The Revised Edition of Korean Calendar for Allergenic Pollens

Similar documents
Changes in Sensitization Rate to Weed Allergens in Children with Increased Weeds Pollen Counts in Seoul Metropolitan Area

Case History Number One. Case History Two. Selection and Preparation of Allergen Vaccines (Extracts) Single Allergen Associated With Allergic Disease

Allergy Seasons. weather and other environmental factors.

Paradoxical Increase of IgE Binding Components during Allergen-Specific Immunotherapy in Pollinosis Patients

Variations in pollen counts between Indianapolis, IN, and Dayton, OH, in spring 2013 and 2014

Chamber and Field Studies demonstrate Differential Amb a 1 Contents in Common Ragweed Depending on CO2 Levels

Index. Immunol Allergy Clin N Am 23 (2003) Note: Page numbers of article titles are in boldface type.

Training for health professionals. Allergies and Asthma Stephan Böse-O Reilly

Ragweed pollen: is climate change creating a new aeroallergen problem in the UK?

David B. Peden, MD, MS, FAAAAI

Selection of Antigen Therapy. Hector P. Rodriguez MD Department of Otolaryngology Columbia University

STATE ENVIRONMENTAL HEALTH INDICATORS COLLABORATIVE (SEHIC) CLIMATE AND HEALTH INDICATORS MEASURE DESCRIPTION

Changes in the seroprevalence of IgG anti-hepatitis A virus between 2001 and 2013: experience at a single center in Korea

Climate change, pollen and allergic diseases

STATE ENVIRONMENTAL HEALTH INDICATORS COLLABORATIVE (SEHIC) CLIMATE AND HEALTH INDICATORS

POLLEN DISPERSION IN RELATION TO METEOROLOGICAL CONDITIONS, SEASONALITY, LOCATION AND ELEVATION IN COLLEGE STATION, TEXAS, USA

Bee Pollen-Induced Anaphylaxis: A Case Report and Literature Review

Pollen Seasonality - A Methodology to Assess the Timing of Pollen Seasons Throughout the US

Epidemiologic characteristics of cervical cancer in Korean women

Why does the body develop allergies?

Allergy IgE Allergy Test Sensitivity and Specificity 6/23/17

Taxus cuspidata (Japanese yew) pollen nasal allergy

아토피성피부염환아에서의피부반응검사, MAST 검사및비유발반응검사성적

Allergènes «outdoor» Pollen, spores et changements climatiques

Fatima MUHAMEDAGIĆ 1 Mirha ĐIKIĆ 2 Mirsad VELADŽIĆ 1 Samira DEDIĆ 1

The Increasing Importance of Allergies in Asthma Environmental Considerations

Seasonal and geographical dispersal regularity of airborne pollens in China LI Quan-sheng, JIANG Sheng-xue, LI Xin-ze, ZHU Xiao-ming, WEI Qing-yu *

EFFECT OF METEOROLOGICAL PARAMETERS ON POLLEN CONCENTRATION IN THE ATMOSPHERE OF ISLAMABAD

Allergy Immunotherapy: A New Role for the Family Physician

Environmental Allergens. Allergies to Dust, Mold and Pollen. A Patient s Guide

Standardized Thyroid Cancer Mortality in Korea between 1985 and 2010

Cross-Reactivity in Immunotherapy By Larry Garner, CPT, BA Consultant to the Practice Parameters Committee & National Allergy Educator

Major Environmental Allergens

Allergic rhinitis in India: an overview

Medizinische Labordiagnostika AG. EUROIMMUN EUROLINE profiles for allergy diagnostics Europe. Indicator and CCD. Sweet vernal grass Orchard grass

Activity Set B: Exploring Pollen in the Atmosphere

Pollen Forecasting in Sarasota, Florida

The formation of pollen in male flowers and yearly atmospheric pollen counts of Cryptomeria japonica in the following year

your triggers? Information about a simple lab test that lets you Know Your IgE.

New Test ANNOUNCEMENT

Trends in Water- and Foodborne Disease Outbreaks in Korea, 2007e2009

ENVIROMENTAL FACTORS INFLUENCE ON RESPIRATORY ALLERGIC DISEASES

Dr. Janice M. Joneja, Ph.D. FOOD ALLERGIES - THE DILEMMA

Variability of Offending Allergens of Allergic Rhinitis According to Age: Optimization of Skin Prick Test Allergens

LAST YEAR S RAGWEED POLLEN CONCENTRATIONS IN THE SOUTHERN PART OF THE CARPATHIAN BASIN

Prepared by Salima Thobani, MD, LAC+USC Medical Center, and John Seyerle, MD, Ohio State University

Views expressed are my own and not that of WRNMMC, USA or USN

The Clinical Effects of Carthami-Flos Pharmacopuncture on Posterior Neck pain of Menopausal Women

BURKARD 7 DAY RECORDING VOLUMETRIC SPORE SAMPLER

The Effect of PM 10 on Allergy Symptoms in Allergic Rhinitis Patients During Spring Season

The Artemisia genus comprises 300 species. Artemisia pollen season in southern Poland in 2016 MEDICAL AEROBIOLOGY ORIGINAL PAPER

Seasonal Factors Influencing Exercise-Induced Asthma

Test Name Results Units Bio. Ref. Interval ALLERGY, INDIVIDUAL MARKER, BAHIA GRASS (PASPALUM NOTATUM), SERUM (FEIA) 0.39 kua/l <0.

A survey of dental treatment under general anesthesia in a Korean university hospital pediatric dental clinic

Modeling climate change effects on air quality: Studies of allergenic tree pollen emission and transport

Airborne pollen survey in Bangkok, Thailand: A 35-year update

국내소아무균성뇌막염의전국적발생양상 정해관박수경기모란이관 B3 3 [14], 1995 B3 7 [13,15], 1996 B1[13], A24 9[16], 1997 B5 Echo 30[17,18], [19] [1-4]. . - [10].

Diagnostic Analysis of Patients with Essential Hypertension Using Association Rule Mining

Absence of a Seasonal Variation of Hemorrhagic Fever with Renal Syndrome in Yeoncheon Compared to Nationwide Korea

Association Between Tree Pollen Counts and Asthma ER Visits in a High-Density Urban Center

Selected Presentation from the INSTAAR Monday Noon Seminar Series.

Prediction of Cancer Incidence and Mortality in Korea, 2013

DOWNLOAD PDF AN ATLAS OF AIRBORNE POLLEN GRAINS AND COMMON FUNGUS SPORES OF CANADA

Relationship between Pollen Diseases and Meteorological Factors in Japan

S.Monnier M.Thibaudon RNSA, Brussieu, France

Late diagnosis of influenza in adult patients during a seasonal outbreak

e. Elm Correct Question 2 Which preservative/adjuvant has the greatest potential to breakdown immunotherapy because of protease activity? a.


Pollen White Paper from the Pollen Sub-Team, Climate Change Team, Environmental Public Health Tracking (EPHT) Work Group 1, 5

Safety Precaution Tips Against Seasonal Allergies (Hay Fever) By: Dr. Niru Prasad, M.D., F.A.A.P., F.A.C.E.P. WHAT IS HAY FEVER?

Science & Technologies

The British Allergy Foundation For more information on hay fever and other allergies, you can contact:-

A close look at pollen grains

Inhibitory effects of facemasks and eyeglasses on invasion of pollen particles in the nose and eye: a clinical study*

Prevalence and comorbidity of allergic diseases in preschool children

Risk factors of atopic dermatitis in Korean schoolchildren: 2010 international study of asthma and allergies in childhood

Subcutaneous immunotherapy (SCIT) has been a

A history of pollen mapping and surveillance: The relations between natural history and clinical allergy

Repeated antigen challenge in patients with perennial allergic rhinitis to house dust mites

Ragweed as an Example of Worldwide Allergen Expansion

AUTOMATIC MESUREMENTS OF JAPANESE CEDAR / CYPRESS POLLEN CONCENTRATION AND THE NUMERICAL FORECASTING AT TOKYO METROPOLITAN AREA

The Diabetes Epidemic in Korea

A study on nutrition knowledge and dietary behavior of elementary school children in Seoul

NIH Public Access Author Manuscript Mt Sinai J Med. Author manuscript; available in PMC 2012 January 1.

Presenter. Mona Sarfaty, MD, MPH, FAAFP Director, Program on Climate and Health Center for Climate Change Communication George Mason University

Climate Change and our Children s Health

Impact of Sound Insulation in a Combine Cabin

Estimation of Stellate Ganglion Block Injection Point Using the Cricoid Cartilage as Landmark Through X-ray Review

Certificate of Mold Analysis

Certificate of Mold Analysis

알레르기질환관련 진단적검사의이해 분당서울대병원알레르기내과 김세훈

Relationship between Pollen Counts and Weather Variables in East-Mediterranean Coast of Turkey

SOLUTION FOR REAL-TIME POLLEN COUNTING

SN E E Z E S A N D W H E E Z E S

Endocrine Surgery. Characteristics of the Germline MEN1 Mutations in Korea: A Literature Review ORIGINAL ARTICLE. The Korean Journal of INTRODUCTION

Geo-Environmental Etiology of Allergic Disorders and its Impact on Human Health in Sopore J&K, State, India

Moderator and Presenter. George Luber, PhD Chief Climate and Health Program US Centers for Disease Control and Prevention

Chemiluminescent Assay Versus Immunoblotting for Detection of Positive Reaction to Allergens

0.987, Quercus, r p 0.645, Betula, r p 0.896, Pinus, r p 0.732, Cupressaceae,

Transcription:

Review Allergy Asthma Immunol Res. 2012 January;4(1):5-11. http://dx.doi.org/10.4168/aair.2012.4.1.5 pissn 2092-7355 eissn 2092-7363 The Revised Edition of Korean Calendar for Allergenic Pollens Jae-Won Oh, 1 * Ha-Baik Lee, 1 Im-Joo Kang, 2 Seong-Won Kim, 3 Kang-Seo Park, 4 Myung-Hee Kook, 5 Bong-Seong Kim, 6 Hey-Sung Baek, 1 Joo-Hwa Kim, 1 Ja-Kyung Kim, 7 Dong-Jin Lee, 8 Kyu-Rang Kim, 9 Young-Jin Choi 9 1 Department of Pediatrics, College of Medicine, Hanyang University, Seoul, Korea 2 Department of Pediatrics, Daegu Fatima Hospital, Daegu, Korea 3 Department of Pediatrics, Busan St. Maria Hospital, Busan, Korea 4 Department of Pediatrics, Presbyterian Medical Center, Jeonju, Korea 5 Department of Pediatrics, Kwangju Veteran s Hospital, Kwangju, Korea 6 Department of Pediatrics, Kangneung Asan Hospital, Kangneung, Korea 7 Department of Pediatrics, School of Medicine, Kangwon National University, Chuncheon, Korea 8 Department of Pediatrics, Ulsan Dongkang Hospital, Ulsan, Korea 9 Applied Meteorology Research Laboratory, National Institute of Meteorological Research, Seoul, Korea This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The old calendar of pollens did not reflect current pollen distribution and concentrations that can be influenced by changes of weather and environment of each region in South Korea. A new pollen calendar of allergenic pollens was made based on the data on pollen concentrations obtained in eight regions nationwide between 1997 and 2009. The distribution of pollen was assessed every day at 9 stations (Two Seoul sites, Guri, Busan, Daegu, Daejeon, Kwangju, Kangneung, and Jeju) for 12 years and at 3 stations (Jeonju, Ulsan, and Chuncheon) for 3 years among 12 pollen collection stations. Pollens were collected by using Burkard 7-day sampler (Burkard Manufacturing Co Ltd, UK). Pollens which were stained with Calberla s fuchsin staining solution were identified and counted. became the highest pollen in May, and the pollen concentrations of oak and birch also became high. appeared in the middle of August and showed the highest pollen concentration in the middles of September. Japanese hop showed a high concentration between the middle of August and the end of September, and mugwort appeared in the middles of August and its concentration increased up until early September. In Kangneung, birch appeared earlier, pine showed a higher pollen concentration than in the other areas. In Daegu, and alder produced a large concentration of pollens. produced a large concentration of pollens between the middle of April and the end of May. Weeds showed higher concentrations in September and mugwort appeared earlier than ragweed. In Busan the time of flowering is relatively early, and alder and appeared earliest among all areas. In Kwangju, and hazelnut appeared in early February. Japanese cedar showed the highest pollen concentration in March in Jeju. In conclusion, update information on pollen calendar in South Korea should be provided for allergic patients through the website to manage and prevent the pollinosis. Key Words: Allergens; pollen INTRODUCTION Allergic diseases related to pollen grains are called pollinoses and include allergic rhinitis, allergic conjunctivitis, asthma, and atopic dermatitis. Recently, numerous studies of allergic plants have been conducted in the United States and Europe, and the resulting information about allergic plants has been provided to allergy patients and the general public. 1-3 Bostöck reported that pollen grains may cause diseases in humans. 4 In the United States and Europe, epidemiological studies of airborne pollens have been continuously performed since the 1960s, 5,6 and close relationships between pollens and allergic or pulmonary diseases have been reported since 1980. Information about clinical skin test reactions to various pollen grains has recently been provided to allergic patients and the general public through a website. In Korea, allergic pollen grains were studied in the early 1980s. 7 Recently, the frequency of pollinosis, including allergic rhinitis, has increased in children, and Correspondence to: Jae-Won Oh, MD, PhD, Department of Pediatrics, Hanyang University Guri Hospital, 249-1 Kyomun-dong, Guri 471-701, Korea. Tel: +82-31-560-2254; Fax: +82-31-552-9493; E-mail: jaewonoh@hanyang.ac.kr Received: June 27, 2011; Accepted: July 19, 2011 There are no financial or other issues that might lead to conflict of interest. Copyright The Korean Academy of Asthma, Allergy and Clinical Immunology The Korean Academy of Pediatric Allergy and Respiratory Disease http://e-aair.org 5

Oh et al. Volume 4, Number 1, January 2012 many studies have investigated the relationships between the concentrations of allergic pollens and the clinical manifestations of allergic diseases. 8 Thus, there is a necessity for pollen forecasting or a pollen calendar for Korea in order to prevent or reduce the prevalence of pollinosis. 9-11 Pollen grains are produced by various plants, but not all pollen grains cause allergic diseases. Plants can be classified as anemophilous or entomophilous according to their pollination process. Entomophilous flowers produce heavy pollen grains that are transported by insects, so these pollens are produced in small amounts and rarely cause allergic diseases. In particular, entomophilous pollens have clinical implications in cases involving gardeners or horticulturists. In contrast, because light anemophilons pollen grains are transmitted by the wind, they are produced in large amounts. These grains are associated with allergic diseases because they contain special apparatuses, such as air sacs, and can travel great distances in the air. The size of pollen grains is closely related to the development of allergic diseases, and most of the pollen grains which can induce allergic diseases have sizes of 20 to 60 µm. 12 Because the diameter of bronchioles is 3 to 5 µm, pollen grains with diameters smaller than 5 µm can reach the bronchioles. Asthma induced by pollens may be explained by the mechanism in which aeroallergens are inhaled, mix with sputum, and adhere to the respiratory mucosa. Another plausible mechanism is that some grains dissolve in airway mucus before being swallowed and entering the gastrointestinal tract. 1-18 Collection and identification of pollen grains The distribution of airborne pollen grains was assessed daily at eight locations nationwide between July 1, 1997 and June 30, 2009. A Burkard 7-day sampler (Burkard Manufacturing Co Ltd, Hertfordshire, UK) was installed at a height of 1.5 meters above sea level. The pollen collection areas were (1) Hanyang University Seoul Hospital, (2) Seoul Meteorological Station in the Seoul metropolitan area, (3) Hanyang University Guri Hospital in the north-central region of South Korea, (4) Kangneung Asan Hospital and (5) Kangwon National University Chuncheon Hospital in the north-east, (6) Daejeon Meteorological Station in the central, (7) Kwangju Veterans Hospital and (8) Jeonju Jesus Hospital in the south-west, (9) Daegu Fatima Hospital in the south-east, (10) Busan St. Maria Hospital and (11) Ulsan Dongkang University in the far south-east, and (12) Jeju University Hospital on Jeju Island, the most distant of the southern islands (Fig. 1). Airborne pollens were collected every day from all samplers at all collection sites. The samples were sent every week to Hanyang University Guri Hospital, which was responsible for determining pollen concentrations. After each glycerin adhesive plastic was stained with Calberla s fuchsin staining solution (glycerin 10 ml, 95% alcohol 20 ml, distilled water 30 ml, and basic fuchsin 0.2 ml), the number of pollen grains per m 3 was calculated at a magnification of 400. 19 Pollens were 42 40 38 36 34 126 128 130 China North Korea Kangneung Chuncheon Guri Seoul South Korea Jeonju Kwangju Jeju Daejeon Daegu Ulsan Busan East Sea Fig. 1. The twelve pollen collection stations in South Korea used in this study. morphologically identified and classified by their size, color, pore shape, and surface pattern, with reference to the distribution of nationwide allergy-related plants such as trees, grasses, and weeds. 20 Weather conditions on each collection day were recorded throughout the collection period and their associations with pollen distribution were assessed. Classification of pollens that cause allergic disease in Korea Trees Gymnosperms Cypresses: The pollen size ranges from 20 to 30 µm. This pollen appears from the middle of February and is well known to induce allergic rhinitis. Juniper, cypress, and cedar belong to the Cypresses. Pinus: The pollen ranges in size from 45 to 65 µm. This pollen has two sacs, and it rarely causes allergic diseases. s and spruces belong to Pinus (Fig. 2A). Angiosperms Most allergenic trees belong to this group. Betulaceae: This pollen appears in late February (early spring) and has a strong potential to induce allergic diseases. The pollen size ranges in size from 20 to 30 µm. This pollen has three pores and a thin exine. (Fig. 2B), hazelnut (Fig. 2C), and birch (Fig. 2D) belong to this family. 6 http://e-aair.org

AAIR Korean Calendar for Pollens A D G Fig. 2. Common allergic pollens that cause pollinosis in Korea. (A), (B) alder, (C),hazel, (D) birch, (E) oak, (F) willow, (G) mugwort, (H) ragweed, and (I) pigweed. Fagaceae: This is an insect-borne pollen. This pollen appears in late March and is a representative of those allergens that induce pollinosis. It has a diameter of approximately 40 µm and has an irregular exine and three characteristic furrows. and oak (Fig. 2E) belong to this family. Salicaceae: Most of the Salicaceae pollens are insect-borne, although poplar is airborne. This pollen has a strong allergenicity. It has a diameter of 20 to 34 µm and has a thick intine. It appears between May and June. It has many pistils and stamens, which do not usually induce allergic diseases, although they sometimes induce contact hypersensitivity reactions. (Fig. 2F) and poplar belong to this family. Ulmaceae: This pollen induces pollinosis between May and June. It has a diameter of 30 to 40 µm and has five furrows and a thick, wave-like exine. related to allergic diseases belong to the order Graminales. Their pollen has a diameter of 20 to 25 µm and has one pore or furrow and a relatively thick intine. These pollens are airborne between the end of April and November, and have a strong allergenicity, partly because these plants are cultivated in densely-populated areas, leading to a high prevalence of pollinosis. Tens of different species are found in Korea. Although individual pollens are difficult to discriminate by light microscopy, this has no clinical implications because they cause similar allergic reactions. Korean lawn grass, timothy grass, Bermuda grass, and orchard grass are frequently found in Korea. Weeds Weeds are not usually cultivated and are distributed on the roadside or in creeks near the homes of many people. These pollens become airborne in late summer and are the main B E H C F I cause of pollinosis in the autumn. Asteraceae: These are most commonly found in Korea during the autumn. Sagebrushes (Artemisia) and ragweeds (Ambrosia) are representative pollinosis-causing weeds. Tribe Asteraceae: This pollen has a diameter of 20 to 30 µm and has three furrows and a relatively thick exine. This is the main plant that causes pollinosis in the autumn (Fig. 2G). Tribe Ambrosiae: This is a common cause of pollinosis in the autumn. It was imported from the United States in 1970, and became an important allergic pollen in the early 1980s. It is currently reported as a representative pollinosis-causing pollen nationwide. Ambrosia trifida (giant ragweed) and Ambrosia integrifolia, which has a stalk of 1-2.5 m, as well as Ambrosia artemisiifolia (short ragweed), which has a stalk of approximately 1 m, are representative of this species. This pollen has a diameter of 15 to 20 µm and has a multiple-thorned, ball-shaped, thick exine (Fig. 2H). Amaranthaceae and Chenopodiaceae: After mugwort and ragweed, these are the most frequently detected pollens. They are important causes of autumn pollinosis. They have a golf ball-like appearance, which allows for easy identification, and have a diameter of 20 to 30 µm. It is difficult to discriminate between these two families using light microscopy, so they are designated as Chenopod-Amaranth in airborne pollen surveys (Fig. 2I). Cannabaceae: This long-lived plant family includes voluble, diclinous, and annual plants and blossoms between August and September. It grows nationwide in fields, empty lots, and near creeks. It is found ubiquitously in embankments and apartment walls in cities and their suburbs. It grows wild in the Seoul metropolitan area where it is an important cause of autumn pollinosis. belongs to this family. Characteristics of pollen distribution in Korea Pollens are spores derived from stamens and can be divided into trees, grasses, and weeds. In Korea, allergenic pollens appear at temperatures 10 C between February and November. The peak seasons are spring and fall; thereafter concentrations of these pollens decrease abruptly. Tree pollens are mainly observed between March and May, grass pollens between May and September, and weed pollens between August and October. Trees include pine, oak, alder, and birch, of which pine accounts for 70% of all tree pollens. Grass pollens are difficult to discriminate from other pollens using light microscopy; detailed classification of these species can be accomplished using electron microscopy., mugwort and ragweed belong to this family. Pollen concentrations and weather conditions Pollen concentrations are closely related to general weather conditions, such as temperature and rainfall. Temperature and rainfall are particularly important determinants of pollen http://e-aair.org 7

Oh et al. Volume 4, Number 1, January 2012 Pollen (grain/m 3 ) 1,400 1,200 1,000 800 600 400 200 Pollen Temperatu re ( C) 0-20 5/2000 5/2001 5/2002 5/2003 5/2004 5/2005 5/2006 5/2007 Data Fig. 3. Correlation between allergic pollen concentrations and air temperature. Pollens were collected at air temperatures 10 C. 40 30 20 10 0-10 Temperature ( C) maple Thuja Ginkgo Unidentified dock Rumex concentration. Pollens are heavily concentrated at 10-30 C, which is the most suitable temperature for plant growth (Fig. 3). High concentrations of pollen occur on days without rainfall. More pollen grains are airborne when the atmospheric temperature rises immediately after rainfall. Climate changes and increased pollen concentrations Since the 1900s, remarkable climate changes have occurred due to rapid industrialization. Atmospheric temperature has increased due to the greenhouse effect secondary to the increased atmospheric CO2 concentration. Weather conditions, including CO2 concentration, rainfall, atmospheric temperature, humidity, wind speed, and wind direction may alter the concentrations of plant pollens and other allergens, which can subsequently influence the occurrence of asthma or allergic rhinitis. Many studies have demonstrated that CO2 concentration and increased atmospheric temperature increase pollen concentration. Ziska et al. 21,22 reported that the atmosphere contains high levels of CO2 concentration due to rapid industrialization. They also predicted that pollen levels would rise due to increased CO2 concentration. Previous studies have demonstrated a significant relationship between pollen level and elevated atmospheric temperatures, and that pollen concentrations are higher in cities that have both a high atmospheric temperature and a high CO2 concentration than rural areas. 23,24 Climate changes and pollen characteristics A characteristic of climate change is that flowers blossom earlier and fall later, subsequently extending the duration of pollen production. For this reason, the annual amount of pollen has increased. It is well known that the distribution of plants, as well as the allergenicity of their pollen, have continuously changed. When subjects are sensitized to airborne pollens and are exposed to increased air pollution, allergic disease activity increases and clinical symptoms are aggravated. Such changes represent a serious global public health concern. To minimize the occurrence of clinical manifestations in allergic patients, a pollen calendar for Korea was developed between Fig. 4. A calendar of allergic pollen used nationwide since 2004 which uses pollen data collected from 1997-2002. 1997 and 2002 (Fig. 4). However, because this calendar was based on the mean concentration of pollen nationwide, it did not reflect the regional characteristics of pollens and may be inaccurate due to recent changes in the climate. Therefore, it was necessary to develop a new calendar that included the geographic and monthly distribution of pollens and included data obtained after 2004. 25 The old calendars were also modified by deleting data that did not match the dates of pollen distribution as reported in previous research. Pollen calendar A new pollen calendar was developed based on the pollen concentration data obtained in the eight locations listed above between 1997 and 2009. Briefly, pine was the most common source of tree pollens. Overall, tree pollens were detected at higher concentrations than grass or weed pollens., alder, oak, and birch produced higher pollen concentrations between April and May. Japanese cedar and common sorrel produced higher concentrations of pollens on Jeju, which is isolated from the mainland of the Korean Peninsula. In terms of regional variation, alder, birch, cedars, and oriental thuja began to produce pollens in February, after which their concentrations increased. In Seoul and Guri, pine pollen concentration was very high in May, when the concentrations of oak and birch pollen were also high. Common ragweed appeared at 5/m 3 /day in the middle of July; its concentration was highest in the middle of September. pollen levels were highest between the middle of August and the end of September. pollen appeared in the middle of August and its concentration increased up until early September (Fig. 5). pollen appeared earlier (early February) in Kangneung than in the other areas; pine pollen also appeared at higher concentrations in Kangneung than in other areas (Fig. 6). However there is not enough data to make a pollen calendar 8 http://e-aair.org

AAIR Korean Calendar for Pollens Fig. 5. An allergic pollen calendar for Seoul and Guri. Fig. 6. An allergic pollen calendar for Kangneung. Juniper Fig. 7. An allergic pollen calendar for Daegu. Fig. 8. An allergic pollen calendar for Busan. Fig. 9. An allergic pollen calendar for Daejeon. in Chuncheon because pollens were collected since 2010. In the Daegu area, oriental thuja, alder, and juniper produced a large amount of pollens in March. produced a large amount of pollen between the middle of April and the end of May. Weed Fig. 10. An allergic pollen calendar for Kwangju. pollen concentrations were higher in September as in the other areas, and mugwort pollen was produced earlier than common ragweed pollen (Fig. 7). In Busan, flowering occurred relatively early, and alder and oriental thuja pollens appeared here before http://e-aair.org 9

Oh et al. Volume 4, Number 1, January 2012 Juniper Japanese cedar they did in other areas (early February) (Fig. 8). However there is not enough data to make a pollen calendar in Ulsan because pollens were collected since 2010. In Daejeon, birch and alder produced pollens earlier than in the other areas. pollen was present at high levels between the beginning of April and the end of May (Fig. 9). In the Kwangju, oriental thuja and hazelnut pollens appeared in early February (Fig. 10). But there is not enough data to make a calendar in Jeonju because pollens were collected since 2009. In the Jeju area, Japanese cedar pollen appeared at higher concentrations than in other areas in March and peaked between the middle of February and March. Additionally, common sorrel pollen appeared at high levels between May and June. These results reflect the characteristics of Jeju (Fig. 11). In conclusion, the pollen calendar in South Korea made between 1997 and 2002 does not reflect current pollen distribution and concentrations, because these have been altered by changes in the weather and environment. Therefore, updated information on pollen distribution and concentration in each region should be provided to the general public and allergy patients through a website in order to manage and prevent pollinosis. ACKNOWLEDGMENTS This study was supported by the grant from the National Institute of Meteorological Research, 2007-2009 and the fund from the pollen study committee of the Korean Academy of Pediatric Allergy and Respiratory Diseases (KAPARD). REFERENCES Fig. 11. An allergic pollen calendar for Jeju. 1. Lewis WH, Vinay P, Zenger VE. Airborne and allergenic pollen of North America. Baltimore: Johns Hopkins University Press; 1983. 2. Min YG. The pathophysiology, diagnosis and treatment of allergic rhinitis. Allergy Asthma Immunol Res 2010;2:65-76. 3. Jung JW, Choi JC, Shin JW, Kim JY, Park IW, Choi BW. Clinical characteristics according to sensitized allergens in adult Korean patients with bronchial asthma. Allergy Asthma Immunol Res 2010;2:102-7. 4. Taylor G, Walker J, Backley CH. 1820-1900: A detailed description of the astonishing achievement of Backley in describing the causes of hay fever. Clin Allergy 1973;3:103-8. 5. Lewis WH, Imber WE. Allergy epidemiology in the St. Louis, Missouri, area: II grasses. Ann Allergy 1975;35:42-50. 6. Anderson JH. Allergenic airborne pollen and spores in Anchorage, Alaska. Ann Allergy 1985;54:390-9. 7. Kang SY, Min KU. Aerobiological and allergic study of pollen in Seoul. Allergy 1984;4:1-20. 8. Oh YC, Kim HA, Kang IJ, Cheong JT, Kim SW, Kook MH, Kim BS, Lee HB, Oh JW. Evaluation of the relationship between pollen count and the outbreaks of allergic diseases. Pediatr Allergy Respir Dis 2009;19:354-64. 9. Oh JW, Lee HB, Lee HR, Pyun BY, Ahn YM, Kim KE, Lee SY, Lee SI. Aerobiological study of pollen and mold in Seoul, Korea. Allergol Int 1998;47:263-70. 10. Oh JW, Lee HR, Kim JS, Lee KI, Kang YJ, Kim SW, Kook MH, Kang HY, Kim JS, Lee MH, Lee HB, Kim KE, Pyun BY, Lee SI, Han MJ. Aerobiological study of pollen and mold in the 10 states of Korea. Pediatr Allergy Respir Dis 2000;10:22-33. 11. Oh JW, Kang IJ, Kim SW, Kook MH, Kim BS, Shin KS, Hahn YS, Lee HB, Shon MH, Cheong JT, Lee HR, Kim KE. The correlation between increased sensitization rate to weeds in children and the annual increase in weed pollen in Korea. Pediatr Allergy Respir Dis 2006;16:114-21. 12. Brown HM, Irving KR. The size and weight of common allergenic pollens. An investigation of their number per microgram and seze distribution. Acta Allergol 1973;28:132-8. 13. Potter PC, Cadman A. Pollen allergy in South Africa. Clin Exp Allergy 1996;26:1347-54. 14. Esch RE, Bush RK. Aerobiology of outdoor allergens. In: Adkinson NF Jr, Middleton E, Yunginger JW, Busse WW, Bochner BS, Holgate ST, Simons FE, editors. Middleton s allergy principles and practice. 6th ed. St. Louis: Mosby; 2003. 529-55. 15. Solomon WR, Weber RW, Dolen WK. Common allergenic pollen and fungi. In: Bierman CW, Pearlman DS, Shapiro GG, Busse WW, editors. Allergy, asthma, and immunology from infancy to adulthood. 3rd ed. Philadelphia: WB Saunders; 1996. 93-114. 16. Solomon WR, Burge HA, Muilenberg ML. Allergen carriage by atmospheric aerosol. I. pollen determinants in smaller micronic fractions. J Allergy Clin Immunol 1983;72:443-7. 17. Agarwal MK, Swanson MC, Reed CE, Yunginger JW. Immunochemical quantitation of airborne short ragweed, Alternaria, antigen E, and Alt-I allergens: a two-year prospective study. J Allergy Clin Immunol 1983;72:40-5. 18. Marsh D. Allergens and the genetics of allergy. In: Sela M, editor. The antigens. Vol. 3. New York: Academic Press; 1975. 271-6. 19. Løwenstein H. Quantitative immunoelectrophoretic methods as a tool for the analysis and isolation of allergens. Prog Allergy 1978; 25:1-62. 20. Smith EG. Sampling and identifying allergenic pollens and molds: an illustrated identification manual for air samplers. San Antonio: Blewstone Press; 1990. 21. Ziska LH, Caulfield FA. Rising CO2 and pollen production of common ragweed (Ambrosia artemisiifolia), a known allergy-inducing species: implications for public health. Australian J Plant Physiol 10 http://e-aair.org

AAIR Korean Calendar for Pollens 2000;27:893-8. 22. Ziska LH, Gebhard DE, Frenz DA, Faulkner S, Singer BD, Straka JG. Cities as harbingers of climate change: common ragweed, urbanization, and public health. J Allergy Clin Immunol 2003;111:290-5. 23. Wayne P, Foster S, Connolly J, Bazzaz F, Epstein P. Production of allergenic pollen by ragweed (Ambrosia artemisiifolia L.) is increased in CO2-enriched atmospheres. Ann Allergy Asthma Immunol 2002; 88:279-82. 24. Singer BD, Ziska LH, Frenz DA, Gebhard DE, Straka JG. Increasing Amb a 1 content in common ragweed (Ambrosia artemisiifolia) pollen as a function of rising atmospheric CO2 concentration. Funct Plant Biol 2005;32:667-70. 25. Park KJ, Kim HA, Kim KR, Oh JW, Lee SY, Choi YJ. Characteristics of regional distribution of pollen concentration in Korean Peninsula. Korean J Agric Forest Meterol 2008;10:167-76. http://e-aair.org 11