Case Report Delayed Neurologic Deficit due to Foraminal Stenosis following Osteoporotic Late Collapse of a Lumbar Spine Vertebral Body

Similar documents
Case Report Adjacent Lumbar Disc Herniation after Lumbar Short Spinal Fusion

Radiculopathy Caused by Osteoporotic Vertebral Fractures in the Lumbar Spine

Case Report A Rare Case of Near Complete Regression of a Large Cervical Disc Herniation without Any Intervention Demonstrated on MRI

Case Report A Rare Case of Progressive Palsy of the Lower Leg Caused by a Huge Lumbar Posterior Endplate Lesion after Recurrent Disc Herniation

A minimally invasive surgical approach reduces cranial adjacent segment degeneration in patients undergoing posterior lumbar interbody fusion

Kanji Mori, Kazuya Nishizawa, Akira Nakamura, and Shinji Imai. 1. Introduction. 2. Case Presentation

Case Report Unilateral Pedicle Stress Fracture in a Long-Term Hemodialysis Patient with Isthmic Spondylolisthesis

Case Report Synovial Cyst Mimicking an Intraspinal Sacral Mass

Lumbar radiculopathy caused by foraminal stenosis in rheumatoid arthritis

LUMBAR SPINAL STENOSIS

Fractures of the thoracic and lumbar spine and thoracolumbar transition

Original Date: October 2015 LUMBAR SPINAL FUSION FOR

Epiconus syndrome induced only in the erect standing position in a patient with L1 compression fracture: a representative case report

Case Report Intra-Articular Entrapment of the Medial Epicondyle following a Traumatic Fracture Dislocation of the Elbow in an Adult

University of Jordan. Professor Freih Abuhassan -

University of Groningen. Thoracolumbar spinal fractures Leferink, Vincentius Johannes Maria

SpineFAQs. Lumbar Spondylolisthesis

Case Report Combined Effect of a Locking Plate and Teriparatide for Incomplete Atypical Femoral Fracture: Two Case Reports of Curved Femurs

Original Article Management of Single Level Lumbar Degenerative Spondylolisthesis: Decompression Alone or Decompression and Fusion

Case Report Pediatric Transepiphyseal Seperation and Dislocation of the Femoral Head

The Relationship amongst Intervertebral Disc Vertical Diameter, Lateral Foramen Diameter and Nerve Root Impingement in Lumbar Vertebra

Yoshifumi Kudo, 1 Tomoaki Toyone, 1 Toshiyuki Shirahata, 1 Tomoyuki Ozawa, 1 Akira Matsuoka, 1 Yoichi Jin, 2 and Katsunori Inagaki 1. 1.

Degenerative Disease of the Spine

A rare case of spinal injury: bilateral facet dislocation without fracture at the lumbosacral joint

Bilateral spondylolysis of inferior articular processes of the fourth lumbar vertebra: a case report

Surgical treatment for far out syndrome associated with abnormal fusion of the L5 vertebral corpus and L4 hemivertebra: a case report

Key Primary CPT Codes: Refer to pages: 7-9 Last Review Date: October 2016 Medical Coverage Guideline Number:

Case Report A Case of Delayed Myelopathy Caused by Atlantoaxial Subluxation without Fracture

Delayed surgical treatment for a traumatic bilateral cervical facet joint dislocation using a posterior-anterior approach: a case report

Pathologic thoracic spine fracture in presence of Parkinson s disease and diffuse ankylosis: successful management of a challenging condition

3D titanium interbody fusion cages sharx. White Paper

MRI Measurement of Neuroforaminal Dimension at the Index and Supradjacent Levels after Anterior Lumbar Interbody Fusion: A Prospective Study

factor for identifying unstable thoracolumbar fractures. There are clinical and radiological criteria

Microendoscope-assisted posterior lumbar interbody fusion: a technical note

Case Report Treatment of Renal Cell Carcinoma with 2-Stage Total en bloc Spondylectomy after Marked Response to Molecular Target Drugs

Am I eligible for the TOPS study? Possibly, if you suffer from one or more of the following conditions:

A Novel Classification and Minimally Invasive Treatment of Degenerative Lumbar Spinal Stenosis

Degenerative spondylolisthesis at the L4 L5 in a 32-year-old female with previous fusion for idiopathic scoliosis: A case report

Int J Clin Exp Med 2018;11(2): /ISSN: /IJCEM Yi Yang, Hao Liu, Yueming Song, Tao Li

Case Report Reverse Segond Fracture Associated with Anteromedial Tibial Rim and Tibial Attachment of Anterior Cruciate Ligament Avulsion Fractures

Case Report A Case of Nonunion Avulsion Fracture of the Anterior Tibial Eminence

Short Segment Screw Fixation without Fusion for Low Lumbar Burst Fracture: Severe Canal Compromise but Neurologically Intact Cases

Case Report Miniopen Oblique Lateral L5-S1 Interbody Fusion: A Report of 2 Cases

Case Report A Rare Case of Traumatic Bilateral Fibular Head Fractures

Percutaneous Transforaminal Endoscopic Decompression for Lumbar Foraminal Stenosis

Case Report Bilateral Distal Femoral Nailing in a Rare Symmetrical Periprosthetic Knee Fracture

Patient Information MIS LLIF. Lateral Lumbar Interbody Fusion Using Minimally Invasive Surgical Techniques

Dingjun Hao, Baorong He, Liang Yan. Hong Hui Hospital, Xi an Jiaotong University College. of Medicine, Xi an, Shaanxi , China

New Magnetic Resonance Imaging Grading System for Lumbar Neural Foramina Stenosis

Case Report Traumatic Death due to Simultaneous Double Spine Fractures in Patient with Ankylosing Spondylitis

Case Report Anterior Hip Subluxation due to Lumbar Degenerative Kyphosis and Posterior Pelvic Tilt

The clinical features and surgical treatment of degenerative lumbar scoliosis: A review of 112 patientsos4_

Patient Information MIS TLIF. Transforaminal Lumbar Interbody Fusion Using Minimally Invasive Surgical Techniques

ProDisc-L Total Disc Replacement. IDE Clinical Study.

Hiroshi Takahashi, 1 2 Yasuchika Aoki, 1 Arata Nakajima, 1. Masato Sonobe, 1 Fumiaki Terajima, 1 Masahiko Saito, 1 Masahiro Inoue, 1

Cox Technic Case Report #169 published at (sent 5/9/17) 1

SUBAXIAL CERVICAL SPINE TRAUMA- DIAGNOSIS AND MANAGEMENT

Case Report Four-Rod Stabilization of Severely Destabilized Lumbar Spine Caused by Metastatic Tumor

Vertebral body fractures after transpsoas interbody fusion procedures

Patient Information MIS TLIF. Transforaminal Lumbar Interbody Fusion Using Minimally Invasive Surgical Techniques

Giant schwannoma with extensive scalloping of the lumbar vertebral body treated with one-stage posterior surgery: a case report

Comprehension of the common spine disorder.

Epidemiology of Low back pain

Peggers Super Summaries: The Aging Spine

ISPUB.COM. T Iizuka, S Yamada INTRODUCTION CASE REPORT

Lumbar spinal canal stenosis Degenerative diseases F 08

Objectives. Comprehension of the common spine disorder

Anterior cervical diskectomy icd 10 procedure code

Thoracic or lumbar spinal surgery in patients with Parkinson s disease -A two-center experience of 32 cases-

Case Report A Case Report of Isolated Cuboid Nutcracker Fracture

Case Report Double-Layered Lateral Meniscus Accompanied by Meniscocapsular Separation

A PROSPECTIVE STUDY OF INCIDENTAL DURAL TEARS IN MICROENDOSCOPIC LUMBAR DECOMPRESSION SURGERY: INCIDENCE AND OUTCOMES

ASJ. A Rare Hyperextension Injury in Thoracic Spine Presenting with Delayed Paraplegia. Asian Spine Journal. Introduction

Departement of Neurosurgery A.O.R.N A. Cardarelli- Naples.

Spinal canal stenosis Degenerative diseases F 06

U.S. MARKET FOR MINIMALLY INVASIVE SPINAL IMPLANTS

Patient Information MIS LLIF. Lateral Lumbar Interbody Fusion Using Minimally Invasive Surgical Techniques

Case Report Spontaneous Symptomatic Pseudoarthrosis at the L2-L3 Intervertebral Space with Diffuse Idiopathic Skeletal Hyperostosis: A Case Report

Evaluation of the location of intervertebral cages during oblique lateral interbody fusion surgery to achieve sagittal correction

Misdiagnosis in cervical spondylosis myelopathy.

Module: #15 Lumbar Spine Fusion. Author(s): Jenni Buckley, PhD. Date Created: March 27 th, Last Updated:

3D imaging reformation was obtained. The 3D color imaging reformation was reviewed in a different high resolution setting.

JCSC INTRODUCTION. Rudolf Morgenstern, MD, PhD

Subaxial Cervical Spine Trauma Dr Hesarikia BUMS

Innovative Techniques in Minimally Invasive Cervical Spine Surgery. Bruce McCormack, MD San Francisco California

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

Degenerative Spinal Disorders. Gábor Nagy MD PhD Zoltán Papp MD

Research Article Relationship between Pain and Medial Meniscal Extrusion in Knee Osteoarthritis

Posterior surgical procedures are those procedures

Surgical Technique INTERSOMATIC CERVICAL CAGE

Patient Selection and Lumbar Operative Interventions

Case Report Double-Layered Lateral Meniscus in an 8-Year-Old Child: Report of a Rare Case

Original Article Clinics in Orthopedic Surgery 2015;7:

Interspinous Fusion Devices. Midterm results. ROME SPINE 2012, 7th International Meeting Rome, 6-7 December 2012

The ABC s of LUMBAR SPINE DISEASE

Zheng Li, Fubing Liu, Shuhao Liu, Zixian Chen, Chun Jiang, Zhenzhou Feng, and Xiaoxing Jiang

Cox Technic Case Report #124 published at ( sent October 2013 ) 1

Common fracture & dislocation of the cervical spine. Theerachai Apivatthakakul Department of Orthopaedic Chiangmai University

Case Report Spontaneous Regression of Herniated Lumbar Disc with New Disc Protrusion in the Adjacent Level

Posterior. Lumbar Fusion. Disclaimer. Integrated web marketing. Multimedia Health Education

Transcription:

Case Reports in Orthopedics Volume 2013, Article ID 682075, 5 pages http://dx.doi.org/10.1155/2013/682075 Case Report Delayed Neurologic Deficit due to Foraminal Stenosis following Osteoporotic Late Collapse of a Lumbar Spine Vertebral Body Yu Sasaki, 1,2 Yasuchika Aoki, 1 Arata Nakajima, 1 Yoshifumi Shibata, 1 Masato Sonobe, 1 Kazuhisa Takahashi, 2 Seiji Ohtori, 2 and Koichi Nakagawa 1 1 Department of Orthopedic Surgery, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura, Chiba 285-8741, Japan 2 Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan Correspondence should be addressed to Yu Sasaki; ysasaki0519@yahoo.co.jp Received 12 January 2013; Accepted 10 February 2013 Academic Editors: K. Erler, R. A. Gosselin, M. Gotoh, and M. Pirpiris Copyright 2013 Yu Sasaki et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We report an 85-year-old woman with an L3 vertebral body fracture who presented with back pain, bilateral leg pain, and weakness after four months of conservative treatment. Because of unstable pseudoarthrosis, the L3 vertebral body collapsed in the standing position and the L3 nerve root was compressed. The indicated surgery decompressed the L3-L4 foramen and fused the unstable segment. The back pain and neurologic symptoms improved significantly following surgery. We propose that delayed neurologic deficit following an osteoporotic fracture of the lumbar body may be caused not only by retropulsion of vertebral body fragments with significant canal compromise, but also by foraminal stenosis with the late collapse of the vertebral fracture. This new pathomechanism for delayed neurologic deficit has not been previously described. If a collapse takes place in the caudal part of the vertebral body below the base of the pedicle, spine surgeons should be aware of the possibility of foraminal stenosis. 1. Introduction Osteoporotic vertebral compression fracture occurs most often in postmenopausal women age 60 years and older, after minimal trauma or spontaneously [1]. It usually causes acute symptoms associated with localized pain of variable intensity at the fracture site. The most serious complication of this fracture is delayed neurologic deficit, usually due to the retropulsion of vertebral body fragments with significant canal compromise, pseudoarthrosis, or local kyphosis [2, 3]. Shikata et al. found that 12.1% of these fractures required surgery because of neurological sequelae. Controversy exists over whether insufficiency fractures of the spine can lead to collapse, resulting in the formation of local kyphosis. A patient with an L3 osteoporotic vertebral fracture recently presented with delayed neurologic deficit. In this patient, the L3 fracture failed to accomplish bony fusion and developed pseudoarthrosis; however, no retropulsion of bony fragments was found. The pathogenesis of the neurologic deficit could not be diagnosed and the patient was referred to our department. We carefully assessed symptoms and radiological findings and concluded that the neurologic deficit was caused by bilateral L3-L4 intervertebral foraminal stenosis. To our knowledge, there is no previous report describing delayed neurologic deficit caused by foraminal stenosis. In this report we present the clinical and radiological findings and discuss the pathomechanism of the neurologic deficit in this case. 2. Case Report Following a simple fall at home, an 85-year-old woman presented with back pain as a chief complaint and was referred to a hospital. Magnetic resonance imaging (MRI) taken two weeks after the initial onset showed a fresh L3 vertebral fracture although plain radiograms had failed to detect the fracture (Figure 1). She initially had back pain without lower extremity symptoms and was treated conservatively. One month after the initial onset, bilateral leg pain appeared and gradually worsened. At four months after the initial onset she was referred to our hospital because the pain in her back and bilateral leg pain worsened in a standing or sitting position, decreasing during bed rest. The radicular leg pain was so

2 Case Reports in Orthopedics Figure 1: Anteroposterior and lateral radiographs of the lumbar spine of an 85-year-old woman taken immediately after a simple fall, when the fracture in the L3 body (arrowhead) was not obvious. severe that it was impossible for her to sit in a wheelchair. Physical examination revealed that bilateral radicular pain and numbness affected the bilateral anterior thigh, with MRC grade 3-4/5 weakness of the iliopsoas, and quadriceps femoris in both legs. Plain radiographs showed the L3 vertebral body more collapsed compared with the initial radiographs, and computed tomography (CT) scans showed a bony defect inside the fractured vertebral body (Figure 2). MRI showed fluid collection in the fractured L3 vertebral body, suggestive of pseudoarthrosis of the L3 vertebral body. There was no retropulsion of bony fragments into the spinal canal. Spinal canal stenosis due to L4 spondylolisthesis was seen at the L4-L5 level (Figure 3). However, these findings did not fully explain the patient s neurological status, which seemed to be caused by L3 (or L4) nerve root involvement. Importantly, bilateral foraminal stenosis at L3-L4 was present on MRI (Figure 3), which may produce L3 nerve root compression. Upon the reexamination of the plain radiographs in standingandsupinepositions,wesawthatthecaudalpart of the L3 vertebral body collapsed in the standing position, resulting in the exacerbation of the L3-L4 foraminal stenosis (Figure 4). This led us to conclude that the patient s neurologic deficit was due to L3-L4 foraminal stenosis although a more detailed examination, such as electromyography, was not performed. Posterior decompression and fusion surgery decompressed the L3-L4 foramen and fused the unstable segment. The cranial half of the L3 lamina was removed and served as a local bone graft. The L3 pedicle was subtracted and the cranial part of the L3 vertebral body and L2-L3 disc were resected. Two intervertebral cages (PEEK OIC Cages: Stryker, Allendale, NJ, USA) with local and iliac bone grafts were placed between the L2 endplate and the remaining L3 vertebralbody(figure5). (c) Figure 2: The 85-year-old woman with an L3 vertebral body fracture, detected two weeks after the initial onset by magnetic resonance imaging, presented with back pain, bilateral leg pain, and weakness after four months of conservative treatment. The lateral radiograph in supine position showed the collapse of the L3 vertebral body compared with the initial radiographs. Reconstructed computed tomography (CT) taken in the supine position shows an osteoporotic vertebral collapse of L3 (arrowhead) with an interior bony defect. Parasagittal images of the CT scan show the collapsed vertebral body on both sides (c) and (d). Note the fracture lines from the undersurface of the L3 pedicle to the anterior side of the L3 vertebral body (arrowhead). A pedicle screw system (Legacy: Medtronic Sofamor Danek, Memphis, TN, USA) was utilized, placing two screws above and two screws below the site, and posterolateral fusion was performed. A dramatic neurological improvement occurred following the surgery. By the 7th postoperative day, (d)

Case Reports in Orthopedics 3 (c) (d) (e) Figure 3: T1- and T2-weighted sagittal magnetic resonance (MR) imaging performed after four months of conservative treatment of an 85-year-old woman with an L3 vertebral body fracture shows fluid collection in the L3 vertebral body, indicating L3 pseudoarthrosis with no spinal canal stenosis at the L3 level (arrowhead). T2-weighted axial MR image (c) shows spinal canal stenosis at the L3-L4 level with facet and ligamentum flavum hypertrophy. Parasagittal T1-weighted (d: Left side e: Right side) MR imaging showing foraminal stenosis with circumferential loss of perineural fat signal at the L3-L4 level, in contrast with the intense fat signal at the adjacent foraminal levels. the patient could walk using parallel bars with a thoracolumbosacral orthosis for external support. No postoperative complications developed. Two months after surgery, the leg pain was completely gone, the muscle weakness fully recovered, and the patient could walk without support. At the final followup 18 months postoperatively she had no pathological symptoms related to spinal fracture. 3. Discussion When treating patients with degenerative lumbar spinal disease, intervertebral foraminal stenosis tends to be overlooked because a diagnostic method is not well established. Because of the difficulty in making a correct diagnosis, this condition may result in failed back surgery syndrome, producing continued postoperative pain [4]. It is important to be aware of intervertebral foramina when treating patients with degenerative lumbar spinal diseases presenting with radicular leg pain. Some recent reports in Japan have proposed the possibility of foraminal stenosis after vertebral fracture [5, 6]. However, there are no reports describing delayed neurologic deficit due to foraminal stenosis in international journals. Hasegawa et al. described the relationship between foraminal stenosis of the lumbar spine and posterior disc heights [7]. In our case, the foraminal stenosis was not related to lowered disc height and may have been caused by collapse of the caudal part of the vertebral body. Hasegawa et al. reported that a foraminal height lower than 15 mm is a risk factor for nerve root involvement [7]. In our patient, the foraminal height was measured at 16 mm in the supine position, but only 10 mm in the standing position (Figure 4), showing that foraminal height decreased in the standing position.

4 Case Reports in Orthopedics Figure 4: Lateral radiographs taken in standing and supine positions after four months of conservative treatment of an 85-yearold woman with an L3 vertebral body fracture show the L3 vertebral body more collapsed in the standing than in the supine position. This finding supports our diagnosis and explains why the lower extremity pain dramatically worsened when standing. Inufusa et al., using CT and cryomicrotome analyses, have shown that lumbar flexion caused a 12% increase in the foraminal area, whereas extension produced a 15% decrease [8]. This concept of dynamic foraminal stenosis supports our diagnosis. Generally, foraminal stenosis is classified into anteroposterior stenosis transverse stenosis and craniocaudal stenosis vertical stenosis [9]. Protrusion of the posterior wallofthevertebralbodyandfacethypertrophycancause anteroposterior compression. Reduced disc height is a cause of craniocaudal compression in lumbar degenerative disease; however, reduced vertebral body height under the upper pedicle can cause craniocaudal compression in a fractured spine. In our patient, a large bony defect in the L3 body may have collapsed in the standing position, resulting in Figure 5: Posterior decompression and fusion surgery was performed on the 85-year-old woman with an L3 vertebral body fracture. Postoperative anteroposterior and lateral radiographs show appropriate positioning of intervertebral cages and pedicle screws. craniocaudal compression of the intervertebral foramen. This is a vertical type of foraminal stenosis because the undersurface of the L3 pedicle compresses the exiting nerve root against the upper surface of the L4 pedicle when loadbearing [9]. Thus, if a bony defect is detected at the caudal side of vertebral body between the pedicle and the inferior endplate, foraminal stenosis should be considered as a cause of nerve root compression when symptoms and physical findings suggest neurological compression. From these findings, we postulate that the primary mechanism for our patient s delayed neurologic deficit was bilateral foraminal stenosis. Our study has several limitations to exclude the possibility of other pathologies causing the observed symptoms.

Case Reports in Orthopedics 5 First, the surgery should be limited to decompression of the L3-L4 intervertebral foramen to determine the pathogenesis. However, if foraminal stenosis occurs in a patient with pseudoarthrosis, it may be risky to treat the patient with decompression surgery without fusion. Also, as mentioned above, more detailed examinations, such as electromyography, were not performed. It is generally recognized, however, that a definite diagnosis of foraminal stenosis is difficult even with thorough examinations and should be based on a comprehensiveevaluation[10]. Importantly, in our patient, no retropulsion of bony fragment was present, and the cause of the L3 nerve root involvement was not determined until shewasunderourcare.itwouldhavebeendifficultforusto make a surgical decision if the foraminal stenosis had been overlooked. From the preoperative findings, we believe that the patient s symptoms were not caused by L4-L5 spinal canal stenosis. First, the patient s symptoms gradually worsened, relatedtothedevelopmentofthel3latecollapse;second,the symptoms cannot be explained by L5 nerve root involvement; third, the symptoms were dramatically exacerbated in the standing position. That our preoperative assessment was accurate is shown by the favorable surgical result. Previous papers describe the usual causes of delayed neurologic deficit as retropulsion of bony fragments and local kyphosis [2, 3]. We propose the importance of foraminal stenosis caused by late collapse of vertebral fracture as a pathomechanism for delayed neurological deficit. In conclusion, spine surgeons should be awareofthepossibilityofforaminalstenosisincasesof pseudoarthrosis, particularly if the collapse takes place in thecaudalpartofthevertebralbodybelowthebaseofthe pedicle. and intervertebral foramen associated with flexion-extension movement, Spine,vol.21,no.21,pp.2412 2420,1996. [9] L. G. Jenis and H. S. An, Lumbar foraminal stenosis, Spine,vol. 25,no.3,pp.389 394,2000. [10] K.Watanabe,A.Yamazaki,O.Morita,A.Sano,K.Katsumi,and M. Ohashi, Clinical outcomes of posterior lumbar interbody fusion for lumbar foraminal stenosis: preoperative diagnosis and surgical strategy, Spinal Disorders and Techniques, vol. 24, no. 3, pp. 137 141, 2011. References [1] J. Tamayo-Orozco, P. Arzac-Palumbo, H. Peon-Vidales et al., Vertebral fractures associated with osteoporosis: patient management, American Medicine, vol. 103, no. 2A, pp. 44 50, 1997. [2] K. Kaneda and M. Ito, Back pain and neurological deficits in osteoporotic spinal fractures, Hokkaido Igaku Zasshi, vol. 72, no. 4, pp. 381 387, 1997 (Japanese). [3] W. Kempinsky, P. Morgan, and W. Boniface, Osteoporotic kyphosis with paraplegia, Neurology,vol.8,pp.181 186,1958. [4] I. Macnab, Negative disc exploration. An analysis of the causes of nerve-root involvement in sixty-eight patients, Bone and Joint Surgery A,vol.53,no.5,pp.891 903,1971. [5] Y. Ishimoto, H. Yamada, H. Hashizume et al., Delayed onset lumbar radiculopathy after osteoporotic spinal fracture, Clinical Orthopaedic Surgery,vol.45,pp.619 623,2010(Japanese). [6] M. Sasaki, M. Aoki, K. Nishioka, and T. Yoshimine, Radiculopathycausedbyosteoporoticvertebralfracturesinthelumbar spine, Neurologia Medico-Chirurgica,vol.51,no.7,pp.484 489, 2011. [7]T.Hasegawa,H.S.An,V.M.Haughton,andB.H.Nowicki, Lumbar foraminal stenosis: critical heights of the intervertebral discs and foramina. A cryomicrotome study in cadavera, Bone and Joint Surgery A,vol.77,no.1,pp.32 38,1995. [8] A.Inufusa,H.S.An,T.H.Lim,T.Hasegawa,V.M.Haughton, and B. H. Nowicki, Anatomic changes of the spinal canal

MEDIATORS of INFLAMMATION The Scientific World Journal Gastroenterology Research and Practice Diabetes Research International Endocrinology Immunology Research Disease Markers Submit your manuscripts at BioMed Research International PPAR Research Obesity Ophthalmology Evidence-Based Complementary and Alternative Medicine Stem Cells International Oncology Parkinson s Disease Computational and Mathematical Methods in Medicine AIDS Behavioural Neurology Research and Treatment Oxidative Medicine and Cellular Longevity