Lecture 17: Nitrogen metabolism 1. Urea cycle detoxification of NH 3 2. Amino acid degradation

Similar documents
Biochemistry: A Short Course

Biochemistry: A Short Course

Amino Acid Oxidation and the Urea Cycle

Fate of Dietary Protein

Amino Acid Metabolism

Lecture 10 - Protein Turnover and Amino Acid Catabolism

Amino acid metabolism I

Amino acid metabolism

NITROGEN METABOLISM An Overview

Nitrogen Metabolism. Overview

Nitrogen Metabolism. Overview

Nitrogen Metabolism. Pratt and Cornely Chapter 18

Lecture: Amino Acid catabolism: Nitrogen-The Urea cycle

AMINO ACID METABOLISM. Sri Widia A Jusman Dept. of Biochemistry & Molecular Biology FMUI

Metabolism of amino acids. Vladimíra Kvasnicová

Amino Acid Metabolism

number Done by Corrected by Doctor Dr.Diala

AMINO ACID METABOLISM

NITROGEN METABOLISM: An Overview

AMINOACID METABOLISM FATE OF AMINOACIDS & UREA CYCLE

Amino Acid Metabolism

Welcome to Class 14! Class 14: Outline and Objectives. Overview of amino acid catabolism! Introductory Biochemistry!

Amino acid Catabolism

18 Amino Acid Oxidation and Production of Urea W. H. Freeman and Company

Midterm 2. Low: 14 Mean: 61.3 High: 98. Standard Deviation: 17.7

Urea is the major end product of nitrogen catabolism in humans One nitrogen free NH3 other nitrogen aspartate. carbon oxygen CO2 liver,

AMINO ACID METABOLISM

Catabolism of Carbon skeletons of Amino acids. Amino acid metabolism

Lecture 11 - Biosynthesis of Amino Acids

Part III => METABOLISM and ENERGY. 3.5 Protein Catabolism 3.5a Protein Degradation 3.5b Amino Acid Breakdown 3.5c Urea Cycle

Biochemistry: A Short Course

Jana Novotná, Bruno Sopko. Department of the Medical Chemistry and Clinical Biochemistry The 2nd Faculty of Medicine, Charles Univ.

The diagram below summarizes the conversion of the twenty standard amino acids. Copyright Mark Brandt, Ph.D. 23

Metabolism of amino acids I. Josef Fontana

Chapter 26. Outline. Nitrogen. Nitrogen and Amino Acid Metabolism. BCH 4054 Spring 2001 Chapter 26 Lecture Notes. Slide 1. Slide 2

PROTEIN METABOLISM: SPECIFIC WAYS OF AMINO ACIDS CATABOLISM AND SYNTHESIS

Amino Acid Metabolism Parts I-III

1 Digestion and absorption. Lecture #14 Lecturer: PhD Alexander N. Koval

Dental Students Biochemistry Exam V Questions ( Note: In all cases, the only correct answer is the best answer)

BIOCHEMISTRY Protein Metabolism

AMINO ACIDS NON-ESSENTIAL ESSENTIAL

E.coli Core Model: Metabolic Core

Amino Acid Metabolism (Nitrogen Metabolism) Dec Dr. Robert Lyons

Conversion of amino acids الفريق الطبي األكاديمي

Amino acid oxidation and the production of urea

Midterm 2 Results. Standard Deviation:

Amino Acid Catabolism

Integration of Metabolism

CH395G FINAL (3 rd ) EXAM Kitto/Hackert - Fall 2003

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Biochemistry 2 Recita0on Amino Acid Metabolism

number Done by Corrected by Doctor Nafeth Abu Tarboush

VITAMIN B6 History B

Amino acid metabolism II

SYNTHESIS OF NON-ESSENTIAL AMINO ACIDS [LIPPINCOTT S ] Deeba S. Jairajpuri

Amino acids. (Foundation Block) Dr. Essa Sabi

M1 - Renal, Fall 2007

PROTEIN METABOLISM: NITROGEN CYCLE; DIGESTION OF PROTEINS. Red meat is an important dietary source of protein nitrogen

PAPER No. : 16 Bioorganic and biophysical chemistry MODULE No. : 25 Coenzyme-I Coenzyme A, TPP, B12 and biotin

INTRODUCTORY BIOCHEMISTRY. BI 28 Second Midterm Examination April 3, 2007

Marah Bitar. Faisal Nimri ... Nafeth Abu Tarboosh

AMINO ACIDS STRUCTURE, CLASSIFICATION, PROPERTIES. PRIMARY STRUCTURE OF PROTEINS

Biomolecules: amino acids

The Conservation of Homochirality and Prebiotic Synthesis of Amino Acids

Metabolic Classification of the Amino Acids

Amino Acid Metabolism: Amino Acid Degradation & Synthesis

Glycolysis. Cellular Respiration

Amino acids. Dr. Mamoun Ahram Summer semester,

Amino acid metabolism I

Bio 366: Biological Chemistry II Test #2, 100 points total

Citric acid cycle and respiratory chain. Pavla Balínová

Metabolism of proteins and amino acids

Chapter 9 Overview. Aerobic Metabolism I: The Citric Acid Cycle. Live processes - series of oxidation-reduction reactions. Aerobic metabolism I

Biological oxidation II. The Cytric acid cycle

Metabolism of Nucleotides

Physiology Unit 1 METABOLISM OF LIPIDS AND PROTEINS

2. When a muscle depletes its supply of ATP, the next molecule used as an energy source is: a) pyruvate b) muscle glycogen c) blood glucose d) GTP

BIOCHEMISTRY - CLUTCH REVIEW 6.

-Acetyl-coA and glucose-6-phosphate are examples of key compounds of biochemistry because they are involved in more than one pathway.

Reactions and amino acids structure & properties

COO - l. H 3 N C a H l R 1

Amino acids. Dr. Mamoun Ahram and Dr. Diala Abu-Hassan Summer semester,

0010 Amino Acids 40 Profile - Plasma

Dynamics of Protein And Amino Acid Metabolism

Krebs cycle Energy Petr Tůma Eva Samcová

Lecture 3: 8/24. CHAPTER 3 Amino Acids

Citric Acid Cycle: Central Role in Catabolism. Entry of Pyruvate into the TCA cycle

Chemistry 3503 Final exam April 17, Student s name:

MBB 115:511 and 694:407 Final Exam Niederman/Deis

Hind Abu Tawileh. Moh Tarek & Razi Kittaneh. Ma moun

Chapter 24 Lecture Outline

Lecture 29: Membrane Transport and metabolism

Biochemistry - I. Prof. S. Dasgupta Department of Chemistry Indian Institute of Technology, Kharagpur Lecture 1 Amino Acids I

Lipid and Amino Acid Metabolism

Ecosanoids: Prostaglandins and related compounds

SCBC203 Amino Acid Metabolism

Amino Acids. Amino Acids. Fundamentals. While their name implies that amino acids are compounds that contain an NH. 3 and CO NH 3

MULTIPLE CHOICE QUESTIONS

Nafith Abu Tarboush DDS, MSc, PhD

BY: RASAQ NURUDEEN OLAJIDE

Transcription:

Lecture 17: Nitrogen metabolism 1. Urea cycle detoxification of NH 3 2. Amino acid degradation Reference material Biochemistry 4 th edition, Mathews, Van Holde, Appling, Anthony Cahill. Pearson ISBN:978 0 13 800464 4 Lehninger Principles of Biochemistry 4 th edition, David L. Nelson, Michael M. Cox. W. H. Freeman ISBN:978 0716743392 Degradation of amino acids Proteases Amino acids are converted into central metabolism for energy generation 國立交通大學生物科技學系蘭宜錚老師 1

First step to amino acid degradation removal of amino group Amino acid degradation usually begins with conversion to the corresponding a keto acid by transamination or oxidative deamination. transaminase αkg Glu Conversion of α keto acid to central metabolism NH 3 + NAD(P)H Ammonia is produced as product L amino acid oxidase + NH 3 Transamination as the most flexible reaction for amino acids Transamination is the reversible transfer of an amino group from an a amino acid to an a keto acid, with pyridoxal phosphate as a coenzyme. The equilibrium constants of transamination reactions are close to 1. therefore, the direction of the reaction is dependent on the intracellular concentration of the substrates and products Transamination is involved in both degradation and biosynthesis of amino acids. Glutamate is the most typical/common amino donor as glutamate dehydrogenase is the most important NH3 assimilation enzyme. 國立交通大學生物科技學系蘭宜錚老師 2

Transamination facilitated by pyridoxal phosphate (PLP) Transamination: Vitamin B 6 is also called pyridoxine. The active coenzyme has been oxidized to an aldehyde and the hydroxymethyl group at position 5 is phosphorylated. Pyridoxal phosphate (PLP) is the predominant coenzyme form Pyridoxamine phosphate (PMP) is an intermediate form in transamination reactions. Transamination facilitated by pyridoxal phosphate (PLP) PLP is attached to a lysine residue in the active site of the enzyme via a Schiff base (As drawn in the book) Rotate the molecule Schiff base formation 國立交通大學生物科技學系蘭宜錚老師 3

Transamination Mechanism Amino group on amino acid substrate attacks Schiff base carbon, replacing the lysine amino group Lysine amino group deprotonates the amino acid α carbon. The electrons go onto Schiff base and rest of the π system, eventually reaching N atom in pyridoxal ring. This carbanion is very well stabilized by resonance into the π system and N atom Transamination Mechanism Electron from the Pyridoxal is used to pull proton from protonated lysine. H 2 O comes in to replace Schiff base, leaving the amino group on PLP. Keto acid is formed. Another keto acid comes in to form Schiff base. Then following step 1 (except now using the amino group on lysine), amino acid is liberated 國立交通大學生物科技學系蘭宜錚老師 4

Transaminase detection as a diagnostic tool for organ problems Most aminotransferases use glutamate/a ketoglutarate as one of the two a amino/aketo acid pairs involved. Two such enzymes are important in the clinical diagnosis of human disease serum glutamate oxaloacetate transaminase (SGOT) and serum glutamate pyruvate transaminase (SGPT): These enzymes, abundant in heart and in liver, are released from cells as part of the cell injury that occurs in myocardial infarction, infectious hepatitis, or other damage to either organ. Assays of these enzyme activities in blood serum can be used both in diagnosis and in monitoring the progress of a patient. Very commonly used to check for Liver problems PLP is also used in amino acid racemase & decarboxylase Transamination: Racemation: (Racemase) Decarboxylation: (Decaboxylase) 國立交通大學生物科技學系蘭宜錚老師 5

Amino acid racemases Almost all amino acids are made as L amino acids. Many bacteria produce significant amounts of D amino acids (D Ala, D Glu) as part of their peptidoglycan layer. Therefore, bacterial amino acid racemases are also targets for antibiotics. Amino acid decarboxylases Amino acid decarboxylases (different kinds) participate in many different metabolic pathways. Production of many neutral transmitters (e.g. GABA, dopamine, serotonin, histamine, etc.) Bacterial degradation of amino acids. Cadaverine & putrescine are diamines formed from lysine and ornithine. These diamines are used to produdce Nylon. 國立交通大學生物科技學系蘭宜錚老師 6

Ammonia (NH 3 ) needs to be excreted Although ammonia is involved in both synthesis and degradation of amino acids, its abnormal accumulation is toxic. Animals have evolved pathways to detoxify NH3. Birds & insects evolved to convert NH3 into uric acid, which is quite insoluble and can be excreted. Uric acid biosynthesis occurs in purine biosynthesis. It contains 4 nitrogen atoms per molecule Most mammals convert NH3 to urea, which is highly soluble, but no ionizable groups (which does not affect ph). It contains 2 nitrogen atoms per molecule. It is produced through Urea cycle. The first biological cycle discovered (also by Hans Krebs and before TCA cycle) Urea is produced in the level. Then transported to the kidneys for excretion Urea cycle Urea cycle was discovered in 1932, 5 years before TCA cycle was discovered by the same person Hans Krebs. Urea cycle uses energy to convert NH 3 (or NH 4+ as dissolved) to urea. The net reaction is: Where fumarate can convert to aspartate with the following net reaction: Fumarate + NH 4+ Asparate Therefore the overall net reaction in terms of energetics (ignoring H2O and converting AMP to ADP) would be: CO 2 + 2 NH 4+ + 4 ATP Urea + 4 ADP + 4 P i 國立交通大學生物科技學系蘭宜錚老師 7

Urea cycle carbamoylphosphate synthetase Ornithine transcarbamoylase Argininosuccinate synthetase Urea cycle is composed of mainly 5 enzymes: 1. Carbamoyl phosphate synthetase 2. Ornithine transcarbamoylase 3. Argininosuccinate synthetase Arginase Argininosuccinate synthetase 4. Argininosuccinase Argininosuccinase 5. arginase Conversion of fumarate to asparate Fumarate is generated from urea cycle. However, fumarate can be used to capture another NH 3 in the mitochondria through TCA cycle to OAA, which then undergoes a transamination with glutamate (formed by reductive amination of αkg and NH 3 ) Mitochondria fumarase Malate dehydrogenase 國立交通大學生物科技學系蘭宜錚老師 8

Ornithine transcarbamoylase Aspartate add to citrulline replacing carbonyl Oxygen with aspartate Nitrogen Regulation of Urea cycle Animals have long term and short term mechanisms to regulate flux through the urea cycle. Long term: the enzymes of urea cycle are produced in high levels in animals with high protein diet. (low levels if the animal is fed protein free diet) Short term: Carbamoyl P synthetase is allosterically activated by N acetylglutamate, which is made from glutamate + acetyl CoA. Glutamate level is representative of cell s ammonia level, as the one of the first steps of amino acid degradation is transamination to glutamate. Carbamoyl P synthetase is also regulated by covalent modification inactivation of specific lysine residue. However the details of this mechanism is not completely understood yet. 國立交通大學生物科技學系蘭宜錚老師 9

NH 3 transport Transport of ammonia to the liver for urea synthesis. The carrier is glutamine in most tissues but is alanine in muscle. Amino acid degradation 國立交通大學生物科技學系蘭宜錚老師 10

Essential and non essential amino acids Mammals can degrade all amino acids, however cannot synthesize all amino acids. Those that cannot be synthesized have to come from diet/food. 20 different amino acids = 20 different chemicals = at least 20 different pathways required to metabolize them all. 國立交通大學生物科技學系蘭宜錚老師 11

Amino acid degradation Through evolution, there may be more than 1 pathway which exists for degradation of a particular amino acid. These pathways differ in: The organisms which they appear in, The conditions that they are most compatible with, and The resulting central metabolites they produce. Here we will only discuss some of the pathways for amino acid degradation with particular emphasis on how and where (in central metabolism) these amino acid is converted to. Particularly, we focus on the central metabolites Oxaloacetate Pyruvate α Ketoglutarate Glucogenic Succinyl CoA Fumarate Acetyl CoA & acetoacetyl CoA Ketogenic Amino acids degrading to oxaloacetate Aspartate and asparagine are metabolites that are directly related to oxaloacetate through transamination and amide formation. Therefore, degradation of asparagine and aspartate yields oxaloacetate, which can be used directly to gluconeogenesis Asparagine Aspartate 國立交通大學生物科技學系蘭宜錚老師 12

Amino acids degrading to Pyruvate 6 amino acids can degrade to form pyruvate. Some amino acids degrade to more than 1 central metabolite (for example, threonine produces acetyl CoA & pyruvate using this pathway) Threonine Glycine Serine Alanine Cysteine Tryptophan Rest of tryptophan degrade to acetyl CoA Glycine and Serin Metabolism Involves Tetrahydrofolate (THF) THF is an important ONE carbon Carrier in the cell (used to generate Methionine, which is used to make SAM) THF participates in metabolism of Serine, glycine, methionine, and histidine. As well as formation of purines 國立交通大學生物科技學系蘭宜錚老師 13

THF biosynthesis from folate dihydrofolate reductase dihydrofolate reductase Vitamin B9 THF biosynthesis in bacteria is an antibiotics target Before World War II, one of the few effective antibacterial drugs available was sulfanilamide, one of the class of sulfonamide drugs ( sulfa drugs ). There is a structural similarity between sulfanilamide and p aminobenzoate (PABA), which was known to be essential for bacterial growth. sulfanilamide acts by blocking the normal utilization of PABA. The enzyme incorporating PABA into folic acid is inhibited by sulfonamides. PABA is not required for growth of animal cells, so the drug is not toxic to human cells. Because animal cells do not carry out the synthetic pathway but instead take up fully formed folate from the diet, they are not harmed by the drug 國立交通大學生物科技學系蘭宜錚老師 14

Amino acids degrading to α ketoglutarate Part of urea cycle Glutamate Glutamine Histidine Proline Arginine Amino acids degrading to succinyl CoA 4 amino acids can degrade to form succinyl CoA, through propionyl CoA.Recall that propionyl CoA to succinyl CoA conversion from α oxidation. Methionine Threonine Valine Isoleucine 國立交通大學生物科技學系蘭宜錚老師 15

Branched chain amino acids Isoleucine, valine, & leucine To degrade these amino acids, they are first converted to corresponding keto acids, which can then undergo branched chain α keto acid dehydrogenase (similar to pyruvate dehydrogenase). Then, reaction sequences similar to β oxidation are used to form acetyl CoA, or other acyl CoA. Methionine degradation How to remove this methyl group? Methionine is converted to SAM, which is used to methylate (or donate methyl group) to another molecule X, yielding SAHC, which can be converted to homocysteine. Homocysteine can then convert to methionine in its biosynthesis using methyl group from methyl THF 國立交通大學生物科技學系蘭宜錚老師 16

Amino acids degrading to Acetyl CoA Saccharopine pathway 7 amino acids can degrade to form acetyl CoA. Tryptophan Lysine Phenylalanine Tyrosine Leuccine Isoleucine Threonine (not shown here) Lysine degradation Oxidize this to acid Transaminate this to keto group Acetyl CoA 國立交通大學生物科技學系蘭宜錚老師 17

Tryptophan degradation Tryptophan is an important precursor to NAD+ biosynthesis Phenylalanine & Tyrosine degradation 國立交通大學生物科技學系蘭宜錚老師 18

Human genetic disorders associated with amino acid metabolism 國立交通大學生物科技學系蘭宜錚老師 19