma with predominantly signet ring features of the lung: A case report with clinicopathological and molecular findings

Cancer. Questions about cancer. What is cancer? What causes unregulated cell growth? What regulates cell growth? What causes DNA damage?

Estimation of Stellate Ganglion Block Injection Point Using the Cricoid Cartilage as Landmark Through X-ray Review

Identification of Novel Variant of EML4-ALK Fusion Gene in NSCLC: Potential Benefits of the RT-PCR Method

HSL-Advanced Diagnostics 2018 / 19 Test & Service List

AD (Leave blank) TITLE: Genomic Characterization of Brain Metastasis in Non-Small Cell Lung Cancer Patients

Oncogenes and Tumor Suppressors MCB 5068 November 12, 2013 Jason Weber

Desmoplastic Small Round Cell Tumor: A Clinicopathologic, Immunohistochemical and Molecular Study of Four Patients

Presentation material is for education purposes only. All rights reserved URMC Radiology Page 1 of 98

Construction of a hepatocellular carcinoma cell line that stably expresses stathmin with a Ser25 phosphorylation site mutation

Clinical significance of genetic analysis in glioblastoma treatment

Head and Neck SCC. HPV in Tumors of the Head and Neck. Overview. Role of HPV in Pathogenesis of Head & Neck Tumors

Pathology of Sarcoma ELEANOR CHEN, MD, PHD, ASSISTANT PROFESSOR DEPARTMENT OF PATHOLOGY UNIVERSITY OF WASHINGTON

Breast Cancer Interpretation Guide

Dystrophin Is a Tumor Suppressor in Human Cancers with Myogenic Programs

Le nuove mutazioni oltre JAK2: IDH1/2 e LNK. Dr.ssa Lisa Pieri

Prognostic Significance of Grading and Staging Systems using MIB-1 Score in Adult Patients with Soft Tissue Sarcoma of the Extremities and Trunk

Analysis of Histologic Features Suspecting Anaplastic Lymphoma Kinase (ALK)- Positive Pulmonary Adenocarcinoma. Joungho Han 1

IDH1 mutation of gliomas with long-term survival analysis

Neoplasia 2018 lecture 11. Dr H Awad FRCPath

DNA methylation signatures for 2016 WHO classification subtypes of diffuse gliomas

Virtual Journal Club: Front-Line Therapy and Beyond Recent Perspectives on ALK-Positive Non-Small Cell Lung Cancer.

Template for Reporting Results of Monitoring Tests for Patients With Chronic Myelogenous Leukemia (BCR-ABL1+)

Assessment of Breast Cancer with Borderline HER2 Status Using MIP Microarray

Genetic Testing: When should it be ordered? Julie Schloemer, MD Dermatology

Molecular Diagnosis of Lung Cancer

7/6/2015. Cancer Related Deaths: United States. Management of NSCLC TODAY. Emerging mutations as predictive biomarkers in lung cancer: Overview

Harmesh Naik, MD. Hope Cancer Clinic PERSONALIZED CANCER TREATMENT USING LATEST IN MOLECULAR BIOLOGY

Repeated Favorable Responses to Epidermal Growth Factor Receptor- Tyrosine Kinase Inhibitors in a Case of Advanced Lung Adenocarcinoma

Cancer Genetics. What is Cancer? Cancer Classification. Medical Genetics. Uncontrolled growth of cells. Not all tumors are cancerous

RealLine Mycoplasma genitalium Str-Format

Transcription:

Journal of Pathology and Translational Medicine 205; 49: 257-26 ORIGINAL ARTICLE IDH Mutation Analysis in Ewing Sarcoma Family Tumors Ki Yong Na Byeong-Joo Noh Ji-Youn Sung 2 Youn Wha Kim 2 Eduardo Santini Araujo 3 Yong-Koo Park 2 Department of Pathology, Central Physical Examination Agency, Daegu; Department of Pathology, Graduate School of Medicine, Kyung Hee University, Seoul; 2 Department of Pathology, Kyung Hee University College of Medicine, Seoul, Korea; 3 Orthopedic Pathology Laboratory, Buenos Aires, Argentina Received: April 2, 205 Accepted: April 4, 205 Corresponding Author Yong-Koo Park, M.D. Department of Pathology, Kyung Hee University Hospital, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul 30-872, Korea Tel: +82-2-958-8742 Fax: +82-2-958-8740 E-mail: ykpark@khmc.or.kr Background: Isocitrate dehydrogenase (IDH) catalyzes the oxidative decarboxylation of isocitrate to yield α-ketoglutarate (α-kg) with production of reduced nicotinamide adenine dinucleotide (NADH). Dysfunctional IDH leads to reduced production of α-kg and NADH and increased production of 2-hydroxyglutarate, an oncometabolite. This results in increased oxidative damage and stabilization of hypoxia-inducible factor α, causing cells to be prone to tumorigenesis. Methods: This study investigated IDH mutations in 6 Ewing sarcoma family tumors (ESFTs), using a pentose nucleic acid clamping method and direct sequencing. Results: We identified four cases of ESFTs harboring IDH mutations. The number of IDH and IDH2 mutations was equal and the subtype of IDH mutations was variable. Clinicopathologic analysis according to IDH mutation status did not reveal significant results. Conclusions: This study is the first to report IDH mutations in ESFTs. The results indicate that ESFTs can harbor IDH mutations in previously known hot-spot regions, although their incidence is rare. Further validation with a larger case-based study would establish more reliable and significant data on prevalence rate and the biological significance of IDH mutations in ESFTs. Key Words: Isocitrate dehydrogenase; Sarcoma, Ewing; PNA clamping Ewing sarcoma (ES) is the second most common primary bone sarcoma of those that typically develop in children and young adults. It is also called ES family tumor (ESFT) and includes extraskeletal ES and primitive neuroectodermal tumor. ESFT is an aggressive tumor with metastases present at diagnosis in 20% 25% of cases. With current therapeutic options, the 5-year survival rate for non-metastatic disease is as high as 70%. However, survival for patients who have metastasis is approximately 20%, and for those who develop relapsed or refractory disease, the survival rate is less than 0%. There is a need to identify alternative therapeutic agents that appropriately target the biomolecular mechanisms of this disease. There is a group of tumors and tumor syndromes that carry mutations in metabolic enzymes involved in the tricarboxylic acid cycle, especially enzymes in the isocitrate dehydrogenase (IDH) family. IDH catalyzes the oxidative decarboxylation of isocitrate to yield α-ketoglutarate (α-kg) with production of reduced nicotinamide adenine dinucleotide (NADH). Dysfunctional IDH leads to reduced production of α-kg and NADH and increased production of 2-hydroxyglutarate, an oncometabolite. Together, this results in increased oxidative damage and stabilization of hypoxia-inducible factor α, causing cells to be prone to tumorigenesis. 2 A functional study proved that IDH2 mutations in mesenchymal cells can induce malignant transformation. 3 Mutations in IDH are reported to cluster at a single hotspot locus (R32), whereas IDH2 mutations occur primarily at two loci (R40 and R72). 2 Recurrent somatic IDH/2 mutations have been described in gliomas and secondary glioblastomas. 4 Similar IDH/2 mutations have been detected in acute myeloid leukemia 5 and myelodysplastic disorders. 6 Recently, IDH mutations have been reported in a large proportion of cartilaginous tumors, 7 a small number of osteosarcomas, 8 and in giant cell tumors. 9 The fact that these mutations appear to be present in these relatively common bone tumors led us to investigate IDH/2 mutations in ESFTs. pissn 2383-7837 eissn 2383-7845 205 The Korean Society of Pathologists/The Korean Society for Cytopathology This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/ by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 257

258 Na KY, et al. MATERIALS AND METHODS Patient and tissue samples Formalin-fixed, paraffin-embedded tissue samples from 6 patients with primary localized ESFTs were obtained in Korea, Brazil, and Argentina. Fifty-five of the 6 tissue samples were obtained by surgical biopsy and the other six were obtained by surgical excision. At the time of tissue sampling, none of the patients had a history of chemotherapy or radiation therapy and there was no evidence of metastatic disease. The disease was diagnosed according to World Health Organization (WHO) criteria. 0 Briefly, they are small round cell sarcomas showing diffuse membranous CD99 immunostaining, cytoplasmic periodic acid Schiff staining, and EWSR gene translocation as demonstrated with fluorescence in situ hybridization (ZytoLight SPEC EWSR Dual Color Break Apart Probes, ZytoVision, Bremerhaven, Germany). However, lack of an EWSR gene translocation was not considered as grounds for exclusion if a tumor showed the typical immunophenotypes, which are inconsistent with other small round cell tumors in the differential diagnosis of diseases such as lymphoma and rhabdomyosarcoma. After histological diagnosis, the patients received standard multidrug chemotherapy in combination with surgery. Data, including the follow-up period and overall survival, were available for 48 patients. During follow-up, assessment of distant metastasis was available in 38 patients. The patients were grouped into dead of disease, alive with disease, and no evidence of disease (NED). The classification of patients as NED was established when the follow-up period had passed more than 24 months. Our study protocol was reviewed and approved by the Kyung Hee University Institutional Review Board. Pentose nucleic acid mediated clamping polymerase chain reaction for detection of IDH/2 mutations IDH/2 mutations were tested using the pentose nucleic acid (PNA) Clamp IDH/2 Mutation Detection Kit (Panagene, Daejeon, Korea). All reactions had a total reaction volume of 20 μl and contained template DNA, primer and PNA probe sets, and fluorescent polymerase chain reaction (PCR) master mix. All required reagents were included with the kit. Real-time PCR reactions of PNA-mediated clamping PCR were performed using a CFX 96 (Bio-Rad, Hercules, CA, USA). PCR cycling conditions were as follows: 5 minutes at 94ºC followed by 40 cycles of 94ºC for 30 seconds, 70ºC for 20 seconds, 63ºC for 30 seconds, and 72ºC for 30 seconds. In this assay, PNA probes and DNA primers were used together in the clamping reaction. Positive signals were detected by intercalation of fluorescent dye. The PNA probe, which is complementary to the wild-type sequence, suppresses amplification of the wild-type target. This suppression results in preferential amplification of mutant sequences by competitively inhibiting the binding of DNA primers to wild-type DNA. PCR efficiency was determined by measuring the threshold cycle (Ct) value. Ct values for control and mutant assays were obtained from fluorescent amplification plots. Calculations of the delta Ct (ΔCt) value were done as follows: ΔCt=(Standard Ct) (Sample Ct), ΔCt2=(Sample Ct) (Non-PNA mix Ct). The gene was considered to be mutated when ΔCt values were more than 2.0. When ΔCt values were between 0 and 2, a ΔCt2 value was then calculated. The gene was considered to be mutated if the calculated ΔCt2 value was 4. Direct sequencing Genomic PCR for sequencing was performed in 20-μL volumes using 30 ng of template DNA and 2 Taq PCR Smart Mix (Solgent, Daejeon, Korea). The PCR primers used for IDH/2 amplification were as follows: IDH forward primer (5'-CGGTCTTCAGAGAAGCCATT-3') and IDH reverse primer (5'-GCAAAATCACATTATTGCCAAC-3'). IDH2 forward primer (5'-CCAATGGAACTATCCG-3') and IDH2 reverse primer (5'-CTCCACCCTGGCCTACCTG-3'). PCR cycling commenced with a 0 minutes hold at 95ºC, followed by 40 cycles of 95ºC for 30 seconds, 58ºC for 40 seconds, and 72ºC for 60 seconds, terminating with 72ºC for 5 minutes. Each amplified product was purified using a PCR clean-up kit (Macherey-Nagel, Duren, Germany) and sequenced in duplicate, in both the forward and reverse directions, using a BigDye Terminator Kit (Applied Biosystems, Carlsbad, CA, USA) on an ABI Prism 300 station (Applied Biosystems), according to the manufacturer s instructions. Sequences were compared with the GenBank-archived sequence of human IDH/2. Immunohistochemistry The primary antibody that is specific for the IDH R32H point mutation (:200, Histonova DIA-H09, Dianova, Ham- Table. Results of IDH/2 mutation analysis using PNA clamping and direct sequencing PNA clamping Direct sequencing Wild type 57 59 Mutant IDH IDH2 2 Equivocal 0 PNA, pentose nucleic acid.

IDH Mutation in ESFT 259 Table 2. Summary of four cases bearing IDH/2 mutations, including clinicopathologic characteristics Case No. PNA clamping Direct sequencing DIA-H09 Race Age (yr) Sex Site F/U (mo) Met R32 R32H (+) Korea 47 M Face NED 32 No 2 R32 Wild ( ) Brazil 2 F Foot DOD 48 No 3 R72 Wild ( ) Korea 4 F Ilium NED 72 No 4 Equivocal R72K ( ) Korea 9 M Femur NED 48 No R32H, CGT > CAT; R72K, AGG > AAG. PNA, pentose nucleic acid; F/U, follow-up; Met, metastasis; M, male; NED, no evidence of disease; F, female; DOD, dead of disease. Table 3. Clinicopathologic analysis according to IDH/2 mutation status Characteristic Gene profile Wild Mutant p-value Race Argentina 2 0.009 Brazil 37 Korea 8 3 Age (yr) < 20 29 3.64 > 20 28 Sex Female 24 2 >.999 Male 33 2 Tumor site Central 2 >.999 Peripheral 36 3 Distant metastasis Yes 9 0.554 No 25 4 burg, Germany) was used for the samples bearing IDH mutations, revealed by either direct PCR or PNA clamping. The Bond Polymer Intense Detection System (Vision Biosystems, Melbourne, Australia) was used according to the manufacturer's instructions with minor modifications. Nuclei were counterstained with hematoxylin. Paraffin-embedded tissues of brain astrocytomas were used as a positive control. Statistics Statistical analyses were performed using SPSS Software (SPSS Inc., Chicago, IL, USA). Pearson s chi-square test or Fisher exact test were performed to determine correlations between IDH mutation status and clinicopathological parameters. Statistical significance was defined as a p-value less than.05. RESULTS Using the PNA clamping method, IDH/2 mutations were detected in three of the 6 patients (5%). Of these three samples, two were IDH mutants and one sample was an IDH2 mutant. By direct sequencing, IDH/2 mutations were detected in two of the 6 patients (3%), of which, one sample was an IDH mutant and one sample was an IDH2 mutant. In total, four cases out of 6 (6%) harbored IDH/2 mutations by at least one of the two methods employed, and the numbers of IDH and IDH2 mutants were equal (Table ). Table 2 summarizes the clinicopathologic characteristics of the four mutant cases. In one of four cases, the IDH mutation was found by both the PNA clamping method and direct sequencing (case No. ) (Fig. A). In two of four cases, the IDH/2 mutation was found only by the PNA clamping method (cases Nos. 2 and 3). In one of four cases, examination by the PNA clamping method showed equivocal results, but direct sequencing showed an IDH2 mutation (case No. 4) (Fig. C). The overall concordance rate of both methods was over 95% (58 of 6) and the discordance rate was less than 5% (3 of 6). In mutant cases, the concordance rate was 25% ( of 4) and the discordance rate was 75% (3 of 4), although case No. 4 showed equivocal results by the PNA clamping method. Immunohistochemistry with antibody to DIA-H09 in the four cases bearing IDH/2 mutations showed positive reactions only in case No. (Fig. B). In the four cases bearing IDH/2 mutations, three patients were Korean and one patient was Brazilian, and the male/female ratio was :. Three of the four patients were in their second decade and one patient was in the fifth decade. There was no evidence of distant metastasis in all patients and only one patient died during follow-up. Statistical analyses showed that IDH/2 mutant cases had stronger associations with Korean patients than with South American patients (p=.009). There was no significant association between IDH/2 mutations and any of the other characteristics of tumors or patients (Table 3). DISCUSSION Research on IDH/2 mutations in human tumors has been active in recent years and has revealed that various tumors of different origins bear IDH/2 mutations. 2 Following increased in-

260 Na KY, et al. A B C Fig.. The case No. sample shows IDH R32H mutation by direct sequencing (A) and positive immunoreactivity with antibody clone H09 (B). The case No. 4 sample shows IDH2 R72K mutation (C). terest in IDH/2 mutations in soft tissue tumors, a rudimentary study on sarcoma cell lines demonstrated IDH mutations in fibrosarcoma. Subsequently, a study on chondrogenic tumors demonstrated IDH/2 mutations in 8 of 45 (56%) cases with an IDH:IDH2 mutation ratio of 0.6:. This study also included the evaluation of IDH/2 mutations in 222 osteosarcomas, 79 chordomas, and 25 ESFTs, and no mutations were found. 7 Therefore, IDH mutations are considered to be found exclusively in chondrogenic tumors. Furthermore, previous studies support the value of examining IDH mutations for the purpose of differentiating chondrosarcoma from chondroblastic osteosarcoma 2 and chordoma. 3 However, a recent study in Japan showed that three of 2 osteosarcomas (25%) 8 and 6 of 20 giant cell tumors (80%) harbor IDH2 mutations, 9 suggesting the possibility of IDH/2 mutations in various soft tissue tumors in addition to chondrogenic tumors. We demonstrated that four of 6 ESFTs (6%) possessed IDH mutations. The PNA clamping method is known to be sensitive, rapid, and simple to perform and can detect mutant alleles when present at levels 00-fold lower than those of wild-type alleles. In contrast, the minimum percentage of mutant DNA required for analysis by direct sequencing is more than 25%. 4 The two cases harboring IDH mutations, found only by PNA clamping, might have had less than 25% mutant DNA. It is worth noting that three osteosarcomas bearing IDH mutations were found in Japanese, 8 and three ESFT bearing IDH mutations were found in Korean patients. However, evaluation of the same tumors from American patients revealed no mutations. 7 Although it is still early to remark on the background responsible for these findings, it is possible that Asian populations may be predisposed to IDH mutations in these tumors and therefore should be further evaluated. Variation in the most prevalent mutation type according to tumor has been observed. IDH R32H represents the most common type in gliomas, 4 and IDH2 R40Q is exclusively found in acute myeloid leukemia. 5 Whereas IDH R32C represents the most common type in cartilaginous tumors, 3 IDH2 R72S is the dominant type in osteosarcomas 8 and giant cell tumors. 9 In our study, ESFTs demonstrated equal numbers of IDH and IDH2 mutations in which one case of R32H and one case of R72K were found. A previous study on cartilaginous tumors demonstrated that IDH mutations are frequent in acral-based tumors without any other association with other factors. 7 IDH mutations in osteosarcomas and giant cell tumors did not show any association with other clinical parameters. 8,9 Our study also did not find a significant association between IDH mutations and clinical parameters of ESFTs. In conclusion, our study is the first report to demonstrate IDH mutations in ESFTs. It provides evidence that ESFTs can harbor IDH mutations in previously known hot-spot regions, although its incidence is rare. To provide generalized knowledge, our study is still lacking enough data about these mutations in ESFTs. Further validation with a larger case-based study would establish more reliable and significant data on prevalence rate and the biological significance of IDH/2 mutation status in ESFTs. Conflicts of Interest No potential conflict of interest relevant to this article was reported. REFERENCES. van Maldegem AM, Hogendoorn PC, Hassan AB. The clinical use of biomarkers as prognostic factors in Ewing sarcoma. Clin Sarco-

IDH Mutation in ESFT 26 ma Res 202; 2: 7. 2. Schaap FG, French PJ, Bovée JV. Mutations in the isocitrate dehydrogenase genes IDH and IDH2 in tumors. Adv Anat Pathol 203; 20: 32-8. 3. Lu C, Venneti S, Akalin A, et al. Induction of sarcomas by mutant IDH2. Genes Dev 203; 27: 986-98. 4. Yan H, Parsons DW, Jin G, et al. IDH and IDH2 mutations in gliomas. N Engl J Med 2009; 360: 765-73. 5. Abbas S, Lugthart S, Kavelaars FG, et al. Acquired mutations in the genes encoding IDH and IDH2 both are recurrent aberrations in acute myeloid leukemia: prevalence and prognostic value. Blood 200; 6: 222-6. 6. Abdel-Wahab O, Manshouri T, Patel J, et al. Genetic analysis of transforming events that convert chronic myeloproliferative neoplasms to leukemias. Cancer Res 200; 70: 447-52. 7. Amary MF, Bacsi K, Maggiani F, et al. IDH and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. J Pathol 20; 224: 334-43. 8. Liu X, Kato Y, Kaneko MK, et al. Isocitrate dehydrogenase 2 mutation is a frequent event in osteosarcoma detected by a multi-specific monoclonal antibody MsMab-. Cancer Med 203; 2: 803-4. 9. Kato Kaneko M, Liu X, Oki H, et al. Isocitrate dehydrogenase mutation is frequently observed in giant cell tumor of bone. Cancer Sci 204; 05: 744-8. 0. Fletcher CD, Bridge JA, Hogendoorn PC, Mertens F. WHO classification of tumours of soft tissue and bone. 4th ed. Lyon: IARC Press, 203.. Rasheed S, Nelson-Rees WA, Toth EM, Arnstein P, Gardner MB. Characterization of a newly derived human sarcoma cell line (HT- 080). Cancer 974; 33: 027-33. 2. Kerr DA, Lopez HU, Deshpande V, et al. Molecular distinction of chondrosarcoma from chondroblastic osteosarcoma through IDH/2 mutations. Am J Surg Pathol 203; 37: 787-95. 3. Arai M, Nobusawa S, Ikota H, Takemura S, Nakazato Y. Frequent IDH/2 mutations in intracranial chondrosarcoma: a possible diagnostic clue for its differentiation from chordoma. Brain Tumor Pathol 202; 29: 20-6. 4. Lee HJ, Xu X, Kim H, et al. Comparison of direct sequencing, PNA clamping-real time polymerase chain reaction, and pyrosequencing methods for the detection of EGFR mutations in non-small cell lung carcinoma and the correlation with clinical responses to EGFR tyrosine kinase inhibitor treatment. Korean J Pathol 203; 47: 52-60.