Patient assessment - spirometry

Similar documents
BETTER SPIROMETRY. Marijke Currie (CRFS) Care Medical Ltd Phone: Copyright CARE Medical ltd

SPIROMETRY. Marijke Currie (CRFS) Care Medical Ltd Phone: Copyright CARE Medical ltd

Spirometry in primary care

Spirometry: Introduction

Spirometry: FEVER DISEASE DIABETES HOW RELIABLE IS THIS? 9/2/2010 BUT WHAT WE PRACTICE: Spirometers are objective tools

SPIROMETRY TECHNIQUE. Jim Reid New Zealand

How to Perform Spirometry

Spirometric protocol

UNIT TWO: OVERVIEW OF SPIROMETRY. A. Definition of Spirometry

S P I R O M E T R Y. Objectives. Objectives 3/12/2018

S P I R O M E T R Y. Objectives. Objectives 2/5/2019

PULMONARY FUNCTION TESTING. By: Gh. Pouryaghoub. MD Center for Research on Occupational Diseases (CROD) Tehran University of Medical Sciences (TUMS)

COMPREHENSIVE RESPIROMETRY

File: Spirometry-Vimeo 720p-MP3 for Audio Podcasting.mp3 Duration: 0:07:09 Date: 05/02/2014 START AUDIO

Coexistence of confirmed obstruction in spirometry and restriction in body plethysmography, e.g.: COPD + pulmonary fibrosis

6- Lung Volumes and Pulmonary Function Tests

2.0 Scope: This document is to be used by the DCS staff when collecting participants spirometry measurements using the TruFlow Easy-On Spirometer.

Pulmonary Function Test

Analysis of Lung Function

MSRC AIR Course Karla Stoermer Grossman, MSA, BSN, RN, AE-C

Spirometry: an essential clinical measurement

Breathing and pulmonary function

Spirometry and Flow Volume Measurements

2.0 Scope: This document is to be used by the DCS staff when collecting participants spirometry measurements using the TruFlow Easy-On Spirometer.

Content Indica c tion Lung v olumes e & Lung Indica c tions i n c paci c ties

Office Based Spirometry

Pulmonary Function Testing

PULMONARY FUNCTION. VOLUMES AND CAPACITIES

SPIROMETRY. Performance and Interpretation for Healthcare Professionals. Faculty of Respiratory Physiology IICMS. Version 1 April 2015

Cardiovascular and Respiratory Systems

Physiology lab (RS) First : Spirometry. ** Objectives :-

Spirometry Workshop for Primary Care Nurse Practitioners

Spirometry Technique Maximizing Effort, Comprehension & Coordination

Getting Spirometry Right It Matters! Performance, Quality Assessment, and Interpretation. Susan Blonshine RRT, RPFT, AE-C, FAARC

What do pulmonary function tests tell you?

Lung function testing

Pulmonary Function Tests. Mohammad Babai M.D Occupational Medicine Specialist

behaviour are out of scope of the present review.

19 LUNG FUNCTION USING NDD EASY ON-PC

PULMONARY FUNCTION TESTING. Purposes of Pulmonary Tests. General Categories of Lung Diseases. Types of PF Tests

Interpreting Spirometry. Vikki Knowles BSc(Hons) RGN Respiratory Nurse Consultant G & W`CCG

#7 - Respiratory System

SPIROMETRY METHOD. COR-MAN IN / EN Issue A, Rev INNOVISION ApS Skovvænget 2 DK-5620 Glamsbjerg Denmark

Office Spirometry Guide

You Take My Breath Away. Student Information Page 5C Part 1

Vitalograph Alpha Spirometer

Understanding the Basics of Spirometry It s not just about yelling blow

Anyone who smokes and/or has shortness of breath and sputum production could have COPD

Community COPD Service Protocol

Respiratory Physiology In-Lab Guide

Int. J. Pharm. Sci. Rev. Res., 34(2), September October 2015; Article No. 24, Pages: Role of Spirometry in Diagnosis of Respiratory Diseases

PULMONARY FUNCTION TESTS

DESIGN, ANALYSIS AND IMPLEMENTATION OF SPIROMETER

Stability of the EasyOne ultrasonic spirometer for use in general practice

Standardisation of spirometry

Asthma. & Older Adults. A guide to living with asthma for people aged 65 years and over FOR PATIENTS & CARERS

Pulmonary Function Testing. Ramez Sunna MD, FCCP

Respiratory Training. Standard Operations Manuel For Outcome Measures Version 2.0 April Page 1 of 11

RESPIRATORY PHYSIOLOGY Pre-Lab Guide

Teacher : Dorota Marczuk Krynicka, MD., PhD. Coll. Anatomicum, Święcicki Street no. 6, Dept. of Physiology

Using an Inhaler and Nebulizer

Spirometry Training Courses

Spirometry Training Courses. Spirometry for. Thoracic Society of Australia and New Zealand. June Developed in partnership with

Pulmonary Function Testing

Pulmonary Function Testing: Concepts and Clinical Applications. Potential Conflict Of Interest. Objectives. Rationale: Why Test?

Spirometry Clinical Guideline V2.0. May 2018

Study No.: Title: Rationale: Phase: Study Period: Study Design: Centres: Indication: Treatment: Objectives: Primary Outcome/Efficacy Variable:

#8 - Respiratory System

PomPom SHOOTER. Activity Background: Common Obstructive Lung Disorders:

Spirometry. Obstruction. By Helen Grim M.S. RRT. loop will have concave appearance. Flows decreased consistent with degree of obstruction.

Respiratory System Mechanics

PULMONARY FUNCTION TEST(PFT)

EVect of breathing circuit resistance on the measurement of ventilatory function

Pulmo-Park Pom-Pom Shooter: Measuring the Effect of Restricted Breathing on Peak Expiratory Flow (PEF) Student Information Page Activity 5D

Exercise 7: Respiratory System Mechanics: Activity 1: Measuring Respiratory Volumes and Calculating Capacities Lab Report

Comparison of pulmonary function between smokers and non-smokers among out patients of Raja Muthaiah Medical College and Hospital, Cuddalore District

BiomedicalInstrumentation

Ventilator Waveforms: Interpretation

THE SOUTH AFRICAN SOCIETY OF OCCUPATIONAL MEDICINE

P01. Title of Guideline (must include the word Guideline (not protocol, policy, procedure etc) P01 Guideline for Peak flow recording

The estimation of pulmonary functions in various body postures in normal subjects

Differential diagnosis

In order to diagnose lung diseases doctors

Technology in respiratory medicine New technological developments mean that respiratory function can be measured by family p h y s i c i a n s.

A NEBULISERS AND NEBULISED MEDICATION. Generic Guide for the use of nebulisers and nebulised medication

Named Responsible Officer Approved By Date. Clinical Services Manager Clinical Procedures Group July 2010

Chapter 10 The Respiratory System

COPD. Breathing Made Easier

A Guide for Students and Parents

COPD in primary care: reminder and update

Known Allergies: Shellfish. Symptoms: abdominal pain, nausea, diarrhea, or vomiting. congestion, trouble breathing, or wheezing.

GENERAL INFORMATION. Page 1 z 11

CIRCULAR INSTRUCTION REGARDING ESTABLISHMENT OF IMPAIRMENT DUE TO OCCUPATIONAL LUNG DISEASE FOR THE PURPOSES OF AWARDING PERMANENT DISABLEMENT

EFFECTS OF POSTURE ON RESPIRATORY FUNCTIONS IN SMART PHONE USERS: AN OBSERVATIONAL STUDY

Small Volume Nebulizer Treatment (Hand-Held)

This is a cross-sectional analysis of the National Health and Nutrition Examination

Anatomy & Physiology 2 Canale. Respiratory System: Exchange of Gases

Your Inhaler Devices & You

PFT Interpretation and Reference Values

Positive Expiratory pressure (PEP), Acapella and Flutter

Transcription:

Patient assessment - spirometry STEP 1 Learning objectives This module will provide you with an understanding of spirometry and the role it plays in aiding the diagnosis of lung diseases, particularly COPD. It is recommended that a spirometry should be performed during the initial assessment at pulmonary rehabilitation, however this may not be necessary if recent spirometry results are available. By the end of this module you will be able to: understand what measurements are provided by spirometry describe how to perform a spirometry understand how to interpret spirometry results outline common spirometric features of obstructive and restrictive lung diseases describe how spirometry can indicate disease severity in COPD. This module will provide introductory information on spirometry and its important role in the diagnosis of COPD. It will not include the practical aspects of spirometry or practice skills in conducting spirometry. Information will be provided on where spirometry training can be assessed. STEP 2 Spirometry Spirometry means, the measuring of breath. Spiro = breath + Metry = measure Spirometry is the most reproducible, standardised and objective way of measuring airflow obstruction and FEV 1 is the variable most closely associated with prognosis 1. A spirometry test is a vital component in the diagnosis and monitoring of COPD. A spirometer measures the amount of air that can be expired (blown out). Spirometry is essential in confirming a diagnosis of chronic lung disease 2 and therefore an important requirement for assessing patients for entry into a pulmonary rehabilitation program. Spirometry is used in clinical practice to: aid the diagnosis of respiratory disorders assess the degree of disease or disability monitor disease progress monitor the effects of treatment - acute or chronic. A spirometer can measure expired volumes and flows of air from the lungs 3. Spirometry can give an indication of underlying lung damage by comparing results with predicted normal values. In order to compare results to predicted normal values, the patient s date of birth, gender, height, weight and ethnicity are entered into the spirometer data base prior to each test. For identification purposes, the patient s name is also entered. The patient is then instructed to inspire fully and then blow into the spirometer.

STEP 3 Training is essential for operators to learn correct performance of spirometry and interpretation of results. Poorly performed spirometry may give erroneous results and increases the risk of misinterpreting the results. Spirometry training is available through: Lung Health Promotion Centre at The Alfred, http://www.lunghealth.org/ National Asthma Council of Australia, http://www.nationalasthma.org.au/index.php State Asthma Foundations, http://www.asthmaustralia.org.au/intro/index.php some tertiary institutions. STEP 4 Types of spirometers Volume displacement spirometers measure the volume (amount) of air expired from the lungs. Flow-Sensing Spirometers measure the flow of air expired from the lungs. Volume can be calculated from the flow.

STEP 5 Spirometers measure 1 : FEV₁: (Forced Expiratory Volume in one second) is the volume of air expired in the first second of a maximal expiration following a maximal inspiration. FEV₁ is used to measure how quickly air can be expelled from the lungs. FVC: (Forced Vital Capacity) is the maximum volume of air that can be expired forcefully after a maximal inspiration. Most adults with normal lung function are able to expire their vital capacity in less than 6 seconds. FEV₁/FVC ratio: The volume of expired air in the first second (FEV₁) compared with the total volume expired (FVC). Most healthy people with normal lung function can blow out approximately 80% of their air out within the first second i.e. the FEV 1 /FVC ratio is 0.8. If the FEV 1 /FVC ratio is less than 0.7 it means that there is airflow obstruction. FEF 25-75%: (Forced Expiratory Flow between 25-75% of vital capacity) is the mean forced expiratory flow in the middle portion of the FVC. This is sometimes called MEF 25-75% (maximum expiratory flow) 25-75%. PEF (peak expiratory flow). The PEF only provides limited information as it is mainly a measure of flow from the large airways and is effort dependent. Factors influencing PEF include the dimensions of the large airways, the force generated by the expiratory muscles (including patient effort) and conditions which limit chest expansion. STEP 6 Types of graphs There are two types of graphs used to display results on a spirometer. These are: Volume-Time Graphs Volume-time graphs show the volume of air expired in the first second (FEV₁) and the total volume of air expired (FVC) after a maximal inspiration. The time (in seconds) is shown on the bottom line (x axis) and the volume is shown on the side line (y axis). Expiration Inspiration Flow-volume loop This graph shows the change in flow during a maximal inspiration and a maximal expiration. The expiratory flows give the most information. The volume is shown on the x axis and the flow on the y axis. The expiratory flow-volume curve is shown above the x axis and the inspiratory flowvolume curve is shown below the x axis. The shape of the flow-volume loop is repeatable for any individual but varies considerably between individuals with different lung diseases. Only flow sensing devices will be able to display a flow

volume curve. STEP 7 Performing spirometry When performing spirometry there are three things you need to consider. These are: Preparation A health care provider must remember the following points when carrying out spirometry: explain the purpose of the test and demonstrate the procedure record and enter the patient s age, height (bare foot), gender and ethnicity (non - Caucasians have lower predicted values) note what type (short acting / long acting) and when bronchodilator was last used have the patient sitting comfortably suggest the patient loosen any tight clothing ask the patient to empty the bladder beforehand if needed. Precautions Spirometry is extremely safe but should be avoided in the presence of: pneumothorax increased intracranial pressure increased risk of syncope chest pain abdominal, thoracic or eye surgery within the previous eight weeks haemoptysis nausea, diarrhoea or vomiting. Instructions It is important to be consistent when giving instructions to your patient. Each time you perform a spirometry test you should give the same type of instructions and a similar amount of encouragement. The components of instructing a patient to perform spirometry are: maximum inspiration - Big breath in! Put the mouthpiece in your mouth with lips well around or make a good seal with your lips blow or blast the air out as hard and fast and as long as possible - Blow out! provide vigorous encouragement - Keep blowing, Keep blowing until you feel that your lungs are empty Ensure lips are well sealed around the mouthpiece throughout the procedure and that the mouthpiece is between the teeth. Check that the tongue does not impede the flow of air. A nose clip may be used to prevent air escaping from the nose although this option is often left out as the amount of air that will escape through the nose may not be considered significant enough to affect test outcomes. Check the trace and repeat the procedure at least twice more until 3 acceptable readings are obtained. Poor technique can often be easily corrected by demonstrating the procedure to the patient yourself.

STEP 8 How many attempts should the patient have? The patient needs to have a minimum of three blows that meet acceptability criteria based on the test quality. Almost all currently used spirometers provide feedback to the operator about the quality of the test immediately after the blow 5. It is essential that the patient has: a rapid start to expiration with no hesitation no artifacts in the trace a minimum of 6 seconds of expiration (although many healthy people will blow all their air out in less than seconds). Patients with obstructive lung disease may take longer to get all the air out of their lungs so should be encouraged to keep blowing until all the air is exhaled. Modern spirometers give feedback as to when the patient has fully exhaled. The blows should be repeatable, as indicated by the best and the second best FVC being within 0.15L (150mls) of each other. STEP 9 Acceptability Acceptable results should have a graph demonstrating a rapid start, be free from artefacts and have a satisfactory time of exhalation (minimum of 6 seconds). Good repeatability 6 6 Flow-volume curve Volume-time curve Poor repeatability Flow-volume curve 6 6 Volume-time curve

STEP 10 Potential problems Patient-related The most common patient-related problems when performing the spirometry are: sub-maximal effort leaks between the lips and mouthpiece incomplete inspiration or expiration (prior to, or during the forced manoeuvre) hesitation at the start of the expiration cough (particularly within the first second of expiration) obstruction of the mouthpiece by the tongue vocalisation during the forced manoeuvre poor posture additional breath during procedure glottic closure. This should be suspected if flow ceases abruptly during the test rather than being a continuous smooth curve. Recordings in which cough, particularly if this occurs within the first second, or hesitation at the start has occurred should be rejected. Vocalisation during the test will reduce flows and must be discouraged. Performing the manoeuvre with the neck extended often helps. 7 Instrument-related These depend largely on the type of spirometer being used. On volume-displacement spirometers, look for leaks in the hose connections. On flow-sensing spirometers, look for rips and tears in the flowhead connector tube. On electronic spirometers, be particularly careful about calibration.

STEP 11 Other considerations Procedures that need to be implemented in the use of spirometers include: 1. Maintaining the spirometer Most spirometers are tough but use common sense and avoid treating the spirometer roughly such as dropping it. Suspect a problem if the numbers and print outs do not make sense, or fit in with the clinical picture or are variable, even if doing it correctly (this means you need to know how to do good spirometry yourself). 2. Infection control The risk of passing infection to others and staff is very low but it is very important to maintain high levels of infection control at all times. Avoid using the spirometer if TB is suspected. At the very least disposable mouth pieces with a one way valve should be used when performing spirometry with a volume-time spirometer. If using a flow sensor spirometer, performing inspiratory flow measures using a mouthpiece with a micro bacterial filter will facilitate optimal infection prevention, allowing the performance of inspiratory and expiratory flow measurements. All mouthpieces are single use only. Wipe down the spirometer after each patient, using an approved cleaning agent as per the manufacturer instructions. 3. Calibration Spirometry standards recommend checking the calibration regularly (see manufacturer instructions as to the frequency required). A simple test of spirometer accuracy is to regularly perform spirometry on the same healthy person (often you or a colleague) as this provides a good biological control. STEP 12 Interpretation Once spirometry has been performed the results need to be interpreted and compared with predicted normal values. Predicted values are provided from equations within an auto spirometer or from charts and are based on research studies measuring spirometry in healthy populations. Spirometry can reflect two distinct patterns of lung disease i.e. obstructive lung disease and restrictive lung disease. Patients with obstructive lung disease have difficulty expelling air. This is reflected in a low FEV 1 whilst maintaining near normal FVC. This results in a low FEV 1 /FVC ratio. Patients with restrictive lung disease do not have difficulty expelling air although volumes are reduced as the lungs are stiff and less compliant. This results in a normal or high FEV 1 /FVC ratio: COPD is an example of an obstructive lung disease. Pulmonary fibrosis is an example of a restrictive lung disease. STEP 13 Obstructive lung disease A patient with obstructive lung disease will have the following findings on spirometry: FEV₁/FVC ratio < 0.7 (or 70%) FEV₁ < 80% predicted

FEF 25-75% < 60%predicted. Spirometry is also used to establish the degree of disease severity in obstructive lung disease. Using the COPD-X Guidelines, COPD can be classified as mild, moderate or severe depending on the degree of reduction in FEV₁. MILD: FEV₁= 60-80% predicted MODERATE: FEV₁= 40-59% predicted SEVERE: FEV₁< 40% predicted. 2 STEP 14 The following graph shows a normal flow-volume curve compared to an obstructive pattern 4.

The following graph shows a normal volume trace compared to an obstructive pattern. Expiration Inspiration STEP 15 Reversibility To assess reversibility of airflow obstruction, perform spirometry before and 15 minutes after a bronchodilator. It is usual to administer 4 puffs (400mcg) of salbutamol given one puff at a time and each puff separated by 4 normal tidal breaths. The salbutamol is administered to the patient via spacer (holding chamber). Percentage improvement is calculated as 100x (post-bronchodilator pre-bronchodilator) / (pre-bronchodilator FEV 1 ). (NB: This test for reversibility should be performed after bronchodilator has been withheld for at least 4 hours. However, the test of reversibility is usually done in a lung function laboratory and not as part of pulmonary rehabilitation). An increase in FEV₁ that is both greater than 200ml and 12% above the pre-bronchodilator FEV₁ is considered to be a significant bronchodilator response. Greater than 200ml and 12% reversibility is indicative of asthma, a reversible obstructive lung disease, whereas less than this is considered to be a non-reversible obstructive lung disease. STEP 16 COPD vs Asthma Both COPD and asthma have features of airflow obstruction, however only asthma will show significant reversibility of airflow obstruction following bronchodilator. Performing a pre and post-bronchodilator spirometry helps to differentiate COPD from asthma but the test must be interpreted with consideration to clinical history. The diagnosis of asthma relies on an appropriate history and complete, or at least substantial, reversibility of airflow obstruction. The following table provides a summary of differences between asthma and COPD.

COPD Asthma Age at onset of symptoms Normally > 40 years Typically early in life but can occur at any stage Causes (inhaled agents) Predominantly tobacco smoke 8. Affects smokers and ex-smokers. Allergens 5. Non-smokers and smokers affected. Symptoms Progressively worse with time Vary from day to day Disease progression Chronic, progressive disease leading to disability and death Usually able to be well controlled, rarely fatal. Lung Function Airflow obstruction is not fully Airflow obstruction is reversible reversible Site of inflammatory response 2 Mainly affects the small airways and lung parenchyma, although inflammatory changes may also occur in the large airways 5. Inflammation mainly located in the larger conducting airways, although small airways may also be involved in more severe disease 5. Significant differences exist between asthma and COPD but these can be difficult to distinguish in the older adult. There is substantial overlap between asthma and COPD in people over the age of 55 and for those aged over 65 with airway obstruction, most will have both asthma and COPD. 9 STEP17 Restrictive lung disease A patient with airflow obstruction will have the following findings on spirometry: FEV₁/FVC ratio 0.8 (or 80%) FVC< 80% predicted The following graph shows a normal volume trace compared to a restrictive pattern.

This graph shows a normal flow-volume loop compared to a restrictive pattern (similar in shape to normal but smaller). STEP 18 Confirm diagnosis case study Video case study: spirometry test STEP 19 Audio case study: post spirometry test STEP 19 Module summary This module will provide you with an understanding of spirometry and the role it plays in aiding the diagnosis of lung diseases, particularly COPD. You should now be able to: understand what measurements are provided by spirometry describe how to perform a spirometry understand how to interpret spirometry results outline common spirometric features of obstructive and restrictive lung diseases describe how spirometry can indicate disease severity in COPD. Before continuing to the next module, you can test your learning of this module by completing a short quiz.

REFERENCES 1 Peto R, Selzer FE, Cochrane AL, et al. The relevance in adults of air-flow obstruction, but not of mucus hypersecretion, to mortality from chronic lung disease. Results from 20 years of prospective observation. Am. Rev. Respir.Dis; 1983; 128; 491-500 2 Mckenzie DK, Abramson M, Crockett AJ, et al. The COPDX Plan: Australian and New Zealand Guidelines for the Management of Chronic Obstructive Pulmonary Disease. Version 2.30 Revised 2011 < http://www.copdx.org.au/confirm-diagnosis-and-assess-severity/c2-diagnosis/c25-copd-screening-devices-fortargeted-case-finding> Accessed: 01 June 2012 3 Gold. Global strategy for the diagnosis, management and prevention of chronic obstructive pulmonary disease. Global initiative for Chronic Obstructive Lung Disease. Revised 2011. < http://www.goldcopd.org/uploads/users/files/gold_report_2011_feb21.pdf> Accessed: 01 June 2012 4 Alison, J. Pulmonary Function Tests. [book auth.] E Ellis and J Alison. Key Issues in Cardiorespiratory Physiotherapy. s.l. : Butterworth Heinneman, 1992. 5 Burton D, Johns DP, Swanney M. Spirometry Users and Buyers Guide. National Asthma Council Australia. Revised 2011; < http://www.nationalasthma.org.au/uploads/content/209- Spirometer_Users_and_Buyers_Guide_12_2011.pdf> Accessed 06 June 2012 6 Johns DP, Pierce R. Pocket Guide to Spirometry; 2 nd edition; Sydney. Australia: Mcraw-Hill Australia Pty Ltd; 2007 7 Johns DP, Pierce R. Spirometry: The Measurement and Interpretation of Ventilatory Function in Clinical Practice. National Asthma Council Australia. Revised 2008; < http://www.nationalasthma.org.au/uploads/content/211- spirometer_handbook_naca.pdf> Accessed 06 June 2012 8 Barnes PJ. Similarities and differences in inflammatory mechanisms of asthma and COPD. Breathe; 2011, Vol. 7; 229-238 9 Gibson PG, McDonald VM, Marks GB. Asthma in older adults. The Lancet; 376; 2010; 803-813