Pre-excited tachycardia: Atrial tachycardia with a bystander left lateral accessory pathway

Similar documents
Circulation: Arrhythmia and Electrophysiology CHALLENGE OF THE WEEK

A Narrow QRS Complex Tachycardia With An Apparently Concentric Retrograde Atrial Activation Sequence

EHRA Accreditation Exam - Sample MCQs Invasive cardiac electrophysiology

Case Report Wide-QRS Tachycardia Inducible by Both Atrial and Ventricular Pacing

COMPLEX CASE STUDY INNOVATIVE COLLECTIONS. Case presentation

Basic Electrophysiology Protocols

Journal of the American College of Cardiology Vol. 36, No. 2, by the American College of Cardiology ISSN /00/$20.

Case Report Simultaneous Accessory Pathway and AV Node Mechanical Block

EPS Case presentation Looks like VT but it isn t!

Uncommon forms of AV reentry: atrio and fasciculo-ventricular fibers, slow conducting fibers. Jesus Almendral, Madrid, Spain

Case 1 Left Atrial Tachycardia

Supraventricular Tachycardia (SVT)

WPW syndrome and AVRT

Utility of Atrial and Ventricular Cycle Length Variability in Determining the Mechanism of Paroxysmal Supraventricular Tachycardia

Case Report Coexistence of Atrioventricular Nodal Reentrant Tachycardia and Idiopathic Left Ventricular Outflow-Tract Tachycardia

In certain cases of supraventricular

Uncommon Atrial Flutter Originating in the Left Atrioventricular Groove

Chapter 16: Arrhythmias and Conduction Disturbances

CATHETER ABLATION FOR TACHYCARDIAS

Incessant Tachycardia Using a Concealed Atrionodal Bypass Tract

Differentiating Junctional Tachycardia and Atrioventricular Node Re-Entry Tachycardia Based on Response to Atrial Extrastimulus Pacing

LONG RP TACHYCARDIA MAPPING AND RF ABLATION

Atrioventricular (AV) Nodal Reentry Associated with 2:1 Infra-His Conduction Block during Tachycardia in a Patient with AV Nodal Triple Pathways

Electrophysiological recognition of an atrio-ventricular mahaim fibre pathway

Differential diagnosis and pacing in maneuvers narrow QRS tachycardia. Richard Schilling

Clinical Cardiac Electrophysiology

How to ablate typical slow/fast AV nodal reentry tachycardia

Looks Like VT But Isn't - Successful Ablation Of A Left Free Wall Accessory Pathway With Mahaim-like Properties

Case Report Mahaim Fiber Accelerated Automaticity and Clues to a Mahaim Fiber Being Morphologically an Ectopic or a Split AV Node

Successful treatment of tachycardia-induced cardiomyopathy secondary to dual atrioventricular nodal nonreentrant tachycardia using cryoablation

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

ARTICLE. Supraventricular Tachycardia in Infancy. Catherine D. DeAngelis, MD. In most infants, SVT is due to an accessory atrioventricular

II V 1 HRA 3 4 HB 5 6 HB 3 4 HB 1 2 CS 7 8 CS 5 6 CS 3 4 CS 1 2 ABL 3 4 ABL 1 2 RVA 3 4. T. Suga et al.

Tachy. Induction tachycardia lead ECG during Tachy /25/2009. Sinus Rhythm Single His

Ankara, Turkey 2 Department of Cardiology, Division of Arrhythmia and Electrophysiology, Yuksek Ihtisas

Repetitive narrow QRS tachycardia in a 61-year-old female patient with recent palpitations

Characteristics of systolic and diastolic potentials recorded in the left interventricular septum in verapamil-sensitive left ventricular tachycardia

Case-Based Practical ECG Interpretation for the Generalist

Double Retrograde Atrial Response After Radiofrequency. ablation of typical AV nodal tieentrant tachycardia

Journal of the American College of Cardiology Vol. 33, No. 3, by the American College of Cardiology ISSN /99/$20.

CLINICAL CARDIAC ELECTROPHYSIOLOGY Maintenance of Certification (MOC) Examination Blueprint

Emergency Medical Training Services Emergency Medical Technician Paramedic Program Outlines Outline Topic: WPW Revised: 11/2013

Adenosine-Sensitive Focal Reentrant Atrial Tachycardia Originating From the Mitral Annulus Aorta Junction

Declaration of conflict of interest NONE

Ventriculoatrial Block During a Narrow-QRS Tachycardia: What Is the Tachycardia Mechanism? IV

New Criteria during Right Ventricular Pacing to Determine the Mechanism of. Supraventricular Tachycardia

Title. CitationJournal of Electrocardiology, 39(4): Issue Date Doc URL. Type. File Information. coronary sinus ostium

Catheter Ablation of Atriofascicular Mahaim Fibers Guided by the Activation Potential

Variants of preexcitation: the tough stuff Case #4. Sergio Richter, MD Heart Center University of Leipzig

Ventricular Preexcitation (Wolff-Parkinson-White Syndrome and Its Variants) 柯文欽醫師 國泰綜合醫院心臟內科主治醫師 臺北醫學大學講師

available at journal homepage:

The Efficient and Smart Methods for Diagnosis of SVT 대구파티마병원순환기내과정병천

Case Report Left Ventricular Dysfunction Caused by Unrecognized Surgical AV block in a Patient with a Manifest Right Free Wall Accessory Pathway

Supraventricular Tachycardia (SVT)

Adenosine Mapping for Adenosine-Dependent Accessory Pathway Ablation

ACCESSORY PATHWAYS AND SVT. Neil Grubb Royal Infirmary of Edinburgh

Determination of Inadvertent Atrial Capture During Para-Hisian Pacing

PARA-HISSIAN CONCEALED ACCESSORY PATHWAY

Differentiating Slow Fast Atrioventricular Nodal Reentry Tachycardia From Atrioventrcular..

were inserted into the right femoral vein and positioned system and intracardiac recordings were displayed

(living in the fast lane)

Supraventricular Tachycardia: From Fetus to Adult. Mohamed Hamdan, MD

Title. CitationJournal of Electrocardiology, 43(5): Issue Date Doc URL. Type. File Information.

Ji-Eun Ban, MD, Sang-Weon Park, MD, Hyun-Soo Lee, MPH, Jong-Il Choi, MD, and Young-Hoon Kim, MD

of retrograde slow pathway conduction in patients with atrioventricular nodal re-entrant tachycardia

Effects of Partial and Complete Ablation of the Slow Pathway on Fast Pathway Properties in Patients with Atrioventricular Nodal Reentrant Tachycardia

PEDIATRIC SVT MANAGEMENT

TACHYARRHYTHMIAs. Pawel Balsam, MD, PhD

Sustained tachycardia with wide QRS

Ablation Techniques for Mahaim Fiber Tachycardia

Conventional Mapping. Introduction

Unusual Tachycardia Association In A patient Without Structural Heart Disease

Bernard Belhassen, MD; Roman Fish, MD; Sami Viskin, MD; Aharon Glick, MD; Michael Glikson, MD; Michael Eldar, MD

Asymptomatic WPW Syndrome; Observation or Ablation? 전남대학교병원순환기내과 박형욱

Nathan Cade, MD Brandon Fainstad, MD Andrew Prouse, MD

Fast pathway ablation in patients with common atrioventricular nodal reentrant tachycardia and prolonged PR interval during sinus rhythm

'Dual atrioventricular nodal pathways' in patients with Wolff-Parkinson-White syndrome*

A request for a log book extension must be put in writing and sent to BHRS, Unit 6B, Essex House, Cromwell Business Park, Chipping Norton,

AV Nodal Reentrant Tachycardia with Mahaim Fiber Conduction

Coronary sinus (CS) diverticula 1 5 have been associated

Medicine. Dynamic Changes of QRS Morphology of Premature Ventricular Contractions During Ablation in the Right Ventricular Outflow Tract

Concise Review for Primary-Care Physicians

Unusually High Association of Hypertrophic Cardiomyopathy and Complex Heart Defects in Children with Fasciculoventricular Pathways

The Egyptian Journal of Hospital Medicine (July 2018) Vol. 72 (8), Page

Catheter Ablation of Supraventricular Arrhythmias: State of the Art

Teaching Rounds in Cardiac Electrophysiology

Selective Radiofrequency Catheter Ablation of the Slow Pathway for Common and Uncommon Atrioventricular Nodal Reentrant Tachycardia

Asymptomatic patient with WPW

ECGs on the acute admission ward. - Cardiology Update -

Paroxysmal Supraventricular Tachycardia PSVT.

Goals 2/10/2016. Voltage Gradient Mapping: A Novel Approach for Successful Ablation of AV Nodal Reentry Tachycardia

VENTRICULAR TACHYCARDIA IN THE ABSENCE OF STRUCTURAL HEART DISEASE

Atypical Atrioventricular Nodal Reentry Tachycardia with Eccentric Retrograde Left-Sided Activation of Coronary Sinus

Self-assessment corner

ECG QUIZ Luc DE ROY Brussels Belgium Disclosure in relation to this topic: none

Huseng Vefali MD St. Luke s University Health Network Department of Cardiology

Arrival of excitation at right ventricular apical endocardium in Wolff-Parkinson-White syndrome type A, with and without right bundle-branch block'

Rakesh Yadav MD, DM, Sharad Chandra MD, DM, Nitish Naik MD, DM, Rajnish Juneja MD, DM

AV Node Dependent SVT:Substrates, Mechanisms, and Recognition

Left ventricular AV nodal reentrant tachycardia: Case report and review of the literature

Transcription:

Pre-excited tachycardia: Atrial tachycardia with a bystander left lateral accessory pathway Jeffrey Munro, DO, Win-Kuang Shen, MD, FHRS, Komandoor Srivathsan, MD From the Department of Cardiovascular Disease, Division of Cardiac Electrophysiology, Mayo Clinic, Phoenix, Arizona. Introduction Wide complex tachycardias have a broad differential diagnosis including ventricular tachycardia (VT), antidromic reciprocating tachycardia (ART), supraventricular tachycardia (SVT) with aberrancy, atrial tachycardia (AT) or atrioventricular nodal reentry tachycardia (AVNRT) with a bystander accessory pathway, or unusual tachycardias involving nodoventricular or atriofascicular pathways. Diagnostic criteria for differentiating VT from SVT with aberrancy have been developed, all having similar diagnostic accuracy, but are limited in the ability to distinguish VT from pre-excited tachycardias because morphology on surface electrocardiogram (ECG) is identical to VT originating from the basilar segment of the ventricle. 1,2 In this case of wide complex tachycardia, we use observations of intracardiac electrograms during tachycardia as well as a single atrial extrastimulus to make a diagnosis in our patient. Case presentation A 64-year-old woman with a long-standing history of palpitations was referred to the electrophysiology service after a recurrent episode that required an emergency department visit. This episode persisted despite her attempts to stop the palpitations by breath holding or splashing cold water on her face. In the emergency department a 12-lead surface ECG was performed showing a wide complex tachycardia (Figure 1, top). Adenosine 6 mg intravenous rapid bolus was administered, followed by 2 separate additional boluses of 12 mg each without termination of the tachycardia. External synchronized DC cardioversion was then performed with successful termination of the tachycardia and restoration of normal sinus rhythm. Prior cardiac evaluation had shown a structurally normal heart. A 12-lead ECG in sinus rhythm (Figure 1, bottom) revealed ventricular pre-excitation having a negative delta KEYWORDS Wide complex tachycardia; Atrial tachycardia; Bystander accessory pathway; Supraventricular tachycardia; Pre-excited tachycardia (Heart Rhythm Case Reports 2016;2:334 338) Address reprints and correspondence: Dr Komandoor Srivathsan, Mayo Clinic Hospital, 5777 East Mayo Boulevard, Phoenix, AZ 85054. E-mail address: Srivathsan.Komandoor@mayo.edu. wave in lead I and positive delta wave with R 4 S in lead V1, consistent with a left lateral accessory pathway. 3 The patient underwent an electrophysiology study after withholding cardioactive medications for 5 half-lives. Catheters were placed in the high right atrium, coronary sinus (CS), His bundle region, and right ventricular apex. Differential atrial pacing confirmed the presence of a left lateral accessory atrioventricular (AV) pathway with progressive ventricular pre-excitation when pacing from proximal to more distal CS catheter poles and a negative HV interval. Antegrade conduction block of the accessory pathway occurred at 220 ms during decremental atrial pacing. The antegrade effective refractory period of the accessory pathway was 300 ms for a drive cycle length of 500 ms and 260 ms for a drive cycle length of 400 ms. Right ventricular pacing revealed eccentric retrograde atrial activation with the earliest atrial activation in the mid to distal CS. Ventricular extrastimuli showed no evidence of retrograde dual AV node physiology. Programmed stimulation with atrial extrastimuli did not induce any arrhythmias. Atrial burst pacing from distal CS catheter poles induced a wide complex tachycardia with a 1:1 AV association (Figure 2, top). The QRS, with a right bundle branch block like morphology, during the tachycardia was identical to that during maximal ventricular pre-excitation when pacing at the distal CS. Single atrial extrastimuli were introduced during tachycardia from the distal CS and the same finding was repeatedly observed (Figure 2, bottom) and was diagnostic of AT. A transseptal approach was used for mapping and successful ablation of the left lateral accessory pathway owing to rapid conduction (conduction block 220 ms). Localization of the accessory pathway was achieved by mapping in the left atrium along the lateral mitral annulus in the area adjacent to the CS catheter poles that achieved maximum pre-excitation with pacing. The specific location of the accessory pathway was identified by the presence of an accessory pathway potential (Figure 3, top), representing the mid-body portion of the accessory pathway. 4,5 Atrial burst pacing induced tachycardia once again at the same cycle length but now with a narrow QRS complex, and the AT was mapped along the anterior interatrial septum with the earliest 2214-0271 B 2016 Heart Rhythm Society. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). http://dx.doi.org/10.1016/j.hrcr.2016.03.012

Munro et al Atrial Tachycardia With Bystander Accessory Pathway 335 KEY TEACHING POINTS Algorithms to differentiate the mechanism of wide complex tachycardias cannot be applied in cases of pre-excited tachycardias. They are typically applicable in diagnosing ventricular tachycardia vs supraventricular tachycardia with aberrancy. Atrial extrastimuli introduced during a wide complex tachycardia is a useful maneuver for eliciting the mechanism of tachycardia. Accessory pathways that have rapid antegrade conducting characteristics may be ablated despite not being integral to the mechanism of the clinical arrhythmia, since they may be associated with an increased risk of sudden death. local atrial electrogram found at the proximal His catheter, which was 31 ms earlier than the onset of the surface P wave. The mapping catheter was then advanced retrograde to the aortic root and additional mapping was performed in the noncoronary cusp, and the earliest local atrial electrogram there was 35 ms earlier than the onset of the surface P wave. Ablation was successful within the non-coronary cusp at this earliest activation point with fluoroscopy and intracardiac echo guidance (Figure 3, bottom). The tachycardia terminated within 5 seconds of initiation of delivery of radiofrequency energy, which was continued for a total of 60 seconds. Repeat atrial burst pacing was performed postablation with and without isoproterenol infusion, demonstrating noninducibility of the tachycardia post-ablation, in contrast to pre-ablation, when the tachycardia was easily inducible. The patient remains asymptomatic 6 months post procedure. Discussion Wide QRS tachycardia with 1:1 AV association has the following differential diagnosis: 1. VT with retrograde conduction. 2. ART. 3. AVNRT or AT with bystander pathway antegrade conduction, either AV or fasciculoventricular. 4. Orthodromic reciprocating tachycardia, AVNRT, or AT with aberrancy. 5. Tachycardia involving a manifest nodoventricular or nodofascicular pathway. Tachycardia was persistent after a blocked atrial extrastimulus and subsequent narrow QRS, as well as variations in AA intervals dictating the change in ventricular cycle length, suggested that the origin of tachycardia was supraventricular. Additionally, using commonly employed criteria including Brugada, Vereckie, R wave to peak time, and Griffith algorithm would have misclassified the rhythm as VT. Employing likelihood ratios with the Bayesian methodology would have resulted in a very high likelihood ratio. 1 The clear limitation of these algorithms is when a wide complex tachycardia is the result of SVC with pre-excitation, which has an identical QRS morphology to a VT originating from the base of the ventricle. 2 Aberrancy was excluded, since the right bundle branch like morphology in V1 was monophasic and lead V6 had an rs pattern. A fasciculoventricular pathway was excluded because differential atrial pacing produced progressive pre-excitation. 6 The QRS morphology during tachycardia was the same as preexcitation during normal sinus rhythm, suggesting either ART or bystander pre-excitation with AVNRT or AT. A diagnosis of ART was excluded because introduction of an atrial extrastimulus when the septal A was committed did not conduct to the ventricle and did not terminate the tachycardia. If the tachycardia was AVNRT, it was likely atypical AVNRT because of the VA time. The following features made atypical AVNRT extremely unlikely: (1) lack of dual AV node physiology; (2) tachycardia always terminated with a ventricular electrogram; (3) only atrial burst pacing and not atrial extrastimuli from any site and at any cycle length induced tachycardia; (4) the atrial extrastimulus that blocks at the level of the AV node during tachycardia, which does not terminate the tachycardia, should not delay the subsequent V in the case of AVNRT. If in fact the atrial extrastimulus blocked antegrade in the bystander accessory pathway and conducted down the antegrade limb of AVNRT in a decremental manner, there would be maintenance of a 1:1 AV association of block at the level of the His. Certainly the atrial extrastimulus could block in a lower common pathway, which could not be excluded here. Tachycardia using an atriofascicular or nodoventricular pathway was excluded because the first QRS after the blocked atrial extrastimulus was narrow as a result of antegrade conduction down the His-Purkinje system, which would have rendered the retrograde limb of the reentry circuit refractory, terminating the tachycardia. In the case of an atriofascicular pathway, an early coupled atrial extrastimulus would result in a delay in the subsequent ventricular activation and a fixed ventriculoatrial (VA) and His-atrial time. 7 Atrial extrastimulus testing was diagnostic in this case. Premature atrial extrastimuli with AV block and continuation of the tachycardia without constant VA association on resumption of the tachycardia is diagnostic of AT. Therefore, AT with ventricular pre-excitation over a bystander left lateral accessory pathway was diagnosed. Atrial extrastimuli have been used to elucidate the mechanism of a wide complex tachycardia in the case of ART. Advancement of the subsequent QRS and atrial activation after introduction of an atrial extrastimulus timed to atrial septal activation is diagnostic of ART. 8 Differential atrial overdrive pacing during tachycardia can also be used for differentiation of a septal AT from AVNRT by calculating the delta VA. 9

336 Heart Rhythm Case Reports, Vol 2, No 4, July 2016 Figure 1 Surface electrocardiograms of the wide complex tachycardia (top) and in normal sinus rhythm (bottom).

Munro et al Atrial Tachycardia With Bystander Accessory Pathway 337 Figure 2 Induction of a wide complex tachycardia with atrial burst pacing (S1) (top). Changes in the VV interval follow changes in the AA interval. The last 3 pacing stimuli (*) did not capture the atrium since the local electrogram precedes the pacing artifact. Introduction of an atrial extrastimulus (S2) blocks in the left lateral accessory pathway and atrioventricular node without interrupting the tachycardia and is diagnostic of atrial tachycardia with bystander accessory pathway (bottom) (see text for details). Of note, the RVa catheter is in a septal location rather than apical because of the right bundle potential observed. (*) atrial electrogram and (^) His electrogram on His catheter.

338 Heart Rhythm Case Reports, Vol 2, No 4, July 2016 Figure 3 Site of successful ablation of the left lateral accessory pathway (top). The arrows denote the accessory pathway potential. The atrial tachycardia was successfully ablated using a retrograde aortic approach, mapping the earliest local atrial electrogram (35 ms earlier than the surface P wave) in the non-coronary cusp of the aortic root (bottom). Termination occurred 5 seconds after the start of the ablation lesion. The last beat of atrial tachycardia is denoted by the asterisks. Conclusion Introduction of single atrial extrastimulus facilitates precise diagnosis and therapeutic choice in wide QRS tachycardia with 1:1 AV association. AT with ventricular pre-excitation is an uncommon presentation but must be considered in the differential diagnosis of wide complex tachycardias. References 1. Jastrzebski M, Kukla P, Czarnecka D, Kawecka-Jaszcz K. Comparison of five electrocardiographic methods for differentiation of wide QRS-complex tachycardias. Europace 2012;14(8):1165 1171. 2. Vereckei A, Miller J. Classification of pre-excited tachycardias by electrocardiographic methods for differentiation of wide QRS-complex tachycardias. Europace 2012;14(11):1674. 3. Arruda MS, McClelland JH, Wang X, Beckman KJ, Widman LE, Gonzalez MD, Nakagawa H, Lazzara R, Jackman WM. Development and validation of an ECG algorithm for identifying accessory pathway ablation site in Wolff-Parkinson- White syndrome. J Cardiovasc Electrophysiol 1998;9(1):2 12. 4. Otomo K, Gonzalez MD, Beckman KJ, Nakagawa H, Becker AE, Shah N, Matsudaira K, Wang Z, Lazzara R, Jackman WM. Reversing the direction of paced ventricular and atrial wavefronts reveals an oblique course in accessory AV pathways and improves localization for catheter ablation. Circulation 2001;104:550 556. 5. Jackman WM, Friday KJ, Scherlag BJ, Dehning MM, Schechter E, Reynolds DW, Olson EG, Berbari EJ, Harrison LA, Lazzara R. Direct endocardial recording from an accessory atrioventricular pathway: localization of the site of block, effect of antiarrhythmic drugs, and attempt at nonsurgical ablation. Circulation 1983;68: 906 916. 6. Hall B, Cheung P, Morady F. A preexcited tachycardia: What is the mechanism? Heart Rhythm 2004;1:121 122. 7. Thajudeen A, Namboodiri N, Choudhary D, Valaparambil AK, Tharakan JA. Classical response in a pre-excited tachycardia. What are the pathways involved? Circulation 2013;6:e11 16. 8. Tchou P, Lehmann MH, Jazayeri M, Akhtar M. Atriofascicular connection or a nodoventricular Mahaim fiber? Electrophysiologic elucidation of the pathway and associated reentrant circuit. Circulation 1988;77:837 848. 9. Maruyama M, Kobayashi Y, Miyauchi Y, Ino T, Atarashi H, Katoh T, Mizuno K. The VA relationship after differential atrial overdrive pacing: a novel tool for the diagnosis of atrial tachycardia in the electrophysiologic laboratory 2007;18(11): 1127 1133.