THERMALLY OXIDIZED SOYA BEAN OIL interacted with MONO- and DIGLYCERIDES of FATTY ACIDS

Similar documents
THERMALLY OXIDIZED SOYA BEAN OIL

Pectins. Residue Monograph prepared by the meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA), 82 nd meeting 2016

Purity Tests for Modified Starches

» Croscarmellose Sodium is a cross linked polymer of carboxymethylcellulose sodium.

Lutein Esters from Tagetes Erecta

Petrolatum. Stage 4, Revision 1. Petrolatum is a purified semi solid mixture of hydrocarbons obtained from petroleum.

DRAFT EAST AFRICAN STANDARD

Hydroxypropyl Starch (Tentative)

CELLULOSE, MICROCRYSTALLINE. Cellulosum microcristallinum. Cellulose, microcrystalline EUROPEAN PHARMACOPOEIA 7.0

PAPRIKA EXTRACT SYNONYMS DEFINITION DESCRIPTION FUNCTIONAL USES CHARACTERISTICS

Residue Monograph prepared by the meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA), 82 nd meeting 2016.

SMOKE FLAVOURINGS. Wood smoke flavour, Smoke condensate

6.02 Uniformity of Dosage Units

1 out of 8. Residue Monograph prepared by the meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA), 86th Meeting 2018 ERYTHROSINE

ARTESUNATE TABLETS: Final text for revision of The International Pharmacopoeia (December 2009) ARTESUNATI COMPRESSI ARTESUNATE TABLETS

BRIEFING Assay + + +

E55A GELATIN, GELLING GRADE Gelatina

4. Determination of fat content (AOAC, 2000) Reagents

EXPERIMENT 4 DETERMINATION OF REDUCING SUGARS, TOTAL REDUCING SUGARS, SUCROSE AND STARCH

12BL Experiment 2: Extraction & Saponification of Trimyristin from Nutmeg

Draft for comments only Not to be cited as East African Standard

ISOMALT. Chemical formula 6-O-alpha-D-Glucopyranosyl-D-sorbitol: C 12 H 24 O 11 1-O-alpha-D-Glucopyranosyl-D-mannitol dihydrate: C 12 H 24 O 11 2H 2 O

Heparin Sodium ヘパリンナトリウム

BRIEFING. Nonharmonized attributes: Characters, Microbial Enumeration Tests, and Tests for Specified Microorganisms, and Packing and Storage (USP)

Organic Molecule Composition of Milk: Lab Investigation

SUCROSE OLIGOESTERS TYPE I

Sucrose Esters of Fatty Acids

BRIEFING. 1. Definition Changed to include only Wheat Starch, as to conform to the individual monograph for Wheat Starch.

MONOGRAPHS (NF) Pharmacopeial Forum 616 HARMONIZATION Vol. 31(2) [Mar. Apr. 2005]

á401ñ FATS AND FIXED OILS

CHAPTER 3 EXPERIMENTAL MEASUREMENTS

MONOGRAPHS (USP) Saccharin Sodium

TECHNICAL BULLETIN METHOD 1: DETERMINATION OF TOTAL DIETARY FIBRE

NISIN. SYNONYMS INS No. 234 DEFINITION

Official Journal of the European Union REGULATIONS

ARTENIMOLUM ARTENIMOL. Adopted revised text for addition to The International Pharmacopoeia

Properties of Alcohols and Phenols Experiment #3

The Nitrofurantoin Capsules Revision Bulletin supersedes the currently official monograph.

Analytical Method for 2, 4, 5-T (Targeted to Agricultural, Animal and Fishery Products)

Preparation of Penicillins by Acylation of 6-Aminopenicillanic acid with Acyl Chlorides Week One: Synthesis

GB Translated English of Chinese Standard: GB NATIONAL STANDARD OF

Jagua (Genipin-Glycine) Blue (Tentative)

ANIMALS OILS AND FATS CHAPTER 2 PREPARATION AND SAPONIFICATION OF SPERMACETI 1. PREPARATION OF SPERMACETI

DRAFT TANZANIA STANDARD

CELLULASE from PENICILLIUM FUNICULOSUM

DRAFT TANZANIA STANDARD

DRAFT PROPOSAL FOR THE INTERNATIONAL PHARMACOPOEIA: CARBAMAZEPINI COMPRESSI - CARBAMAZEPINE TABLETS

Residue Monograph prepared by the meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA), 82 nd meeting 2016.

They are substances that are soluble in lipid or derived from the lipids by hydrolysis; for examples, cholesterol and fat soluble vitamins.

B - Barium chloride (0.1 mol/l) VS... Butylated hydroxytoluene R

The Draft Amendment of Standards for Specification, Scope, Application and Limitation of Food Additives

9. Determine the mass of the fat you removed from the milk and record in the table. Calculation:

Most of the ethanol that is used as a biofuel in this country is produced from corn.

Relative Measurement of Zeaxanthin Stereoisomers by Chiral HPLC

21 Virginiamycin OH O. For chickens (except for broilers) broilers. Added amount 5~15 5~15 10~20 10~20

By Authority Of THE UNITED STATES OF AMERICA Legally Binding Document

2 Avilamycin R 1. For chickens (except for broilers) Starting chicks Growing chicks. Starting broilers. Finishing broilers

GB Translated English of Chinese Standard: GB NATIONAL STANDARD OF THE

3016 Oxidation of ricinoleic acid (from castor oil) with KMnO 4 to azelaic acid

Amendment of Standards for Specification, Scope, Application and Limitation of Food Additives

E17 ETHYLCELLULOSE. Revision 3 Stage 4

Determination of Tanninoids. Analytical Pharmacognosy

XXVI. STUDIES ON THE INTERACTION. OF AMINO-COMPOUNDS AND CARBOHYDRATES.

EXPERIMENT 14 ANALYSIS OF OILS AND FATS:

SYNTHESIS OF QUATERNARY AMMONIUM COMPOUNDS FROM NATURAL MATERIALS

Preparation and Comparison of Soaps Minneapolis Community and Tech. College C1152 Principles of Chemistry II v.5.10

Chemistry Iodometric Determination of Vitamin C

Title Revision n date

β-carotene-rich Extract From Dunaliella Salina

REVISED DRAFT MONOGRAPH FOR THE INTERNATIONAL PHARMACOPOEIA RETINOL CONCENTRATE, OILY FORM. (August 2010)

ISO INTERNATIONAL STANDARD. Animal and vegetable fats and oils Determination of individual and total sterols contents Gas chromatographic method

Revision of monograph in the 4 th Edition of The International Pharmacopoeia (August 2008)

Rebaudioside a From Multiple Gene Donors Expressed in Yarrowia Lipolytica

EUDRAGIT L 100 and EUDRAGIT S 100

Nitrate and Nitrite Key Words: 1. Introduction 1.1. Nature, Mechanism of Action, and Biological Effects (Fig. 1)

22 Bicozamycin (Bicyclomycin)

SOUTH AFRICAN NATIONAL STANDARD

NORTHERN CORRIDORSTANDARD NC 4:2018. Roasted Macadamia Specification

19 Nosiheptide S O. For chickens (excluding broilers) For broilers. Finishing period broilers Growing period broilers. Stating chicks Growing chicks

SAC 17 Queen Mary University of London

DRS RWANDA STANDARD. Bleaching agents Specification. Part 1: Sodium hypochlorite solutions for water. treatment. Second edition.

Pharmacopeial Forum 818 INTERIM REVISION ANNOUNCEMENT Vol. 35(4) [July Aug. 2009] ERRATA

HEMICELLULASE from ASPERGILLUS NIGER, var.

Properties of Alcohols and Phenols Experiment #3

This revision also necessitates a change in the table numbering in the test for Organic Impurities.

Tenofovir disoproxil fumarate (Tenofoviri disoproxili fumaras)

SULFAMETHOXAZOLE AND TRIMETHOPRIM TABLETS Draft proposal for The International Pharmacopoeia (September 2010)

EXPERIMENT 2: ACID/BASE TITRATION. Each person will do this laboratory individually. Individual written reports are required.

--> Buy True-PDF --> Auto-delivered in 0~10 minutes. GB Translated English of Chinese Standard: GB1886.

22. The Fischer Esterification

Experiment 18: Esters

HYDROXYPROPYLCELLULOSE, LOW SUBSTITUTED Stage 4, Revision 1 CP: USP BRIEFING NOTE

» Monohydrate Citric Acid contains one molecule of water of hydration. It contains not less than 99.5 percent and not more than 100.

Residue Monograph prepared by the meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA), 82 nd meeting 2016.

Draft for comments only Not to be cited as East African Standard

Determination of the acid value (AV) Application Bulletin 200/3 e. Electrodes Solvotrode easyclean

BRIEFING. Nonharmonized attributes: Identification, Heavy metals, Characters, Labeling, Bacterial endotoxins, Sterility, Storage.

PURPOSE: To synthesize soap from fat and lye. To observe the physical and chemical properties of soap.

INTERNATIONAL ŒNOLOGICAL CODEX. CARBOXYMETHYLCELLULOSE (cellulose gum) (CMC) INS no. 466 CAS [ ] (OIV-Oeno )

Transcription:

THERMALLY OXIDIZED SOYA BEAN OIL interacted with MONO- and DIGLYCERIDES of FATTY ACIDS Prepared at the 39th JECFA (1992), published in FNP 52 Add 1 (1992). Metals and arsenic specifications revised at the 55th JECFA (2000) An ADI of 0-30 mg/kg bw was established at the 39th JECFA (1992) SYNONYMS DEFINITION Structural formula INS no. 479, TOSOM A complex mixture of esters of glycerol and fatty acids found in edible fat and fatty acids from thermally oxidized soya bean oil; produced by interaction and desodourization under vacuum at 130 o of 10 % w/w of thermally oxidized soya bean oil (thermally oxidized soya bean oil is obtained by oxidation of refined soya bean oil with air at 190-200 o ) and 90 % w/w of mono- and diglycerides of food fatty acids. (principal component) R 1, R 2 and R 3 variously may be a: - normal fatty acid - oxidized fatty acid (e.g. hydroxyl and/or carbonyl compound of fatty acid) - hydrogen - short chain fatty acid - di- and polymer of oxidized fatty acids The product may contain small quantities of free fatty acids and free glycerol. DESCRIPTION FUNCTIONAL USES Pale yellow to light brown with a waxy or solid consistency. Emulsifier, antispattering agent CHARACTERISTICS IDENTIFICATION Solubility (Vol. 4) Insoluble in water; soluble in hot fats and oils PURITY Melting range (Vol. 4) Free fatty acids (Vol. 4) Free glycerol (Vol. 4) Total fatty acids 55 o - 65 o Not more than 1.5 % w/w calculated as oleic acid Proceed as directed under Free Fatty Acids using the equivalence factor e = 28.2. Not more than 2 % w/w 83-90 % w/w

Total glycerol Fatty acids, insoluble in petroleum ether 16-22% w/w Not more than 2 % w/w of total fatty acids Fatty acid methyl esters, not Not more than 9.0 % w/w of total fatty acid methyl esters forming adduct with urea Peroxide value Not more than 3 Epoxides Lead (Vol. 4) Not more than 0.03 % w/w oxiran oxygen Not more than 2 mg/kg Determine using an atomic absorption technique appropriate to the specified level. The selection of sample size and method of sample preparation may be based on the principles of the method described in Volume 4, Instrumental Methods. TESTS PURITY TESTS Total fatty acids Weigh accurately about 12 g of the sample into a 500-ml conical flask, add 100 ml of 2 N alcoholic potassium hydroxide solution and reflux for 1 hour on a sand bath. It is necessary to swirl the flask every 5 to 10 min during the reflux period. Transfer quantitatively the hot content of the saponification flask to a 500- ml separating funnel, using 100 ml of water and set aside to cool. Extract the aqueous solution by vigorously shaking for 1 min with 3 100-ml portions of petroleum ether (40-60 o ). Transfer the aqueous solution to a clean 1000-ml round bottomed flask and discard the organic extracts. Reduce the volume of the aqueous solution by evaporation till about 200 ml, using a rotatory evaporator under vacuum at 70 o (the smell of ethanol has disappeared). Add cautiously 75 ml of 4 N hydrochloric acid and shake vigorously. Transfer the content of the flask to a 500-ml separating funnel, using 2 25-ml portions of water. Set aside to cool to 30-35 o and then add 2 50-ml portions of ether. When the mixture has cooled to room temperature, shake vigorously for about 1 min. Set aside for separation of layers. Transfer the aqueous layer to a 500 ml separation funnel and extract with further 2 100-ml portions of ether. Transfer the aqueous solution to the 1000 ml round bottomed flask and combine all 3 ether extracts in a separating funnel. Wash the combined extracts with 3 100-ml portions of water and combine the washings with the aqueous solution in the round bottomed flask. This solution is used for the test for Total glycerol. Transfer the ether fraction to a dry and previously tared 500-ml round

bottomed flask. Evaporate to dryness using a rotatory evaporator at vacuum and slowly increasing the temperature from 40 o to 70 o. Add 100 ml of acetone and evaporate to dryness. Empty the receiver and continue to evaporate at full vacuum at 100 o for further 20 min. Place the flask in an oven at 110±5 o for 1 hour. Cool in a desiccator and weigh the flask, now containing the isolated fatty acids. A = weight of empty flask (g) B = weight of flask and fatty acids (g) Total glycerol Use the aqueous solution obtained by the test for Total fatty acids. Transfer quantitatively the aqueous solution to a 1000-ml volumetric flask. Dilute to mark with water. Pipet 50 ml of periodic acid into a 400 ml beaker and then 15 ml of the sample solution. Shake gentle to affect thorough mixing. Cover with a watch glass and allow to stand for 30 min. Add 20 ml of potassium iodide solution (150 g/l), mix by gentle shaking and allow to stand 1 min (never more than 5 min) protected from light. Add water to approximately 200 ml and titrate with 0.1 N sodium thiosulfate TS solution using Starch solution TS as indicator. Carry out a blank using 15 ml of water instead of sample solution., B = ml of sodium thiosulfate used for the blank S = ml of sodium thiosulfate used for the sample N = normality of sodium thiosulfate Fatty acids, insoluble in petroleum ether Weigh accurately about 5 g of the isolated fatty acids, obtained by the test for Total fatty acids, into a 250-ml round bottomed flask (flask I). Add 100 ml of petroleum ether (40-60 o ) and reflux for 30 min. at 55 o on a water bath. Cool, close the flask with a glass stopper and leave overnight. Heat the flask under reflux to 55 o and decant and discard the organic solution. Wash the flask and its content with 2 25-ml portions and 1 10-ml portion of petroleum ether. Discard the washings. Add 30 ml of 96 % v/v solution of ethanol to flask I and dissolve the content at low heat. Filter the solution into a dry and previously weighed 100-ml round bottomed flask (flask II). Wash flask I and the filter thoroughly with 3 10 ml-portions of 96 % v/v solution of ethanol.

Evaporate the content of flask II to dryness using a rotatory evaporator under vacuum at 70 o. Add 50 ml of petroleum ether. Heat to 55 o at a water bath under reflux for 30 min. Cool and decant and discard the petroleum ether solution. Wash the content of flask II with further 2 25-ml portions of petroleum ether. Discard the washings. Evaporate the content of flask II to dryness using a rotatory evaporator under vacuum at 70 o at a water bath. Continue to evaporate for further 15 min at full vacuum. Leave the flask in an oven at 105±5 o for 1 h. Cool in an desiccator and weigh the flask. Calculate the Fatty acids, not soluble in petroleum ether (% w/w of total fatty acids, from: A = weight of empty flask II (g) B = weight of flask II with content (g) W = weight of sample of fatty acids (g) Fatty acid methyl esters, not Weigh accurately about 5 g of the isolated fatty acids, obtained by the forming adduct with urea test for Total fatty acids, into a dry previously weighed 250-ml round bottomed flask. Add 10.0 ml of methanol, 1.0 ml of conc. hydrochloric acid and 25 ml of dimethoxypropane (mix after each addition). Close the flask using a glass stopper, swirl if necessary to dissolve and leave for reaction at room temperature for 1 hour. Add 50 ml of toluene and evaporate to dryness under vacuum at 60 o at water bath using a rotatory evaporator. Dissolve the residue in 50 ml of petroleum ether and evaporate to dryness under the same conditions as before. Continue to evaporate for further 15 min under full vacuum at 100 o. Place the flask now containing the fatty acid methyl esters in an oven at 105±5 o for 1 hour. Cool in a desiccator. Introduce in small portions 250 g of urea into a 30 x 2 cm glass column with a fritted glass disk at bottom tapping the column to assure optimal packing. Connect a separatory funnel to the top of the column through a stopper. Add to the separator y funnel, 150 ml of methanol, previously saturated with urea at room temperature. Introduce the methanol through the stopcock of the separatory funnel at a flow rate of approximately 10 ml/min. Weigh accurately about 5 g of the fatty acid methyl esters into a 250-ml conical flask and dissolve in 100 ml of methanol. Transfer quantitatively the solution to the separatory funnel using 2 25-ml portions of methanol, previously saturated with urea at room temperature. Elute the solution through the stopcock of the separatory funnel at a flow rate of approximately 10 ml/min. Collect the eluate in a 500-ml roundbottomed

flask. Add to the separatory funnel when empty, 200 ml of methanol, previously saturated with urea at room temperature and continue elution until the flow from the column stops. Evaporate the eluate, using a rotatory evaporator under vacuum at 60 o, until crystals accurately appear in the liquid. Add 200 ml of water to the flask and diluted hydrochloric acid till ph less than 3. Transfer quantitatively the solution to a 1000-ml separatory funnel using 2 25-ml portions of water and 1 50-ml portion of ether. Shake vigorously and set aside to separate. Repeat the extraction with 3 50-ml portions of ether further, collecting the ether fractions in a 500-ml separatory funnel. Discard the water fraction. Wash the combined ether fractions with 2 50- ml portions of water. Discard the washings. Transfer quantitatively the ether solution to a dry previously weighed 500- ml round bottomed flask using a small quantity of acetone. Evaporate to dryness using a rotatory evaporator under vacuum at 40-50 o. Add 50 ml of acetone and dissolve the residue. Evaporate to dryness under the same conditions. Add further 50 ml of acetone, dissolve and evaporate to dryness. Continue evaporation under full vacuum at 100 o for 45 min. Place the flask in an oven at 105±5 o for 1 hour, cool in a desiccator and weigh the flask with content. Calculate Fatty acid esters not forming adduct with urea (% of total fatty acid esters) from, A = weight of empty flask (g) B = weight of flask with content (g) W = weight of fatty acid esters (g) Peroxide value Weigh accurately about 5 g of the sample into a 200-ml conical flask. Add 30 ml of a 2:3 solution of chloroform and acetic acid TS and close the flask with a stopper. Heat with warm water and swirl to dissolve the sample. Cool to room temperature and add 0,5 ml of saturated potassium iodide solution. Close the flask with the stopper and shake vigorously for 60±5 sec. Add 30 ml of acetic acid TS and titrate immediately with 0.01 N Sodium thiosulfate using Starch TS as indicator. Carry out a blank determination without sample.

a = amount of sodium thiosulfate used for the sample (ml) b = amount of sodium thiosulfate used for the blank (ml) N = normality of the sodium thiosulfate Epoxides Accurately weigh about 3 g of the sample into 250-ml round bottomed flask, add 10 ml of monochlorobenzene and dissolve the sample. Dilute with 40 ml of 2-propanol, add 10 ml of 0.1 N 2,4,6-trimethylpyridin hydrochloride solution and reflux for 1 hour at a warm sand bath. Let cool to room temperature and add 25 ml of water. Measure the temperature of the solution and determine the excess of 2,4,6-trimethylpyridin hydrochloride by potentiometric titration with 0.1 N sodium methylate solution. Carry out a blank without sample. a = amount of sodium methanolate solution used for the sample (ml) b = amount of sodium methanolate solution used for the blank (ml) N = normality of sodium methanolate solution