A Case of Idiopathic Congenital Neonatal Cholestasis in a Patient with Down Syndrome

Similar documents
Idiopathic adulthood ductopenia manifesting as jaundice in a young male

Free University of Brussels, *Department of Pediatrics, Universitair Ziekenhuis Brussel, Brussels, Belgium

Aspartate aminotransferase-to-platelet ratio index in children with cholestatic liver diseases to assess liver fibrosis

Dr. R. Pradheep. DNB Resident Pediatrics. Southern. Railway. Hospital.

Approach to the Patient with Liver Disease

HOW TO DEAL WITH THOSE ABNORMAL LIVER ENZYMES David C. Twedt DVM, DACVIM Colorado State University Fort Collins, CO

Approach to a case of Neonatal Cholestasis

Living Related Liver Transplantation in an Infant with Neonatal Hemochromatosis

Ultrasonographic Triangular Cord Sign and Gallbladder Abnormality in Diagnosis of Biliary Atresia

Chemistry Reference Ranges and Critical Values

Chemistry Reference Ranges and Critical Values

The Relationships between Respiratory Virus Infection and Aminotransferase in Children

Dhanpat Jain Yale University School of Medicine, New Haven, CT

Case report Idiopathic neonatal hepatitis or extrahepatic biliary atresia? The role of liver biopsy

Interpreting Liver Function Tests

Management of acute alcoholic hepatitis

OB Well Baby Nursery Admission (Term) [ ] For specialty focused order sets for your patient, refer to: General

Pancreatic exocrine insufficiency: a rare cause of nonalcoholic steatohepatitis

Biochemical Investigations in Liver Disease. Dr Roshitha de Silva Department of Pathology Faculty of Medicine University of Kelaniya

Jaundice. Agnieszka Dobrowolska- Zachwieja, MD, PhD

JAUNDICE - INVESTIGATION OF PROLONGED NEONATAL JAUNDICE

Laboratory Tests and Diagnostic Procedures in Liver Disease: Adventures in Liverland

Autoimmune Hepatobiliary Diseases PROF. DR. SABEHA ALBAYATI CABM,FRCP

-Liver function tests -

Prolonged Neonatal Jaundice

Pathophysiology I Liver and Biliary Disease

IN THE NAME OF GOD. D r. MANIJE DEZFULI AZAD UNIVERCITY OF TEHRAN BOOALI HOSPITAL INFECTIOUS DISEASES SPECIALIST

Distribution of Diseases Causing Liver Function Test Abnormality in Children and Natural Recovery Time of the Abnormal Liver Function

Paucity of Intrahepatic Bile Ducts in Neonates: the First Case Series from Iran

NEW RCPCH REFERENCE RANGES-

HEPETIC SYSTEMS BIOCHEMICAL HEPATOCYTIC SYSTEM HEPATOBILIARY SYSTEM RETICULOENDOTHELIAL SYSTEM

NEONATAL CHOLESTASIS AND BILIARY ATRESIA: PERSPECTIVE FROM MALAYSIA

Adams Memorial Hospital Decatur, Indiana EXPLANATION OF LABORATORY TESTS

A Review of Liver Function Tests. James Gray Gastroenterology Vancouver

Prognosis of untreated Primary Sclerosing Cholangitis (PSC) Erik Christensen Copenhagen, Denmark

Clinician Blood Panel Results

Cystic Biliary Atresia: Why Is It Important to Distinguish this from Congenital Choledochal Cyst?

Burak DiK 1, Emre BAHCIVAN 1,2, Hatice ESER 1,3, Kamil UNEY 1

Pediatrics. Pyruvate Kinase Deficiency (PKD) Symptoms and Treatment. Definition. Epidemiology of Pyruvate Kinase Deficiency.

Research Article Mortality of Biliary Atresia in Children Not Undergoing Liver Transplantation in Egypt (Single Institutional Study)

Intrahepatic Sarcomatoid Cholangiocarcinoma with Portal Vein Thrombosis: A Case Report 1

Biliary Atresia. Who is at risk for biliary atresia?

Biliary Atresia. Karen F. Murray, MD Professor of Pediatrics Director, Hepatobiliary Program Seattle Children s

Min Hur, Eun-Hee Kim, In-Kyung Song, Ji-Hyun Lee, Hee-Soo Kim, and Jin Tae Kim INTRODUCTION. Clinical Research

Age-adjusted plasma N-terminal pro-brain natriuretic peptide level in Kawasaki disease

South African HIV Clinicians Society Managing adult treatment through case study discussion

Pediatric Hepatobiliary, Pancreatic & Splenic US

Carrier state and chronic infection state. At-risk populations

Home Intravenous Antibiotic Treatment for Intractable Cholangitis in Biliary Atresia

NORMAL LABORATORY VALUES FOR CHILDREN

Biliary Cystadenoma Causing Esophageal Varices

A Study of Prevalence and Risk Factors of Polycythemia in Neonatal Nursery in Duhok

1. Based on A.S. s labs and presentation, what type of liver injury would you classify her as experiencing?

Biochemistry Liver Function Tests (LFTs)

Sojan George Kunnathuparambil, Kattoor Ramakrishnan Vinayakumar, Mahesh R. Varma, Rony Thomas, Premaletha Narayanan, Srijaya Sreesh

Clinical evaluation Jaundice skin and mucous membranes

Primary Sclerosing Cholangitis with Inflammatory Bowel Disease in Korean Children

Tables of Normal Values (As of February 2005)

DR NICKY WIESELTHALER RADIOLOGY CONSULTANT RED CROSS CHILDREN S HOSPITAL

What are enzyme markers?

Module 1 Introduction of hepatitis

Disclosure. Evaluation of Abnormal Hepatic Enzymes

Association between Gastric ph and Helicobacter pylori Infection in Children

Natural history of α-1-atd in children

Case Rep Dermatol 2009;1:66 70 DOI: / Key Words Coma Blister Barbiturate Overdose Meningoencephalitis

Sutter Health Plus Effective for Calendar Year 2015

Diseases of liver. Dr. Mohamed. A. Mahdi 4/2/2019. Mob:

Noncalculous Biliary Disease Dean Abramson, M.D. Gastroenterologists, P.C. Cedar Rapids. Cholestasis

Basic patterns of liver damage what information can a liver biopsy provide and what clinical information does the pathologist need?

Complete Recovery of Perfusion Abnormalities in a Cardiac Arrest Patient Treated with Hypothermia: Results of Cerebral Perfusion MR Imaging

Pediatric PSC A children s tale

LIVER PHYSIOLOGY AND DISEASE

Relation between the Peripherofacial Psoriasis and Scalp Psoriasis

Warm Autoantibodies in a Patient with Hemophagocytic Lymphohistiocytosis: A Case Report

Neonatal infections. Joanna Seliga-Siwecka

Neonatal Cholestasis. What is Cholestasis? Congenital and Pediatric liver diseases 4/26/18

EVALUATION OF ABNORMAL LIVER TESTS

Suspected Isoflurane Induced Hepatitis from Cross Sensitivity in a Post Transplant for Fulminant Hepatitis from Halothane.

Postoperative jaundice

Medical CCRN. Critical Care Register Nurse. Download Full Version :

Clinical Case Maria Butí, MD, PhD

Development and validation of a simple index system to predict nonalcoholic fatty liver disease

AMR in Liver Transplantation: Incidence

NEONATAL CHOLESTASIS SYNDROME: AN APPRAISAL AT A TERTIARY CENTER

Congenital Cytomegalovirus (CMV)

Interface hepatitis in PBC: Prognostic marker and therapeutic target

Withdrawal of Immunosuppression in Pediatric Liver Transplant Recipients in Korea

CITY AND HACKNEY CCG ABNORMAL LIVER FUNCTION TESTS (LFTs) in ADULTS

ABNORMAL LIVER FUNCTION TESTS. Dr Uthayanan Chelvaratnam Hepatology Consultant North Bristol NHS Trust

Effects of probiotics in the treatment of alcoholic hepatitis: randomized controlled multicenter study

A Case of Acute Hepatitis with Mycoplasma pneumoniae Infection and Transient Depression of Multiple Coagulation Factors

Questions and Answers for Pediatric Healthcare Providers: Infants and Zika Virus Infection

HEMOLYSIS AND JAUNDICE:

LIVER FUNCTION TESTS

Hepatic Lymphoma Representing Iso-Signal Intensity on Hepatobiliary Phase, in Gd-EOB-DTPA-Enhanced MRI: Case Report

Liver function and clinical chemistry of liver

Hepatitis. Dr. Mohamed. A. Mahdi 5/2/2019. Mob:

Mrs Janet Catt. Pre-Conference Nurse s Course. Royal Free London NHS Foundation Trust. Janet Catt MSc RN Lead Nurse Specialist Practic 12/12/2014

Supplementary materials

Transcription:

pissn: 2234-8646 eissn: 2234-8840 http://dx.doi.org/10.5223/pghn.2012.15.2.117 Pediatric Gastroenterology, Hepatology & Nutrition 2012 June 15(2):117-121 Case Report PGHN A Case of Idiopathic Congenital Neonatal Cholestasis in a Patient with Down Syndrome Tae-eon Huh, M.D., Hyun Jeong Do, M.D., Ji Sook Park, M.D., Jung Sook Yeom, M.D., Eun Sil Park, M.D., Ji Hyun Seo, M.D., Jae Young Lim, M.D., Chan-Hoo Park, M.D., Hyang Ok Woo, M.D. and Hee-Shang Youn, M.D. Department of Pediatrics, Gyeongsang National University Hospital, Jinju, Korea Down syndrome is a rare cause of neonatal cholestasis. Neonatal cholestasis in a patient with Down syndrome is usually associated with severe liver diseases, such as neonatal hemochromatosis, myeloproliferative disorder and intrahepatic bile duct paucity. We experienced a case of idiopathic neonatal cholestasis in a patient with Down syndrome, which resolved spontaneously. (Pediatr Gastroenterol Hepatol Nutr 2012; 15: 117 121) Key Words: Down syndrome, Cholestasis, Neonate INTRODUCTION Down syndrome is the most common chromosomal abnormality recognized at birth, and is associated with many anomalies of organ systems including the cardiac, hematologic and gastrointestinal systems. Down syndrome is a rare cause of neonatal cholestasis and the association with neonatal cholestasis has not been well-substantiated. There have been several reported cases of neonatal cholestasis in Down syndrome associated with bile duct paucity, myeloproliferative disorders and neonatal hemochromatosis. The liver diseases in these cases were fatal [1]. To the best of our knowledge, until now benign neonatal cholestasis associated with Down syndrome has not been reported. We report our experience with a case of idiopathic neonatal cholestasis that spontaneously resolved in a patient with Down syndrome. CASE REPORT Patient: A one-day-old female Chief complaint: Hepatosplenomegaly on prenatal ultrasonography Present illness: The patient was born at 38 6/7 weeks of gestation via normal vaginal delivery. The patient was admitted to the neonatal intensive care unit in our hospital because of hepatosplenomegaly on prenatal ultrasonography. Past medical and family history: The patient's prenatal examination did not show any specific abnor- Received:November 28, 2011, Revised:April 24, 2012, Accepted:June 14, 2012 Corresponding author: Ji Sook Park, M.D., Department of Pediatrics, Gyeongsang National University Hospital, 90, Chilam-dong, Jinju 660-702, Korea. Tel: +82-55-750-8161, Fax: +82-55-752-9339, E-mail: csassi@hanmail.net Copyright c 2012 by The Korean Society of Pediatric Gastroenterology, Hepatology and Nutrition This is an open access article distributed under the terms of the Creative Commons Attribution Non Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. PEDIATRIC GASTROENTEROLOGY, HEPATOLOGY & NUTRITION

Pediatr Gastroenterol Hepatol Nutr mal findings except hepatosplenomegaly on a prenatal ultrasonography conducted 1 month prior to delivery. The patient's mother was a healthy, 26-year-old woman without any medical problems or use of any medications except iron supplementation. The parents of the patient were not consanguinities and a 3-year-old female sibling was healthy. Physical examination: The patient's Apgar scores were 6 at 1 minute and 9 at 5 minutes. At the time of birth, the pulse rate was 116 beats/minute, respiratory rate was 42 beats/minute, body temperature was 36 o C and oxygen saturation was 75% on oximetry at room air. Oxygen saturation recovered to 93% at room air at 10 minutes after birth. The birth weight was 2,370 g (<10 percentile), height was 49.5 cm (50 percentile) and head circumference was 32 cm (<10 percentile). Physical examination revealed a flat face, low nasal bridge, protruding tongue and short neck (Fig. 1). Simian creases were evident on both palms. Hepatosplenomegaly was detected on abdominal palpation. We could palpate the liver about 3 cm below the costal margin and also palpate the spleen about 2 cm below the left costal margin on abdominal examination (Fig. 2). There was no abdominal tenderness. A hypotonic posture was evident. Laboratory and radiologic findings: Initial complete cell counts were as follows: hemoglobin 18.9 g/dl; hematocrit 58; white blood cell count 10,170/mm 3 and a platelet count 105 10 3 /mm 3. C-reactive protein was 0.2 mg/dl (normal range, 0.0-5.0 mg/dl). Coagulation tests were within normal limits for this age. The platelet counts fluctuated between 53 10 3 /mm 3 and 267 10 3 /mm 3. Initial laboratory findings were as follows: aspartate aminotransferase (AST) 57 U/L (normal ranges at this age, 35-140 U/L); alanine aminotransferase (ALT) 50 U/L (normal range, 6-50 U/L); total and direct bilirubin 4.16 and 1.51 mg/dl, respectively; ammonia 61 μmol/l (normal range, 21-95 μmol/l); creatine kinase 244 U/L (normal range, 214-1,175 U/L) and lactate dehydrogenase 594 U/L (normal range, 170-580 U/L). Gamma glutamyl transpeptidase (GGT) was 274 U/L (normal range, 13-147 U/L) at 5-days-of-age and α-fetoprotein level was 43,896 ng/ml. The level of α-1 antitrypsin and bile acid in plasma were within normal limits (194 and 89.3 μmol/l, respectively). Serologic tests as IgM for toxoplasma, rubella, cytomegalovirus, herpes virus, varicella zoster virus, hepatitis C virus, hepatitis A virus and hepatitis B surface antigen were all negative. Thyroid function tests were all within normal limits. Expanded neonatal screening test by tandem mass spectrometry was done at 20 day of admission and the results were within normal limits. Cultures of body Fig. 1. The patient showed flat face, low nasal bridge, protruding tongue and short neck. Fig. 2. The liver and spleen could be palpated softly about 3 cm and 2 cm below the costal margin. 118 Vol. 15, No. 2, June 2012

Tae-eon Huh, et al: A Case of Idiopathic Congenital Neonatal Cholestasis in a Patient with Down Syndrome fluids including blood, urine, stool and cerebrospinal fluid were all negative during hospitalization. Trisomy 21 was proven on chromosomal study and direct sequencing of the GATA1 gene was normal. Abdominal ultrasonography was performed at day 2 following admission due to hepatosplenomegaly, which also revealed hepatosplenomegaly and a prominent hepatic artery. Pathologic findings: We performed biopsies of liver and bone marrow on days 29 and 33 of admission, Fig. 3. Hematoxylin-Eosin stained tissue section showed an intact portal tract and severe cholestasis, but a lack of fibrosis, cellular infiltration or abnormal biliary tract ( 400). respectively. On pathologic examination of liver, minimal lobular activity and severe cholestasis were noted (Fig. 3). But, there were no fibrosis, cellular infiltration or abnormal biliary tract on light and electron microscopy examination. On bone marrow examination, three or four megakaryoblasts were observed in one high power field. However the finding was not sufficient for a diagnosis of myeloproliferative disorder. Hospital course: At the time of admission, liver function tests were within normal limits. But, serum total and direct bilirubin rose to 13.81 mg/dl and 2.01 mg/dl, respectively, without hemolysis on day 2 of hospitalization. Hemoglobin was 18.9 g/dl at the same time. Serum direct bilirubin rose slowly up to 5.42 mg/dl by day 20 of hospitalization (Fig. 4), but the stool was yellowish during this period. The level of GGT increased from 274 U/L at 5-days-of-age to 438 U/L at 1-month-of-age. The levels of AST and ALT fluctuated (Fig. 4). A second abdominal ultrasonography was performed at day 20 of hospitalization, which revealed hepatomegaly without structural abnormality of biliary tract. The splenomegaly and prominent heptic artery that was evident on the first ultrasonography was not found. We performed liver and bone marrow biopsy after about 1-month of hospitalization because of sustained di- Fig. 4. These figures show changes of liver function tests in the patient. (A) The levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) rose during 1 month and decreased to normal range at 2 months. (B) The levels of serum total (T) and direct (D) bilirubin (bil) showed a plateau around 1-month-of-age. www.kjpgn.or.kr 119

Pediatr Gastroenterol Hepatol Nutr rect hyperbilirubinemia and thrombocytopenia. The decision based on the above laboratory, radiologic and pathologic findings was for conservative care with carefully observation of clinical manifestations. The patient received urosdeoxycholic acid (10 mg/kg/day), fat soluble vitamins and was fed protein hydrolysate formula. By 2-months-of-age, the direct hyperbilirubinemia, thrombocytopenia and hepatosplenomegaly were improved. The levels of total bilirubin and platelet counts were 0.49 mg/dl and 225 10 3 /mm 3, respectively. DISCUSSION There are many causes of cholestasis in young infants. Early diagnosis and initiation of appropriate therapy is important, because the effects of this disorder are usually very serious. Down syndrome is also one of the causes of infantile cholestasis, but is very rare. Cholestasis associated with Down syndrome is not well understood and had a fatal clinical course in reported cases [1,2]. The liver diseases in those cases were associated with myeloproliferative disorder, hemochromatosis and bile duct paucity. Several mechanisms in liver disease associated with Down syndrome that have been suggested are a higher concentration of superoxide dismutase (SOD), higher incidence of viral hepatitis and extramedullary hematopoiesis [1]. In our case, there was no evidence of these mechanisms. An elevated SOD concentration causes continuous radical injuries and iron overload. In other words, increased amount of SOD could be followed by an imbalance in scavenging oxidative stress including glutathione peroxidase and catalase. Imbalance in scavenging oxidative stress may have deleterious effects on oxidative processes including lipid peroxidation. Iron overload may be associated with an increased lipid peroxide formation [3,4]. Although we did not check the patient s iron panel during the hospitalization period, we could rule out neonatal hemochromatosis through the patient s clinical course, coagulation test, α-fetoprotein and liver pathology. The patient also had no indications of any congenital viral hepatitis or extramedullary hematopoiesis on clinical, laboratory and pathologic examinations. Chronic or acute perinatal distress also may transiently cause neonatal cholestasis, regardless of Down syndrome. Clinically, transient neonatal cholestasis is characterized by early onset of cholestasis, lack of known causes of neonatal cholestasis after careful workup is carried out, spontaneous normalization of clinical and biochemical parameters of liver function during follow-up and presence of several predisposing events possibly responsible for perinatal distress. Perinatal insults can lead to hepatic hypoxia or ischemia and can disturb bile secretion [5]. In our case, the patient displayed relatively good Apgar scores. But, the patient was small for gestational age. Chronic or acute ischemia or hypoxia of the liver in utero as a result of intrauterine growth retardation is a possibility. In addition, bile secretion processes may also be impaired by hepatic hypoxia-ischemia [6]. In a rat model of hepatic hypoxia-ischemia, cholestasis may be caused by biliary canalicular injury or bile duct alteration, which may be paradoxically exacerbated after reperfusion of blood or oxygen to previously ischemic or hypoxic liver [7]. Pathologic examination of the patient s liver biopsy specimen revealed disturbed bile secretion without biliary tract abnormalities. There was a prominent hepatic artery evident on the first abdominal ultrasonography, which might not affect significantly hepatic hypoxia or ischemia, since the hepatic blood supply generally depends on the portal vein. Two abdominal ultrasonographies did not show a triangular cord sign. But, a periportal echogenecity might not be shown on an ultrasonography in early stage of biliary atresia and, even though there are no triangular cord signs, biliary atresia cannot be ruled out [8]. We did not perform hepatobiliary scintigraphy because of its low specificity, high false positive rate [9] and the patient's yellow stool. We performed liver biopsy to rule out extrahepatic biliary atresia, biliary paucity, hemochromatosis and myeloproliferative cell depositions because we could 120 Vol. 15, No. 2, June 2012

Tae-eon Huh, et al: A Case of Idiopathic Congenital Neonatal Cholestasis in a Patient with Down Syndrome not find clear causes of the cholestasis on careful workups. We could rule out the aforementioned severe diseases based on the patient s clinical course and examinations, and initiated conservative care with careful monitoring. Cholestasis improved slowly and the patient was discharged at 2-months- of-age. We tentatively suggest that another unknown mechanism in Down syndrome and chronic hepatic hypoxia or ischemia in utero under the detected level might affect cholestasis in our case. Further study about cholestasis in Down syndrome may be warranted. REFERENCES 1. Ruchelli ED, Uri A, Dimmick JE, Bove KE, Huff DS, Duncan LM, et al. Severe perinatal liver disease and Down syndrome: an apparent relationship. Hum Pathol 1991;22:1274-80. 2. Chang CH, Kim JH, Lee SJ, Lee, DS Lee, Kim DK, Choi SM, et al. A case of Nonsyndromic paucity of interlobular bile ducts in Down syndrome. J Korean Pediatr Soc 1999;42:858-62. 3. Crosti N, Bajer J, Gentile M, Resta G, Serra A. Catalase and glutathone peroxidase activity in cells with trisomy 21. Clin Genet 1989;36:107-16. 4. Bacon BR, Tavill AS, Brittenham GM, Park CH, Recknagel RO. Hepatic lipid peroxidation in vivo in rats with chronic iron overload. J Clin Invest 1983;71:429-39. 5. Jacquemin E, Lykavieris P, Chaoui N, Hadchouel M, Bernard O. Transient neonatal cholestasis: Origin and outcome. J Pediatr 1998;133:563-7. 6. Suchy FJ, Bucuvalas JC, Novak DA. Determinants of bile formation during development: ontogeny of hepatic bile acid metabolism and transport. Semin Liver Dis 1987;7:77-84. 7. Lemasters JJ, Stemkowski CJ, Ji S, Thurman RG. Cell surface changes and enzyme release during hypoxia and reoxygenation in the isolated perfused rat liver. J Cell Biol 1983;97:778-86. 8. Choe BH. Early exclusive diagnosis of biliary atresia among infants with cholestasis. Korean J Pediatr Gastroenterol Nutr 2011;14:122-9. 9. Ko JS, JK Seo. The etiologies of neonatal cholestasis. Korean J Pediatr 2007;50:835-40. www.kjpgn.or.kr 121