Published by Centers for Disease Control (CDC) Archived on this site by permission of CDC, [url]http://www.cdc.gov/ncidod/eid[/url]

Similar documents
Impact of MenAfriVac in nine countries of the African meningitis belt, : an analysis of surveillance data

Downloaded from:

PREVENTION OF MENINGOCOCCAL MENINGITIS BY VACCINATION IN THE AFRICAN MENINGITIS BELT

Downloaded from:

Public health impact of MenAfriVac: the first four years

Stockpile needs for epidemic meningitis response Dr Caroline Trotter

Downloaded from:

Effect of a serogroup A meningococcal conjugate vaccine (PsA TT) on serogroup A meningococcal meningitis and carriage in Chad: a community study

/S (13)

Can infant vaccination prevent pneumococcal meningitis outbreaks in sub-saharan Africa?

MENINGITIS EPIDEMIC TRENDS in AFRICA. Mamoudou H. DJINGAREY, MD/MPH WHO-IST/WEST AFRICA OUAGADOUGOU

History, implementation and impact of MenA conjugate on disease burden in Africa

Medical Innovation changing business model. Marie-Paule Kieny, WHO-WIPO-WTO, 5 July 2013

The MenAfrivac Experience A Successful Approach. Dr Bernard FRITZELL BFL conseils France

Content. Introduction. Overview of reported outbreaks in WHO African Region. Disease Surveillance and Response. Vol. 2 Issue 3, April 30, 2012

Outcome of Epidemiological Surveillance of Bacterial Meningitis in Mali from 1996 to 2016: What Lesson to Learn?

J. M. COLLARD 1 *, Z. MAMAN 2,A.ABANI 2,H.B.MAINASARA 1,S.DJIBO 1, H. YACOUBA 2,R.MAITOURNAM 2, F. SIDIKOU 1, P. NICOLAS 3, J.

Vaccines. Robert Read University of Southampton University Hospital Southampton

Surveillance Feedback Bulletin

Update on Meningococcal A Vaccine Development and Introduction

Meningitis Outbreak Response intervention thresholds in sub-saharan Africa

Serogroup W in Africa & travellers

Report for the WHO Meningitis Guideline Revision (May 2014)

INTRODUCTION OF A SEROGROUP A MENINGOCOCCAL CONJUGATE VACCINE IN THE GAMBIA, WEST AFRICA

Global Burden of Meningococcal Disease. Prof. David Salisbury CB FRCP FRCPCH FFPH FMedSci. Centre for Global Health Security, Chatham House, London.

Kristiansen et al. BMC Infectious Diseases 2013, 13:363

Antibody Persistence 1 5 Years Following Vaccination With MenAfriVac in African Children Vaccinated at Months of Age

Downloaded from:

Rôle et activités d un Centre Collaborateur de l OMS : le CC- OMS sur les méningites

Content. Introduction. Overview of reported outbreaks in WHO African Region. Disease Surveillance and Response. Vol. 2 Issue 4, 26 May 2012

in the meningitis belt

Predicting Meningitis Risk in Africa

Investigation of a Neisseria meningitidis Serogroup A Case in the Meningitis Belt. January 2017

MSF Field Research. Alberti, K P; King, L A; Burny, M-E; Ilunga, B K; Grais, R. Citation Int Health 2010;2(1):65-8. International Health

Authors Alberti, K; Guthmann, J P; Fermon, F; Nargaye, K D; Grais, R. Transactions of the Royal Society of Tropical Medicine and Hygiene

Introduction and Rollout of a New Group A Meningococcal Conjugate Vaccine (PsA-TT) in African Meningitis Belt Countries,

Epidemiological patterns of bacterial meningitis in Niger from 2002 to 2010

MSF Field Research. Biological diagnosis of meningococcal meningitis in the. meningitis belt: current epidemic strategy and new perspectives.

Sporadic Cases of Meningococcal Meningitis Serogroup W-135 Ethiopia, 2013

Definition and characterization of localised meningitis epidemics in Burkina Faso: a longitudinal retrospective study

Meningococcal Seroepidemiology 1 Year After the PsA-TT Mass Immunization Campaign in Burkina Faso

Epidemic meningitis: Surveillance and response activities during the season in the countries of the African meningitis belt

Serotyping pneumococcal meningitis cases in the African meningitis belt using multiplex. PCR on cerebrospinal fluid

Source: Portland State University Population Research Center (

World Health Organization Emerging and other Communicable Diseases, Surveillance and Control

Evaluation of the Pastorex meningitis kit for the rapid identification of Neisseria meningitidis serogroups A and W135

Carriage and transmission of Neisseria meningitidis

TRANSPARENCY COMMITTEE OPINION. 4 March 2009

The Rise and Fall of Epidemic Neisseria meningitidis Serogroup W135 Meningitis in Burkina Faso,

1.3 Meningococcal Disease (Neisseria meningitidis) (invasive)

Development of a Group A meningococcal conjugate vaccine for sub-saharan Africa: clinical trial results

ST2859 serogroup A meningococcal meningitis outbreak in Nouna Health District, Burkina Faso: a prospective study

2016 Vaccine Preventable Disease Summary

Table Of Content. Invasive Bacterial Infections Surveillance in the European Union... 2 Summary... 3 Coordinator, Leader contact and partners...

Review of meningitis surveillance data, upper West Region, Ghana

Emergence of Epidemic Neisseria meningitidis Serogroup X Meningitis in Togo and Burkina Faso

Evolution of meningococcal carriage in serogroups X and Y before introduction of MenAfriVac in the health district of Kaya, Burkina Faso

Baseline Meningococcal Carriage in Burkina Faso before the Introduction of a Meningococcal Serogroup A Conjugate Vaccine

A Decade of Herd Protection After Introduction of Meningococcal Serogroup C Conjugate Vaccination

National Institute for Communicable Diseases -- Weekly Surveillance Report --

Örebro University Hospital

Changes to the Meningococcal C conjugate (MenC) vaccine schedule. Questions and Answers

Dust and meningitis. A multidisciplinary work Preliminary results

14/10/16. Background. Streptococcus pneumoniae (Sp) is an important cause for these diseases

IMMUNIZATION VACCINE DEVELOPMENT

Managing meningitis epidemics in Africa. A quick reference guide for health authorities and health-care workers

Incidence, Seasonality, Age Distribution, and Mortality of Pneumococcal Meningitis in Burkina Faso and Togo

Reactive vaccination as a control strategy for pneumococcal meningitis outbreaks in the African meningitis belt: analysis of outbreak data from Ghana

Surveillance for Streptococcus pneumoniae Meningitis in Children Aged!5 Years: Implications for Immunization in Uganda

New vaccines. Nigel Crawford

Incidence per 100,000

RAM U S. D E P A R T M E N T O F H E A L T H. E D U C A T IO N. AND W E LF A R E. J u l y 1970

INVASIVE MENINGOCOCCAL DISEASE (IMD), BACTERIAL/VIRAL MENINGITIS & HAEMOPHILUS INFLUENZAE INFECTIONS IN IRELAND

Introduction of a meningococcal ACWY immunisation programme for adolescents

Defeating meningitis by First meeting of the Technical Taskforce

An AW outer membrane vesicle (OMV) meningococcal vaccine trial in Ethiopia. Tesfamariam Mebrahtu Armauer Hansen Research Insitute

Meningococcal meningitis

Meningitis outbreak response in sub-saharan Africa. WHO guideline

EBOLA VIRUS DISEASE. Democratic Republic of Congo. External Situation Report 1. Credit : B.Sensasi / WHO Uganda-2007

Vol. 5 Issue 2, 31 May 2015

INVASIVE MENINGOCOCCAL DISEASE (IMD), BACTERIAL/VIRAL MENINGITIS & HAEMOPHILUS INFLUENZAE INFECTIONS IN IRELAND

Increased incidence of invasive meningococcal disease of serogroup C / clonal complex 11, Tuscany, Italy, 2015 to 2016

Yellow fever laboratory capacity on-site assessments in Africa: preliminary findings

The Evolution of the Meningitis Vaccine Project

MoH SOUTH SUDAN SITREP 1

Baseline Meningococcal Carriage in Burkina Faso before the Introduction of a. Meningococcal Serogroup A Conjugate Vaccine.

Hans Jürgen Dornbusch

Highlighting in the WHO European Region: measles outbreaks rubella surveillance acute flaccid paralysis surveillance

Monitoring results: goals, strategic objectives and indicators

POLIO ERADICATION IN THE AFRICAN REGION: PROGRESS REPORT. Information document EXECUTIVE SUMMARY

New vaccine technologies: Promising advances may save more lives

Swiss National Reference Center for Meningococci. > 2014 Annual Report <

WHO Position Paper on Meningococcal Vaccines, Nov 2011

Pfizer s Investigational Vaccine, rlp2086, for Invasive Meningococcal Serogroup B Disease

CONTENTS. Paragraphs I. BACKGROUND II. PROGRESS REPORT ON THE AFRICAN REGIONAL IMMUNIZATION STRATEGIC PLAN

Study population The study population comprised the general population of Senegal inhabitants aged 1 to 30 years.

Pneumococcal vaccines. Safety & Efficacy. Prof. Rajesh Kumar, MD PGIMER School of Public Health Chandigarh

MSF Field Research. Measles outbreak response immunization is contextspecific: insight from the recent experience of médecins sans frontières.

The legally binding text is the original French version TRANSPARENCY COMMITTEE OPINION. 21 October 2009

Transcription:

MSF Field Research Continuing effectiveness of serogroup a meningococcal conjugate vaccine, Chad, 2013 Authors Gamougam, K; Daugla, D M; Toralta, J; Ngadoua, C; Fermon, F; Page, A-L; Djingarey, M H; Caugant, D A; Manigart, O; Trotter, C L; Stuart, J M; Greenwood, B M Citation DOI Publisher Journal Rights Continuing effectiveness of serogroup a meningococcal conjugate vaccine, chad, 2013. 2015, 21 (1):115-8 Emerging Infect. Dis. 10.3201/eid2101.140256 Center for Disease Control Emerging Infectious Diseases Published by Centers for Disease Control (CDC) Archived on this site by permission of CDC, [url]http://www.cdc.gov/ncidod/eid[/url] Downloaded 30-Jun-2018 21:24:23 Link to item http://hdl.handle.net/10144/338935

Continuing Effectiveness of Serogroup A Meningococcal Conjugate Vaccine, Chad, 2013 Kadidja Gamougam, Doumagoum M. Daugla, Jacques Toralta, Cyriaque Ngadoua, Florence Fermon, Anne-Laure Page, Mamoudou H. Djingarey, Dominique A. Caugant, Olivier Manigart, Caroline L. Trotter, James M. Stuart, and Brian M. Greenwood In 2011, vaccination with a serogroup A meningococcal polysaccharide conjugate vaccine was implemented in 3 of 23 regions in Chad. Cases of meningitis declined dramatically in vaccinated areas, but an epidemic continued in the rest of Chad. In 2012, the remaining Chad population was vaccinated, and the epidemic was halted. For >100 years, countries in the meningitis belt of Africa have experienced intermittent epidemics of meningococcal meningitis, caused mainly by the serogroup A meningococcus (1). After development and prequalification of a new serogroup A meningococcal polysaccharide/tetanus toxoid conjugate vaccine (PsA-TT) in 2009 (2), vaccination with PsA-TT across the meningitis belt commenced in 2010, starting with persons 1 29 years of age in Burkina Faso and parts of Mali and Niger (3). Little transmission of the serogroup A meningococcus was occurring in these countries at the time of vaccine introduction, making evaluation of its effectiveness difficult. In contrast, in Chad, PsA-TT was introduced in the middle of a serogroup A meningococcal epidemic, and vaccination with PsA-TT commenced at the end of 2011, shortly before the 2012 epidemic season. At this time, vaccination of persons 1 29 years of age (target 1.8 million) was undertaken in the capital N Djamena, Mayo Kebbi Est, and Chari Baguirmi (4), designated here as the N Djamena regions (Figure 1). In 2012, the vaccination program was Author affiliations: Hôpital Général de Référence Nationale, N Djamena, Chad (K. Gamougam); Centre de Support en Santé International, N Djamena (D.M. Daugla, J. Toralta); Ministere de la Santé Publique, N Djamena (C. Ngadoua); Epicentre Médecins sans Frontières, Paris, France (F. Fermon, A.-L. Page); World Health Organization Intercountry Support Team, Ouagadougou, Burkina Faso (M.H. Djingarey); Norwegian Institute for Public Health, Oslo, Norway (D.A.Caugant); London School of Hygiene & Tropical Medicine, London, UK (O. Manigart, J.M. Stuart, B.M. Greenwood); and University of Cambridge, Cambridge, UK (C.L.Trotter) DOI: http://dx.doi.org/10.3201/eid2101.140256 extended to the rest of the country (target 5.9 million) (Figure 1). During the 2012 meningitis season, the incidence of meningitis decreased by >90% in vaccinated areas compared with the rest of the country, and a similar reduction in the incidence of carriage of serogroup A Neisseria meningitidis was found, as reported previously (4). We report on the incidence of meningitis during the 2013 meningitis season after vaccination of persons 1 29 years of age in areas with no prior vaccination program. The Study In Chad, health districts provide aggregated weekly data on meningitis and other notifiable diseases to the Ministry of Health. This system was reinforced in 2012 and 2013 by case-based surveillance supported by the Centre du Support en Santé Internationale in the N Djamena regions, and also by Médecins sans Frontières in Moissala, a district 800 km from NDjamena (Figure 1). Cerebrospinal fluid (CSF) specimens obtained from persons with suspected cases of meningitis were transported to the national reference laboratory in NDjamena. Isolated strains of N. meningitidis were sent to the World Health Organization (WHO) Intercountry Support Team, Ouagadougou, Burkina Faso, and to the WHO Collaborating Centre for Reference and Research on Meningococci in Oslo. Information about the laboratory methods used to isolate and characterize meningococci is provided elsewhere (4). Data from the 2009 census were used to calculate incidence rates. We used a negative binomial regression model to assess the effect of PsA-TT on the incidence of meningitis in the N Djamena regions in 2012 and in the whole country in 2013; we used weekly data obtained during the epidemic period (weeks 1 26) during 2009 2013. The incidence of meningitis in Chad during 2009 2013 and its association with the introduction of PsA-TT are shown in Figure 2. During weeks 1 26 of 2012, the incidence of reported meningitis among persons in all age groups in the N Djamena regions that received vaccine was 2.5 cases/100,000 population (57/2.3 million); during the previous year, incidence was 31.8/100,000 (732/2.3 million). Meningitis incidence remained low in the N Djamena regions in 2013 at 1.1/100,000 (25/2.3 million). In the rest of the country, in which vaccination was implemented during 2012 only, meningitis incidence decreased from 43.8/100,000 (3,809/8.7 million) in weeks 1 26 of 2012 to 2.8/100,000 (247/8.7 million) during the same period in 2013, a 96% reduction (p<0.0001). The incidence rate Emerging Infectious Diseases www.cdc.gov/eid Vol. 21, No. 1, January 2015 115

DISPATCHES Figure 1. Areas of Chad in which vaccination with serogroup A meningococcal polysaccharide/ tetanus toxoid conjugate vaccine was implemented in 2011 (white) and 2012 (gray). Inset shows location of Chad in Africa. ratio for vaccinated versus unvaccinated populations was estimated by using data across the whole study period with a negative binomial regression model; the incidence rate ratio was 0.104 (95% CI 0.052 0.207). Fewer CSF specimens were submitted to the national reference laboratory in N Djamena in 2013 than in 2012 (Table), but the proportion of reported cases for which CSF samples were submitted increased from 8.3% (273/3,308) in 2010, 7.9% (516/6,540) in 2011, and 9.5% (366/3,866) in 2012, to 39.3% (106/272) in 2013 (Pearson χ 2 p<0.0001). The proportion of reported cases for which CSF samples were submitted from the N Djamena regions was highest in 2010, when the main pediatric unit for N Djamena was in the same hospital as the national reference laboratory (the unit moved to another hospital in 2011) and in 2012, when case-based surveillance was introduced. In Moissala, the proportion of cases for which CSF samples were submitted increased from 22% (74/341) in 2012 to 119% (56/47) in 2013, the latter figure being attributed to undernotification. During weeks 1 26 of 2013, a total of 106 CSF specimens were received by the national reference laboratory; 13 yielded Streptococcus pneumoniae, 4 Haemophilus influenzae type b, 2 N. meningitidis serogroup W, and 1 (obtained from a 3-year-old child who had not received PsA- TT) serogroup A N. meningitidis. Four infections were caused by other pathogens. This finding differed markedly from those of previous years (2010-2012), when the predominant organism was N. meningitidis serogroup A, and only a few cases caused by N. meningitidis serogroup W and S. pneumoniae were also identified. The predominance of serogroup A infection in Chad during 2010 2012 was confirmed among the CSF specimens examined at the National Institute of Public Health in Oslo. All fully characterized serogroup A strains were pora 20.9, FetA F3.1, sequence type (ST) 7 (ST5 complex), and all serogroup W strains were pora 5.2, FetA F1 1, ST11 (ST11 complex). Although national reference laboratory data were not available in Chad for 2009, the predominant organism identified from CSF specimens received at the National Institute of Public Health in Oslo in 2009 was N. meningitidis serogroup W (11/14 serogrouped strains), also pora 5.2, FetA F1 1, and ST11 (ST11 complex) (5). Conclusions We previously reported a >90% reduction in incidence of meningitis among vaccinated populations in Chad in 2011 (4). Here we report a similar reduction in the incidence of meningitis in 2013 from that in 2012 for populations vaccinated only during the second year of the vaccination campaign. The epidemic curve (Figure 2) suggests that by 2013, 116 Emerging Infectious Diseases www.cdc.gov/eid Vol. 21, No. 1, January 2015

Effectiveness of Meningococcal Vaccine, Chad Figure 2. Incidence (no. cases/100,000 population) during weeks 1 26 of reported cases of meningitis in regions of Chad where persons 1 29 years of age were vaccinated with serogroup A meningococcal polysaccharide/tetanus toxoid conjugate vaccine at the end of 2011 and in 2012. the N. meningitidis serogroup A epidemic in Chad was waning and that fewer cases of serogroup A meningitis would have occurred during 2013 than during 2012, even in the absence of vaccination. However, the incidence of meningitis dropped lower in 2013 than would have been expected as a result of a natural decline, and only 1 serogroup A isolate was obtained at the national reference laboratory despite improved CSF sampling. This finding provides strong additional evidence of vaccine effectiveness for preventing serogroup A meningococcal disease in Chad. If the effectiveness of PsA-TT vaccination seen in Chad and Burkina Faso (6,7) is replicated across the meningitis belt of Africa and if vaccine coverage can be sustained through introduction of PsA-TT into the infant immunization program and/or through mass campaigns, serogroup A epidemics could disappear from the meningitis belt. However, past experience has shown that meningococci belonging to serogroups C, W, or X can cause substantial epidemics (8 10); therefore, continuing surveillance will be needed to determine how the epidemiology of meningococcal disease in the meningitis belt of Africa is changed by the successful introduction of PsA-TT (11). The Chad Ministry of Health has approved a plan to support and develop case-based surveillance in the N Djamena regions, Moissala, and 3 other selected health districts. Acknowledgments We acknowledge the major contributions of the Meningitis Vaccine Project and their colleagues in the control of epidemic meningitis in Africa through the development of PsA-TT. This study was supported by the MenAfriCar consortium with funding from the Bill and Melinda Gates Foundation and the Wellcome Trust. Table. Diagnoses of suspected meningitis cases from CSF specimens, Chad, weeks 1 26, 2010 2013* No. reports of Diagnosis suspected CSF specimens, N. meningitidis H. influenzae Location, year meningitis no. (%) A W X Other S. pneumoniae type b Other N'Djamena regions 2010 268 158 (58.9) 27 2 0 2 8 0 0 2011 732 163 (22.3) 45 1 1 0 6 0 0 2012 57 37 (64.9) 0 0 2 0 0 0 0 2013 25 7 (28.0) 0 0 0 0 1 0 0 Rest of Chad 2010 3,040 65 (2.1) 28 1 0 0 2 0 0 2011 5,808 353 (6.1) 110 1 1 0 0 1 0 2012 3,809 329 (8.6) 59 4 0 0 4 0 0 2013 247 99 (40.1) 1 2 0 0 12 4 4 *Diagnoses were based on cerebrospinal fluid (CSF) specimens received at the national reference laboratory in N Djamena, Chad. Vaccination with serogroup A meningococcal polysaccharide/tetanus toxoid conjugate vaccine was implemented in the N Djamena regions in 2011 and in all other regions of Chad in 2012. No reference laboratory data are available for 2009. N., Neisseria; S., Streptococcus; H., Haemophilus. Based on culture or latex agglutination. Acinetobacter baumanii, Salmonella paratyphi A, Staphylococcus hominis, Staphylococcus aureus. Emerging Infectious Diseases www.cdc.gov/eid Vol. 21, No. 1, January 2015 117

DISPATCHES Dr. Gamougam is head microbiologist at the reference laboratory of the Hôpital Générale de Référence Nationale, N Djaména, Chad. Her research interest is bacterial meningitis. References 1. Greenwood B. Manson Lecture. Meningococcal meningitis in Africa. Trans R Soc Trop Med Hyg. 1999;93:341 53. http://dx.doi. org/10.1016/s0035-9203(99)90106-2 2. Frasch CE, Preziosi MP, LaForce FM. Development of a group A meningococcal conjugate vaccine, MenAfriVac TM. Hum Vaccin Immunother. 2012;8:715 24 and http://dx.doi.org/10.4161/ hv.19619. 3. Djingarey MH, Barry R, Bonkoungou M, Tiendrebeogo S, Sebgo R, Kandolo D, et al. Effectively introducing a new meningococcal A conjugate vaccine in Africa: the Burkina Faso experience. Vaccine. 2012;30(Suppl 2):B40 5 and http://dx.doi.org/10.1016/ j.vaccine.2011.12.073. 4. Daugla DM, Gami J, Gamougam K, Naibei N, Mbainadji L, Narbe M, et al. Effect of a serogroup A meningococcal conjugate vaccine (PsA-TT) on serogroup A meningococcal meningitis and carriage in Chad: a community study. Lancet. 2014;383:40 7 and http://dx.doi.org/10.1016/s0140-6736(13)61612-8. 5. Caugant DA, Kristiansen PA, Wang X, Mayer LW, Taha MK, Ouedraogo R, et al. Molecular characterization of invasive meningococcal isolates from countries in the African meningitis belt before introduction of a serogroup A conjugate vaccine. PLoS ONE. 2012;7:e46019 and http://dx.doi.org/10.1371/journal. pone.0046019. 6. Novak RT, Kambou JL, Diomande FV, Tarbangdo TF, Ouedraogo- Traore R, Sangare L, et al. Serogroup A meningococcal conjugate vaccination in Burkina Faso: analysis of national surveillance data. Lancet Infect Dis. 2012;12:757 64 and http://dx.doi.org/10.1016/ S1473-3099(12)70168-8. 7. Kristiansen PA, Diomande F, Ba AK, Sanou I, Ouedraogo AS, Ouedraogo R, et al. Impact of the serogroup A meningococcal conjugate vaccine, MenAfriVac, on carriage and herd immunity. Clin Infect Dis. 2013;56:354 63 and http://dx.doi.org/10.1093/ cid/cis892. 8. Broome CV, Rugh MA, Yada AA, Giat L, Giat H, Zeltner JH, et al. Epidemic group C meningococcal meningitis in Upper Volta, 1979. Bull World Health Organ. 1983;61:325 30. 9. Decosas J, Koama JB. Chronicle of an outbreak foretold: meningococcal meningitis W135 in Burkina Faso. Lancet Infect Dis. 2002;2:763 5 and http://dx.doi.org/10.1016/s1473-3099(02)00455-3. 10. Boisier P, Nicolas P, Djibo S, Taha MK, Jeanne I, Maïnassara HB, et al. Meningococcal meningitis: unprecedented incidence of serogroup X related cases in 2006 in Niger. Clin Infect Dis. 2007;44:657 63 and http://dx.doi.org/10.1086/511646. 11. Dakar Discussion Group on Priorities for Research on Epidemic Meningococcal Disease in Africa, Altmann D, Aseffa A, Bash M, Basta N, Borrow R, Broome C, et al. Priorities for research on meningococcal disease and the impact of serogroup A vaccination in the African meningitis belt. Vaccine. 2013;31:1453 7. Address for correspondence: James M. Stuart, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel St, London WC1E 7HT, UK; email: james.stuart@lshtm.ac.uk February 2014: High-Consequence Pathogens Including: Poxvirus Viability and Signatures in Historical Relics Novel Paramyxovirus Associated with Severe Acute Febrile Disease, South Sudan and Uganda, 2012 Subtyping Cryptosporidium ubiquitum, a Zoonotic Pathogen Emerging in Humans Genomic Variability of Monkeypox Virus among Humans, Democratic Republic of the Congo http://wwwnc.cdc.gov/eid/content/20/2/contents.htm 118 Emerging Infectious Diseases www.cdc.gov/eid Vol. 21, No. 1, January 2015