APPLICATIONS OF RADIATION IN MEDICINE. Kirstin Murray BSc (Hons) Radiotherapy & Oncology

Similar documents
ADVANCES IN RADIATION TECHNOLOGIES IN THE TREATMENT OF CANCER

First, how does radiation work?

Use of radiation to kill diseased cells. Cancer is the disease that is almost always treated when using radiation.

PRINCIPLES and PRACTICE of RADIATION ONCOLOGY. Matthew B. Podgorsak, PhD, FAAPM Department of Radiation Oncology

Option D: Medicinal Chemistry

MEDICAL MANAGEMENT POLICY

I. Equipments for external beam radiotherapy

Medical Use of Radioisotopes

Lecture 13 Radiation Onclolgy

Therapeutic Medical Physics. Stephen J. Amadon Jr., Ph.D., DABR

HALF. Who gets radiotherapy? Who gets radiotherapy? Half of all cancer patients get radiotherapy. By 1899 X rays were being used for cancer therapy

Radiotherapy physics & Equipments

Sarcoma and Radiation Therapy. Gabrielle M Kane MB BCh EdD FRCPC Muir Professorship in Radiation Oncology University of Washington

Disclosures 5/13/2013. Principles and Practice of Radiation Oncology First Annual Cancer Rehabilitation Symposium May 31, 2013

PHYS 383: Applications of physics in medicine (offered at the University of Waterloo from Jan 2015)

Radiotherapy. Marta Anguiano Millán. Departamento de Física Atómica, Molecular y Nuclear Facultad de Ciencias. Universidad de Granada

EORTC Member Facility Questionnaire

Nuclear Medicine and PET. D. J. McMahon rev cewood

TomoTherapy. Michelle Roach CNC Radiation Oncology Liverpool Hospital CNSA. May 2016

An introduction to different types of radiotherapy

Fractionation: why did we ever fractionate? The Multiple Fractions School won! Survival curves: normal vs cancer cells

PHYSICS 2: HSC COURSE 2 nd edition (Andriessen et al) CHAPTER 20 Radioactivity as a diagnostic tool (pages 394-5)

RADIOTHERAPY: TECHNOLOGIES AND GLOBAL MARKETS

Introduction to clinical Radiotherapy

Understanding Radiation Therapy. For Patients and the Public

Radiotherapy and tumours in veterinary practice: part one

Chapters from Clinical Oncology

Verification of treatment planning system parameters in tomotherapy using EBT Radiochromic Film

Radiotherapy in feline and canine head and neck cancer

Radiation Therapy for Cancer: Questions and Answers

Atoms for Health. Atoms for Health The. Atoms for Health - Division of Nuclear Health - Dept of Nuclear Aplications P Andreo DIR-NAHU 1

Proton and heavy ion radiotherapy: Effect of LET

Brain Tumor Treatment

Advances in external beam radiotherapy

Klinikleitung: Dr. Kessler Dr. Kosfeld Dr. Tassani-Prell Dr. Bessmann. Radiotherapy in feline and canine head and neck cancer.

A Patient s Guide to SRS

General Nuclear Medicine

Radioactivity. Alpha particles (α) :

Physical Bases : Which Isotopes?

Biological Effects of Ionizing Radiation & Commonly Used Radiation Units

FEE RULES RADIATION ONCOLOGY FEE SCHEDULE CONTENTS

Basic radiation protection & radiobiology

FROM ICARO1 TO ICARO2: THE MEDICAL PHYSICS PERSPECTIVE. Geoffrey S. Ibbott, Ph.D. June 20, 2017

SHIELDING TECHNIQUES FOR CURRENT RADIATION THERAPY MODALITIES

Ionizing Radiation. Michael J. Vala, CHP. Bristol-Myers Squibb

Biological Effects of Ionizing Radiation & Commonly Used Radiation Units

Brachytherapy. What is brachytherapy and how is it used?

Radiotherapy in Head and Neck

Colorectal Cancer Treatment

Brachytherapy The use of radioactive sources in close proximity to the target area for radiotherapy

BIOLOGICAL EFFECTS OF

Expectations of Physics Knowledge for Certification

Use of Bubble Detectors to Characterize Neutron Dose Distribution in a Radiotherapy Treatment Room used for IMRT treatments

PROGRESS IN RADIATION ONCOLOGY. Fox Chase Cancer Center. Jean Holland RN MSN AOCN Department of Radiation Oncology April 2017

RADIATION ONCOLOGY AT UNIVERSITY OF COLORADO HOSPITAL

TFY4315 STRÅLINGSBIOFYSIKK

Peak temperature ratio of TLD glow curves to investigate the spatial variation of LET in a clinical proton beam

Managing the imaging dose during image-guided radiation therapy

AN INTRODUCTION TO NUCLEAR MEDICINE

Efficient SIB-IMRT planning of head & neck patients with Pinnacle 3 -DMPO

PRINCIPLES OF RADIATION ONCOLOGY

Intensity Modulated RadioTherapy

Today, I will present the second of the two lectures on neutron interactions.

Proton Treatment. Keith Brown, Ph.D., CHP. Associate Director, Radiation Safety University of Pennsylvania

Neutron Interactions Part 2. Neutron shielding. Neutron shielding. George Starkschall, Ph.D. Department of Radiation Physics

Principles of chemotherapy

7. Radioisotopes in Medicine

Prostate Cancer. What is prostate cancer?

VETERINARY RADIATION THERAPY: Innovations and Indications Jessica Lawrence DVM DACVIM (Oncology) DACVR (Radiation Oncology)

4D Radiotherapy in early ca Lung. Prof. Manoj Gupta Dept of Radiotherapy & oncology I.G.Medical College Shimla

Radiation Carcinogenesis

Present status and future of Proton beam therapy

Breast Cancer. What is breast cancer?

Guidelines for the use of inversely planned treatment techniques in Clinical Trials: IMRT, VMAT, TomoTherapy

RADIATION THERAPY & CANCER

Implementation of advanced RT Techniques

Trends in radiation oncology: a review for the nononcologist

Questions may be submitted anytime during the presentation.

"The Good Side of Radiation: Medical Applications"

Radiologic Units: What You Need to Know

POSTGRADUATE INSTITUTE OF MEDICINE UNIVERSITY OF COLOMBO MP (CLINICAL ONCOLOGY) PART I EXAMINATION - AUGUST Time : p.m p.m.

Standards for Radiation Oncology

National System for Incident Reporting in Radiation Therapy (NSIR-RT) Taxonomy

Therapeutic Use of Radiation

Radiation physics and radiation protection. University of Szeged Department of Nuclear Medicine

Radiation Biology & Radiation Therapy

ICRP 128 ICRP ICRP ICRP 1928

Positron Emission Tomography Computed Tomography (PET/CT)

Prostate Cancer. What is prostate cancer?

Heavy Ion Tumor Therapy

Radiotherapy What are our options and what is on the horizon. Dr Kevin So Specialist Radiation Oncologist Epworth Radiation Oncology

NIA MAGELLAN HEALTH RADIATION ONCOLOGY CODING STANDARD. Dosimetry Planning

Radiotherapy: An Update

Hampton University Proton Therapy Institute

Applications of Particle Accelerators

Cardiac Nuclear Medicine

How ICD-10 Affects Radiation Oncology. Presented by, Lashelle Bolton CPC, COC, CPC-I, CPMA

III. Proton-therapytherapy. Rome SB - 5/5 1

Chapter 14 Basic Radiobiology

BRACHYTHERAPY IN HORSES

Transcription:

APPLICATIONS OF RADIATION IN MEDICINE Kirstin Murray BSc (Hons) Radiotherapy & Oncology

CONTENTS Principles of Radiation Therapy Radiobiology Radiotherapy Treatment Modalities Special Techniques Nuclear Medicine

X-RAYS 1895 Professor Wilhelm Conrad Roentgen discovered x-rays by accident Experimented with x-rays using vacuum tubes and saw the could pass through wood, paper, skin etc. Took 1 st x-ray of his wife s hand using photographic plate 1896 Henri Becquerel discovered radioactivity 1898 Marie Curie discovered radium X-rays widely used as essential diagnostic tool in medicine, but also in cancer treatment

WHAT IS CANCER? Cancer describes disease characterised by uncontrolled and unregulated cell division that invades healthy tissues and affect their function Cancer can be malignant or benign (do not spread to distant parts) Malignant cells can spread locally or to distant parts of the body via the bloodstream or lymphatic system Treated with surgery, chemotherapy, radiotherapy, hormone treatments (conventional medicine)or in combination e.g.. Pre or post surgery

PRINCIPLES OF RADIOTHERAPY Deliver maximum radiation dose to tumour to achieve cell death whilst minimising dose to neighbouring healthy tissues Approximately 50% cancer patients treated with radiotherapy Royal College of Radiologists estimates that 40% of all long term cancer survivors owe their cure to radiotherapy High doses of radiation needed for tumour control Sensitivity of tumour vs. sensitivity of normal tissue= Therapeutic Ratio

Oncologist will prescribe a dose to the tumour volume (Gray) 1 Gy = 1J/kg PRINCIPLES OF RADIOTHERAPY Named after the British physicist Louis Harold Gray Treatment is delivered in sessions or fractions The time over which the dose is delivered is very important Patients may attend treatment for 1 day to up to 7 weeks, depending on the Intent of the treatment Radiotherapy given radically (cure) or palliative (symptom relief)

A photon is E = hv h is Planck s constant (6.62 10-34 J-sec) v is the frequency of the photon Frequency is equivalent to the quotient of the speed of light (3 10 8 m/sec) divided by the wavelength High-energy radiations have a short wavelength and a high frequency The interaction of a photon beam with matter results in the attenuation of the beam Four major interactions occur: -Compton Scattering -Thompson Scattering -Photoelectric Absorption - Pair Production RADIATION INTERACTIONS

RADIATION INTERACTIONS

RADIOBIOLOGY High energy particles collide into a living cell with enough energy they knock electrons free from molecules that make up the cell Most damage occurs when DNA(deoxyribonucleic acid) is injured. DNA contains all the instructions for producing new cells Ionizing radiation causes damage in two way: 1.Indirectly H2O in our bodies absorbs radiation, produces free radicals which react with and damage DNA strand 2.Directly radiation collides with DNA molecule, ionizing it and damaging it directly

Unless repair occurs, the cumulative breaks in the DNA strand will lead to cell death Factors affecting cells response to radiation: (4 R s) Reoxygenation Repopulation Repair Redistribution RADIOBIOLOGY

Oxygen stabilizes free radicals Hypoxic (low O2 content) cells require more radiation to kill Hypoxic tumor areas REOXYGENATION Temporary vessel constriction from mass Outgrow blood supply, capillary collapse Tumor shrinkage decreases hypoxic areas Reinforces fractionated dosing

REPOPULATION Rapidly proliferating tumors regenerate faster e.g.. mucosa cells Determines length and timing of therapy course Regeneration (tumor) vs. Recuperation (normal) Reason for accelerated treatment schedules

REPAIR Sub lethal injury cells exposed to sparse ionization fields, can be repaired Cell death requires greater total dose when given in several fractions Most tissue repair in 3 hours, up to 24 hours Allows repair of injured normal tissue, potential therapeutic advantage over tumor cells

REDISTRIBUTION CELL CYCLE Cell cycle position sensitive cells S phase radio resistant G 2 phase delay = increased radio resistance Fractionated XRT redistributes cells Rapid cycling cells more sensitive (mucosa, skin) Slow cyclers (connective tissue, brain) spared

RADIOTHERAPY TREATMENT MODALITIES Teletherapy: use of sealed radiation sources at an extended distance i.e. x-rays, electrons (ionized particles), beta or gamma radiation Brachytherapy: use of small sealed radiation sources over a short distance ie.caesium or iridium Internal Isotope Treatment: administration of radioactive isotope systemically (around body, via bloodstream) Particle Therapy: radiation treatment with Neutrons or Protons

TELETHERAPY External beam radiotherapy the most common form of treatment in clinical use Range of energies available: - Superficial Machines ( 50-150 kv);1cm depth -Orthovoltage Machines (200-300kV), 3cm depth -Megavoltage Machines (4-20MV), deep seated tumours e.g. Linear Accelerator

TELETHERAPY Linear Accelerator is large stationary x-ray tube Contains microwave technology that accelerates electrons through a wave guide When electrons hit a heavy metal target, x-rays are produced Various collimator systems in the gantry (head of the machine) shape the beam on it way out Change collimator systems to the shape of the tumour volume

TELETHERAPY Patient lies on a moveable couch beneath the machine and lasers in the room used to align the patient into the correct position Gantry is able to move 360 degrees around the patient delivering beams of radiation from different angles Kilovoltage arms (Kv source + Image intensifier) on Varian Linac for Image Guided Radiotherapy: Verification of treatment e.g. IMRT

MULTI-LEAF COLLIMATORS 40 pairs of tungsten leaves mounted external to the treatment head Each leaf transmits 1% of the beam Additional attenuation achieved with back up collimators These together reduces beam transmission of 0.5% of the primary bean

A form on conformal RT where the intensity of the radiation field varies across the treatment field: achieved by varying the position of the leaves during treatment Require multiple non uniform beams to achieve desired plan 2 Methods: Step and Shoot or Dynamic 3D treatment requires online imaging Reliable Immobilisation IMRT

CONVENTIONAL RT VS. IMRT

BRACHYTHERAPY Brachytherapy is the use of sealed radioactive sources placed either on or within a site involved with a tumour. 3 Types: Mould Treatment- superficial tumours Intracavitary Treatment e.g.. Cervical treatment using Iridium-192/Caesium-137 Interstitial Treatment e.g. radioactive gold seeds/ grains for prostate cancer

BRACHYTHERAPY Radio isotope No. of Isotopes E of Gamma Rays Half-life Other Emissions Cost Physical State Stability of daughter product Specific Activity Cobalt60 Two Photons 1.17 MeV 1.33 MeV 5.27 years Beta Particles Relatively Cheap Flaky Solid Nickel- Stable High Iridium-192 Range 0.296 to 0.605 MeV 74 years Beta Particles Relatively cheap Solid Plantinumstable High Caesium Single Photon 0.662 MeV 30 years Beta Particles Relatively Cheap Solid Bariumstable Moderate Radium- 226 Range 0.118-2.43 MeV 1620 years Beta +Alpha particles High Putty-like solid Long line of radioactiv edaughter products. High

BRACHYTHERAPY Aferloading Machine Designed to reduce dose to staff Method whereby empty source containers are placed into a body tissue/cavity and the radioactive sources are loaded at a later time More time ensuring accurate position Radiograph /CT of inert sources Sources are delivered remotely with the patient in the theatre room and staff at console area Treatment complete, retracted Patient does not remain radioactive Short hospital visits/ outpatient appointments

BRACHYTHERAPY Very steep dose rates around source High dose rate to the tumour and adjacent tissue and low dose further out to normal tissue Fewer side effects

High LET i.e. higher biological damage along its track or highly focused deposit of radiation (Bragg Peak) Neutrons : Downside: not selective for cancer cells, therefore more damaging to normal tissue Severe late side effects EU + USA Protons: +highly localised, high peak in their beam, use of absorbing materials and manipulation of the beam= Similar action to x-rays PARTICLE THERAPY Useful for inaccessible tumours i.e. of the eye, pituitary, Limitation: cost and technology required Use EU, USA and 1 centre in Clatterbridge in UK

PROTON TREATMENT

PROTON RADIOTHERAPY Disadvantages Set up proton facility Cost(11/2 times more that LA) Training Problems with breakdown :1 accelerating structure Demands on immobilisation

SIDE EFFECTS OF RADIOTHERAPY Acute Effects: Those which occur early ( within the first few weeks to 3 months of treatment) Non-permanent/ Reversible Long term side effects are those that occur months after completion of a course of treatment Permanent/ Irreversible Most patients will experience a skin reaction and fatigue Side effects depend on the what area is being treated Management requires skills of Multi-disciplinary Team

SPECIAL TECHNIQUES Respiratory Gating Lung and Gastrointestinal tumours Track breathing and location of tumour Used with IMRT

Gamma Knife Radiosurgery Malignant and benign conditions of the brain Patient fitted with an aluminium head frame with approximately 200 apertures through which radioactive cobalt-60 sources are focused at the target Area to be treated mapped out using MRI,CT,PET and angiography High dose can be delivered to the exact shape of the tumour with highly focused radiation beams, accurate to 0.5mm SPECIAL TECHNIQUES

Total Body Irradiation Blood related cancers e.g. Leukaemia Part of a preparative regime for bone marrow transplant Used in conjunction with chemotherapy to destroy the patient s immune system and prevent rejection by the donor bone marrow cells Total body irradiation, shielding of lung to prevent lung damage Using a standard Linear Accelerator with extended distance to encompass entire patient in radiation field SPECIAL TECHNIQUES

Tomotherapy Combination of two technology systems: Spiral CT scanner and Intensity Modulated Radiotherapy Treatment delivered slice by slice therefore the entire volume can be treated at once (rather that multiple beams) Cone beam capacity to take CT image prior to treatment for treatment matching to exact location of tumour Typical prostate treatment takes 3-5 minutes vs. 12-15 Linac 6 centres in UK RADIOTHERAPY DEPARTMENT

NUCLEAR MEDICINE Nuclear Medicine is the clinical application of unsealed radiation source Diagnostic, Localisation, Treatment Radiopharmaceutical : pharmaceutical is chemical substance that will selectively seek out the tumour cells that you want to locate. A radionuclide is added that will not interfere with the uptake Administered in-vitro or in-vivo (ingestion, inhalation, intravenous) Diagnostic: a gamma camera will show up hot spots ( areas appear dark due to higher uptake of radiopharmaceutical, i.e.. With good blood supply or greater metabolic activity or appear as a cold spot=less activity

Half life is the time it takes for half the nuclei in an atom to decay Effective half life 1 / Teff =1/ Tphysical + 1/ Tbiological Tc 99M= T ½ =6 hours Short half life=scanning procedure data collected quickly low dose to patient Extracted by kidneys in Urine Unit of measurement in mci 1mCI=37MBq TECHNETIUM-99MM

BONE SCAN TC-99M

Treatment: Hyperthyroidism-Iodine-131 NUCLEAR MEDICINE Ablation therapy for carcinoma of the thyroid- Iodine- 131 Bone pain palliation- Stontium-89 Treatment for Polycythaemia Ruba Vera -32P Sodium phosphate Non-Hogkins Lymphoma- Radioactive Monoclonal Antibodies-

Disadvantages: Radiopharmaceuticals used in treatment have a longer half life Longer in-patient stays in isolation Radiation exposure to staff Minimal family visits Expensive NUCLEAR MEDICINE Long term effects -leukaemia

Physics continues to play a vital role in advancing radiotherapy Installation and commissioning of new equipment Maintenance and Quality Assurance checks of equipment safe and fit for purpose Dosimetry and planning MEDICAL PHYSICS Radiation Protection and safety Work closely with the oncologists and radiation therapists in designing, planning and executing accurate and safe delivery of radiation treatments for our patients