Acid-Base Balance * OpenStax

Similar documents
Acid-base balance is one of the most important of the body s homeostatic mechanisms Acid-base balance refers to regulation of hydrogen ion (H + )

Acid-Base Balance Dr. Gary Mumaugh

Disorders of Acid-Base Balance

Acid and Base Balance

Acid-Base Balance 11/18/2011. Regulation of Potassium Balance. Regulation of Potassium Balance. Regulatory Site: Cortical Collecting Ducts.

Acid/Base Balance. the concentrations of these two ions affect the acidity or alkalinity of body fluids

Acid Base Balance. Chapter 26 Balance. ph Imbalances. Acid Base Balance. CO 2 and ph. Carbonic Acid. Part 2. Acid/Base Balance

Fluid and Electrolytes P A R T 4

Renal Physiology. April, J. Mohan, PhD. Lecturer, Physiology Unit, Faculty of Medical Sciences, U.W.I., St Augustine.

UNIT VI: ACID BASE IMBALANCE

adam.com ( Benjamin/Cummings Publishing Co ( -42-

ACID BASE BALANCE & BODY FLUID. Ani Retno Prijanti Renal and Body Fluids Module Juni 2008

Disorders of Acid-Base

Chapter 15 Fluid and Acid-Base Balance

OpenStax-CNX module: m Transport of Gases. OpenStax College. Abstract

CHAPTER 27 LECTURE OUTLINE

Principles of Anatomy and Physiology

Acid Base Balance. Professor Dr. Raid M. H. Al-Salih. Clinical Chemistry Professor Dr. Raid M. H. Al-Salih

Acids and Bases their definitions and meanings

Acids, Bases, and Salts

Chapter 27: WATER, ELECTROLYTES, AND ACID-BASE BALANCE

Carbon Dioxide Transport. Carbon Dioxide. Carbon Dioxide Transport. Carbon Dioxide Transport - Plasma. Hydrolysis of Water

12/7/10. Excretory System. The basic function of the excretory system is to regulate the volume and composition of body fluids by:

Carbon Dioxide Transport and Acid-Base Balance

1. 09/07/16 Ch 1: Intro to Human A & P 1

CASE 27. What is the response of the kidney to metabolic acidosis? What is the response of the kidney to a respiratory alkalosis?

ARTERIAL BLOOD GASES PART 1 BACK TO BASICS SSR OLIVIA ELSWORTH SEPT 2017

Slide 1. Slide 2. Slide 3. Learning Outcomes. Acid base terminology ARTERIAL BLOOD GAS INTERPRETATION

Dr. Suzana Voiculescu Discipline of Physiology and Fundamental Neurosciences Carol Davila Univ. of Medicine and Pharmacy

Renal physiology V. Regulation of acid-base balance. Dr Alida Koorts BMS

ANATOMY & PHYSIOLOGY - CLUTCH CH ACID-BASE BALANCE-- CONTROLLING BLOOD PH

1. a)label the parts indicated above and give one function for structures Y and Z

Dr. Suzana Voiculescu

Fluid, Electrolyte, and Acid Base Balance

Acid - base equilibrium

BIO132 Chapter 27 Fluid, Electrolyte and Acid Base Balance Lecture Outline

BUFFERING OF HYDROGEN LOAD

26 FLUID, ELECTROLYTE, AND ACID-BASE BALANCE

B108 BC Urinary System *

Chapter 24 Water, Electrolyte and Acid-Base Balance

PARAMEDIC RESOURCE MANUAL

WHY DO WE NEED AN EXCRETORY SYSTEM? Function: To eliminate waste To maintain water and salt balance To maintain blood pressure

Major intra and extracellular ions Lec: 1

EXCRETION QUESTIONS. Use the following information to answer the next two questions.

Nephron Structure inside Kidney:

Neaam Al-Bahadili. Rana J. Rahhal. Mamoun Ahram

The Excretory System. Biology 20

The Urinary System 15PART B. PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College

Acid-Base Tutorial 2/10/2014. Overview. Physiology (2) Physiology (1)

D fini n tion: p = = -log [H+] ph=7 me m an s 10-7 Mol M H+ + (100 nmol m /l); ) p ; H=8 me m an s 10-8 Mol M H+ + (10 (10 n nmol m /l) Nor

Introduction. Acids, Bases and ph; a review

Water, Electrolytes, and Acid-Base Balance

Note: During any ONE run the ph remains constant. It may be at any one of the above levels but it never change during a single run.

Lipid Metabolism * OpenStax

Principles of Fluid Balance

Hormonal Control of Osmoregulatory Functions *

Blood Gases, ph, Acid- Base Balance

Chapter 26 Fluid, Electrolyte, and Acid- Base Balance

There are number of parameters which are measured: ph Oxygen (O 2 ) Carbon Dioxide (CO 2 ) Bicarbonate (HCO 3 -) AaDO 2 O 2 Content O 2 Saturation

Excretory System 1. a)label the parts indicated above and give one function for structures Y and Z

Acid-Base Physiology. Dr. Tamás Bense Dr. Alexandra Turi

Chapter 19 The Urinary System Fluid and Electrolyte Balance

Physiological Buffers

Neaam Al-Bahadili. Rana J. Rahhal. Mamoun Ahram

Urinary System and Fluid Balance. Urine Production

THE RESPIRATORY SYSTEM Unit Quiz Preparation KEY

RENAL PHYSIOLOGY. Physiology Unit 4

The Urinary System and Homeostasis *

HYDROGEN ION HOMEOSTASIS

RENAL FUNCTION An Overview

Urinary System. Dr. ZHANG Xiong. Dept. of Physiology. ZJU School of Medicine. QUESTION 6

014 Chapter 14 Created: 9:25:14 PM CST

PHYSICAL PROPERTIES AND DETECTION OF NORMAL CONSTITUENTS OF URINE

Metabolic Alkalosis: Vomiting

Respiratory System. Introduction. Atmosphere. Some Properties of Gases. Human Respiratory System. Introduction

Disclaimer. Chapter 3 Disorder of Water, Electrolyte and Acid-base Professor A. S. Alhomida. Disorder of Water and Electrolyte

There are many buffers in the kidney, but the main one is the phosphate buffer.

Acid-Base Imbalance-2 Lecture 9 (12/4/2015) Yanal A. Shafagoj MD. PhD

Physio 12 -Summer 02 - Renal Physiology - Page 1

Homeostatic Regulation

Chapter 13 The Urinary System

Renal System Dr. Naim Kittana Department of Biomedical Sciences Faculty of Medicine & Health Sciences An-Najah National University

STEIN IN-TERM EXAM -- BIOLOGY APRIL 18, PAGE

BIOL 2402 Fluid/Electrolyte Regulation

Human Anatomy and Physiology - Problem Drill 23: The Urinary System, Fluid, Electrolyte and Acid-Base Balance

April 08, biology 2201 ch 11.3 excretion.notebook. Biology The Excretory System. Apr 13 9:14 PM EXCRETORY SYSTEM.

Ch 17 Physiology of the Kidneys

Acid Base Balance by: Susan Mberenga RN, BSN, MSN

Chapter 27: Fluid, Electrolyte, and Acid Base Balance

STEIN IN-TERM EXAM -- BIOLOGY APRIL 21, PAGE

Renal Physiology Part II. Bio 219 Napa Valley College Dr. Adam Ross

One Minute Movies: Molecular Action at the Nephron Joy Killough / Westwood High School / Austin,TX

1. What is the acid-base disturbance in this patient?

Homeostasis. OpenStax College. 1 Negative Feedback

Chapter 12. Excretion and the Interaction of Systems

DIURETICS-2. Dr. Shariq Syed. Shariq AIKC/TYB/2014

Revision Question Bank

Arterial Blood Gas Interpretation: The Basics

Other Factors Affecting GFR. Chapter 25. After Filtration. Reabsorption and Secretion. 5 Functions of the PCT

The equilibrium between basis and acid can be calculated and termed as the equilibrium constant = Ka. (sometimes referred as the dissociation constant

Transcription:

OpenStax-CNX module: m46409 1 Acid-Base Balance * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this section, you will be able to: Abstract Identify the most powerful buer system in the body Explain the way in which the respiratory system aects blood ph Proper physiological functioning depends on a very tight balance between the concentrations of acids and bases in the blood. Acid-balance balance is measured using the ph scale, as shown in Figure 1 (The ph Scale ). A variety of buering systems permits blood and other bodily uids to maintain a narrow ph range, even in the face of perturbations. A buer is a chemical system that prevents a radical change in uid ph by dampening the change in hydrogen ion concentrations in the case of excess acid or base. Most commonly, the substance that absorbs the ions is either a weak acid, which takes up hydroxyl ions, or a weak base, which takes up hydrogen ions. * Version 1.4: Jul 3, 2013 2:31 pm -0500 http://creativecommons.org/licenses/by/3.0/

OpenStax-CNX module: m46409 2 The ph Scale Figure 1: This chart shows where many common substances fall on the ph scale.

OpenStax-CNX module: m46409 3 1 Buer Systems in the Body The buer systems in the human body are extremely ecient, and dierent systems work at dierent rates. It takes only seconds for the chemical buers in the blood to make adjustments to ph. The respiratory tract can adjust the blood ph upward in minutes by exhaling CO 2 from the body. The renal system can also adjust blood ph through the excretion of hydrogen ions (H + ) and the conservation of bicarbonate, but this process takes hours to days to have an eect. The buer systems functioning in blood plasma include plasma proteins, phosphate, and bicarbonate and carbonic acid buers. The kidneys help control acid-base balance by excreting hydrogen ions and generating bicarbonate that helps maintain blood plasma ph within a normal range. Protein buer systems work predominantly inside cells. 1.1 Protein Buers in Blood Plasma and Cells Nearly all proteins can function as buers. Proteins are made up of amino acids, which contain positively charged amino groups and negatively charged carboxyl groups. The charged regions of these molecules can bind hydrogen and hydroxyl ions, and thus function as buers. Buering by proteins accounts for two-thirds of the buering power of the blood and most of the buering within cells. 1.2 Hemoglobin as a Buer Hemoglobin is the principal protein inside of red blood cells and accounts for one-third of the mass of the cell. During the conversion of CO 2 into bicarbonate, hydrogen ions liberated in the reaction are buered by hemoglobin, which is reduced by the dissociation of oxygen. This buering helps maintain normal ph. The process is reversed in the pulmonary capillaries to re-form CO 2, which then can diuse into the air sacs to be exhaled into the atmosphere. This process is discussed in detail in the chapter on the respiratory system. 1.3 Phosphate Buer Phosphates are found in the blood in two forms: sodium dihydrogen phosphate (Na 2 H 2 PO 4 ), which is a weak acid, and sodium monohydrogen phosphate (Na 2 HPO 2-4 ), which is a weak base. When Na 2 HPO 2-4 comes into contact with a strong acid, such as HCl, the base picks up a second hydrogen ion to form the weak acid Na 2 H 2 PO 4 and sodium chloride, NaCl. When Na 2 HPO 2 4 (the weak acid) comes into contact with a strong base, such as sodium hydroxide (NaOH), the weak acid reverts back to the weak base and produces water. Acids and bases are still present, but they hold onto the ions. HCl + Na 2 HPO 4 NaH 2 PO 4 + NaCl (1) (strong acid) + (weak base) (weak acid) + (salt) (1) NaOH + NaH 2 PO 4 Na 2 HPO 4 + H 2 O (1) (strong base) + (weak acid) (weak base) + (water) (1) 1.4 Bicarbonate-Carbonic Acid Buer The bicarbonate-carbonic acid buer works in a fashion similar to phosphate buers. The bicarbonate is regulated in the blood by sodium, as are the phosphate ions. When sodium bicarbonate (NaHCO 3 ), comes into contact with a strong acid, such as HCl, carbonic acid (H 2 CO 3 ), which is a weak acid, and NaCl are

OpenStax-CNX module: m46409 4 formed. When carbonic acid comes into contact with a strong base, such as NaOH, bicarbonate and water are formed. NaHCO 3 + HCl H 2 CO 3 +NaCl (1) (sodium bicarbonate) + (strong acid) (weak acid) + (salt) (1) H 2 CO 3 + NaOH HCO 3- + H 2 O (1) (weak acid) + (strong base) (bicarbonate) + (water) (1) As with the phosphate buer, a weak acid or weak base captures the free ions, and a signicant change in ph is prevented. Bicarbonate ions and carbonic acid are present in the blood in a 20:1 ratio if the blood ph is within the normal range. With 20 times more bicarbonate than carbonic acid, this capture system is most ecient at buering changes that would make the blood more acidic. This is useful because most of the body's metabolic wastes, such as lactic acid and ketones, are acids. Carbonic acid levels in the blood are controlled by the expiration of CO 2 through the lungs. In red blood cells, carbonic anhydrase forces the dissociation of the acid, rendering the blood less acidic. Because of this acid dissociation, CO 2 is exhaled (see equations above). The level of bicarbonate in the blood is controlled through the renal system, where bicarbonate ions in the renal ltrate are conserved and passed back into the blood. However, the bicarbonate buer is the primary buering system of the IF surrounding the cells in tissues throughout the body. 2 Respiratory Regulation of Acid-Base Balance The respiratory system contributes to the balance of acids and bases in the body by regulating the blood levels of carbonic acid (Figure 2 (Respiratory Regulation of Blood ph )). CO 2 in the blood readily reacts with water to form carbonic acid, and the levels of CO 2 and carbonic acid in the blood are in equilibrium. When the CO 2 level in the blood rises (as it does when you hold your breath), the excess CO 2 reacts with water to form additional carbonic acid, lowering blood ph. Increasing the rate and/or depth of respiration (which you might feel the urge to do after holding your breath) allows you to exhale more CO 2. The loss of CO 2 from the body reduces blood levels of carbonic acid and thereby adjusts the ph upward, toward normal levels. As you might have surmised, this process also works in the opposite direction. Excessive deep and rapid breathing (as in hyperventilation) rids the blood of CO 2 and reduces the level of carbonic acid, making the blood too alkaline. This brief alkalosis can be remedied by rebreathing air that has been exhaled into a paper bag. Rebreathing exhaled air will rapidly bring blood ph down toward normal.

OpenStax-CNX module: m46409 5 Respiratory Regulation of Blood ph Figure 2: The respiratory system can reduce blood ph by removing CO 2 from the blood.

OpenStax-CNX module: m46409 6 The chemical reactions that regulate the levels of CO 2 and carbonic acid occur in the lungs when blood travels through the lung's pulmonary capillaries. Minor adjustments in breathing are usually sucient to adjust the ph of the blood by changing how much CO 2 is exhaled. In fact, doubling the respiratory rate for less than 1 minute, removing extra CO 2, would increase the blood ph by 0.2. This situation is common if you are exercising strenuously over a period of time. To keep up the necessary energy production, you would produce excess CO 2 (and lactic acid if exercising beyond your aerobic threshold). In order to balance the increased acid production, the respiration rate goes up to remove the CO 2. This helps to keep you from developing acidosis. The body regulates the respiratory rate by the use of chemoreceptors, which primarily use CO 2 as a signal. Peripheral blood sensors are found in the walls of the aorta and carotid arteries. These sensors signal the brain to provide immediate adjustments to the respiratory rate if CO 2 levels rise or fall. Yet other sensors are found in the brain itself. Changes in the ph of CSF aect the respiratory center in the medulla oblongata, which can directly modulate breathing rate to bring the ph back into the normal range. Hypercapnia, or abnormally elevated blood levels of CO 2, occurs in any situation that impairs respiratory functions, including pneumonia and congestive heart failure. Reduced breathing (hypoventilation) due to drugs such as morphine, barbiturates, or ethanol (or even just holding one's breath) can also result in hypercapnia. Hypocapnia, or abnormally low blood levels of CO 2, occurs with any cause of hyperventilation that drives o the CO 2, such as salicylate toxicity, elevated room temperatures, fever, or hysteria. 3 Renal Regulation of Acid-Base Balance The renal regulation of the body's acid-base balance addresses the metabolic component of the buering system. Whereas the respiratory system (together with breathing centers in the brain) controls the blood levels of carbonic acid by controlling the exhalation of CO 2, the renal system controls the blood levels of bicarbonate. A decrease of blood bicarbonate can result from the inhibition of carbonic anhydrase by certain diuretics or from excessive bicarbonate loss due to diarrhea. Blood bicarbonate levels are also typically lower in people who have Addison's disease (chronic adrenal insuciency), in which aldosterone levels are reduced, and in people who have renal damage, such as chronic nephritis. Finally, low bicarbonate blood levels can result from elevated levels of ketones (common in unmanaged diabetes mellitus), which bind bicarbonate in the ltrate and prevent its conservation. Bicarbonate ions, HCO 3-, found in the ltrate, are essential to the bicarbonate buer system, yet the cells of the tubule are not permeable to bicarbonate ions. The steps involved in supplying bicarbonate ions to the system are seen in Figure 3 (Conservation of Bicarbonate in the Kidney ) and are summarized below: Step 1: Sodium ions are reabsorbed from the ltrate in exchange for H + by an antiport mechanism in the apical membranes of cells lining the renal tubule. Step 2: The cells produce bicarbonate ions that can be shunted to peritubular capillaries. Step 3: When CO 2 is available, the reaction is driven to the formation of carbonic acid, which dissociates to form a bicarbonate ion and a hydrogen ion. Step 4: The bicarbonate ion passes into the peritubular capillaries and returns to the blood. The hydrogen ion is secreted into the ltrate, where it can become part of new water molecules and be reabsorbed as such, or removed in the urine.

OpenStax-CNX module: m46409 7 Conservation of Bicarbonate in the Kidney Figure 3: Tubular cells are not permeable to bicarbonate; thus, bicarbonate is conserved rather than reabsorbed. Steps 1 and 2 of bicarbonate conservation are indicated. It is also possible that salts in the ltrate, such as sulfates, phosphates, or ammonia, will capture hydrogen ions. If this occurs, the hydrogen ions will not be available to combine with bicarbonate ions and produce CO 2. In such cases, bicarbonate ions are not conserved from the ltrate to the blood, which will also contribute to a ph imbalance and acidosis. The hydrogen ions also compete with potassium to exchange with sodium in the renal tubules. If more potassium is present than normal, potassium, rather than the hydrogen ions, will be exchanged, and increased potassium enters the ltrate. When this occurs, fewer hydrogen ions in the ltrate participate in the conversion of bicarbonate into CO 2 and less bicarbonate is conserved. If there is less potassium, more hydrogen ions enter the ltrate to be exchanged with sodium and more bicarbonate is conserved. Chloride ions are important in neutralizing positive ion charges in the body. If chloride is lost, the body uses bicarbonate ions in place of the lost chloride ions. Thus, lost chloride results in an increased reabsorption of bicarbonate by the renal system. : Acid-Base Balance: Ketoacidosis Diabetic acidosis, or ketoacidosis, occurs most frequently in people with poorly controlled diabetes mellitus. When certain tissues in the body cannot get adequate amounts of glucose, they depend on the breakdown of fatty acids for energy. When acetyl groups break o the fatty acid chains, the acetyl groups then non-enzymatically combine to form ketone bodies, acetoacetic acid, betahydroxybutyric acid, and acetone, all of which increase the acidity of the blood. In this condition,

OpenStax-CNX module: m46409 8 the brain isn't supplied with enough of its fuelglucoseto produce all of the ATP it requires to function. Ketoacidosis can be severe and, if not detected and treated properly, can lead to diabetic coma, which can be fatal. A common early symptom of ketoacidosis is deep, rapid breathing as the body attempts to drive o CO 2 and compensate for the acidosis. Another common symptom is fruitysmelling breath, due to the exhalation of acetone. Other symptoms include dry skin and mouth, a ushed face, nausea, vomiting, and stomach pain. Treatment for diabetic coma is ingestion or injection of sugar; its prevention is the proper daily administration of insulin. A person who is diabetic and uses insulin can initiate ketoacidosis if a dose of insulin is missed. Among people with type 2 diabetes, those of Hispanic and African-American descent are more likely to go into ketoacidosis than those of other ethnic backgrounds, although the reason for this is unknown. 4 Chapter Review A variety of buering systems exist in the body that helps maintain the ph of the blood and other uids within a narrow rangebetween ph 7.35 and 7.45. A buer is a substance that prevents a radical change in uid ph by absorbing excess hydrogen or hydroxyl ions. Most commonly, the substance that absorbs the ion is either a weak acid, which takes up a hydroxyl ion (OH - ), or a weak base, which takes up a hydrogen ion (H + ). Several substances serve as buers in the body, including cell and plasma proteins, hemoglobin, phosphates, bicarbonate ions, and carbonic acid. The bicarbonate buer is the primary buering system of the IF surrounding the cells in tissues throughout the body. The respiratory and renal systems also play major roles in acid-base homeostasis by removing CO 2 and hydrogen ions, respectively, from the body. 5 Review Questions Exercise 1 (Solution on p. 10.) Which of the following is the most important buer inside red blood cells? a. plasma proteins b. hemoglobin c. phosphate buers d. bicarbonate: carbonic acid buer Exercise 2 (Solution on p. 10.) Which explanation best describes why plasma proteins can function as buers? a. Plasma proteins combine with bicarbonate to make a stronger buer. b. Plasma proteins are immune to damage from acids. c. Proteins have both positive and negative charges on their surface. d. Proteins are alkaline. Exercise 3 (Solution on p. 10.) The buer that is adjusted to control acid-base balance is. a. plasma protein b. hemoglobin c. phosphate buer d. bicarbonate: carbonic acid buer

OpenStax-CNX module: m46409 9 Exercise 4 (Solution on p. 10.) Carbonic acid levels are controlled through the. a. respiratory system b. renal system c. digestive system d. metabolic rate of cells Exercise 5 (Solution on p. 10.) Bicarbonate ion concentrations in the blood are controlled through the. a. respiratory system b. renal system c. digestive system d. metabolic rate of cells Exercise 6 (Solution on p. 10.) Which reaction is catalyzed by carbonic anhydrase? a. HPO 2-4 +H + H 2 PO 4- b. CO 2 + H 2 O H 2 CO 3 c. H 2 PO 4 +OH HPO 2 4 +H 2 O d. H 2 CO 3 HCO 3 + H + 6 Critical Thinking Questions Exercise 7 (Solution on p. 10.) Describe the conservation of bicarbonate ions in the renal system. Exercise 8 (Solution on p. 10.) Describe the control of blood carbonic acid levels through the respiratory system.

OpenStax-CNX module: m46409 10 Solutions to Exercises in this Module to Exercise (p. 8) B to Exercise (p. 8) C to Exercise (p. 8) D to Exercise (p. 9) A to Exercise (p. 9) B to Exercise (p. 9) B to Exercise (p. 9) Bicarbonate ions are freely ltered through the glomerulus. They cannot pass freely into the renal tubular cells and must be converted into CO 2 in the ltrate, which can pass through the cell membrane. Sodium ions are reabsorbed at the membrane, and hydrogen ions are expelled into the ltrate. The hydrogen ions combine with bicarbonate, forming carbonic acid, which dissociates into CO 2 gas and water. The gas diuses into the renal cells where carbonic anhydrase catalyzes its conversion back into a bicarbonate ion, which enters the blood. to Exercise (p. 9) Carbonic acid blood levels are controlled through the respiratory system by the expulsion of CO 2 from the lungs. The formula for the production of bicarbonate ions is reversible if the concentration of CO 2 decreases. As this happens in the lungs, carbonic acid is converted into a gas, and the concentration of the acid decreases. The rate of respiration determines the amount of CO 2 exhaled. If the rate increases, less acid is in the blood; if the rate decreases, the blood can become more acidic. Glossary Denition 3: hypercapnia abnormally elevated blood levels of CO 2 Denition 3: hypocapnia abnormally low blood levels of CO 2