Sleepiness, Fatigue, Tiredness, and Lack of Energy in Obstructive Sleep Apnea*

Similar documents
Excessive Daytime Sleepiness Associated with Insufficient Sleep

Patterns of Sleepiness in Various Disorders of Excessive Daytime Somnolence

Diagnostic Accuracy of the Multivariable Apnea Prediction (MAP) Index as a Screening Tool for Obstructive Sleep Apnea

Prediction of sleep-disordered breathing by unattended overnight oximetry

Obstructive sleep apnea (OSA) is characterized by. Quality of Life in Patients with Obstructive Sleep Apnea*

Daytime Alertness in Patients with Chronic Insomnia Compared with Asymptomatic Control Subjects

Polysomnography (PSG) (Sleep Studies), Sleep Center

Automobile Accidents in Patients with Sleep Disorders

Multiple Naps and the Evaluation of Daytime Sleepiness in Patients with Upper Airway Sleep Apnea

INTRINSIC SLEEP DISORDERS. Excessive daytime sleepiness (EDS) is a common complaint. Causes of EDS are numerous and include:

Coding for Sleep Disorders Jennifer Rose V. Molano, MD

The STOP-Bang Equivalent Model and Prediction of Severity

EFFICACY OF MODAFINIL IN 10 TAIWANESE PATIENTS WITH NARCOLEPSY: FINDINGS USING THE MULTIPLE SLEEP LATENCY TEST AND EPWORTH SLEEPINESS SCALE

Stephanie Mazza, Jean-Louis Pepin, Chrystele Deschaux, Bernadette Naegele, and Patrick Levy

Common complaints in obstructive sleep apnea (OSA) include

SLEEP DISORDERED BREATHING The Clinical Conditions

Predictors of Sleepiness in Epilepsy Patients

ATHLETES & PRESCRIBING PHYSICIANS PLEASE READ

Sleepiness: Its Measurement and Determinants

Diabetes & Obstructive Sleep Apnoea risk. Jaynie Pateraki MSc RGN

Disorders of Excessive Daytime Somnolence: Polygraphic and Clinical Data for 100 Patients

FEP Medical Policy Manual

José Haba-Rubio, MD; Jean-Paul Janssens, MD; Thierry Rochat, MD, PhD; and Emilia Sforza, MD, PhD

Sleep Apnea: Vascular and Metabolic Complications

The Familial Occurrence of Obstructive Sleep Apnoea Syndrome (OSAS)

The Epworth Sleepiness Scale (ESS) was developed by Johns

Periodic Leg Movement, L-Dopa, 5-Hydroxytryptophan, and L-Tryptophan

A new beginning in therapy for women

PEDIATRIC SLEEP GUIDELINES Version 1.0; Effective

(To be filled by the treating physician)

Critical Review Form Diagnostic Test

What Is the Moment of Sleep Onset for Insomniacs?

The most accurate predictors of arterial hypertension in patients with Obstructive Sleep Apnea Syndrome

RESEARCH PACKET DENTAL SLEEP MEDICINE

Polysomnography for Obstructive Sleep Apnea Should Include Arousal-Based Scoring: An American Academy of Sleep Medicine Position Statement

Internet Journal of Medical Update

Effect of two types of mandibular advancement splints on snoring and obstructive sleep apnoea

Sleep and the Heart Reversing the Effects of Sleep Apnea to Better Manage Heart Disease

Polysomnography and Sleep Studies

The role of mean inspiratory effort on daytime sleepiness

Index SLEEP MEDICINE CLINICS. Note: Page numbers of article titles are in boldface type.

DECLARATION OF CONFLICT OF INTEREST

Silent Partners: The Wives of Sleep Apneic Patients

Hyperactivity and Polysomnographic Findings in Children Evaluated for Sleep-Disordered Breathing

Periodic limb movements and sleepiness in obstructive sleep apnea patients

Sleep Studies: Attended Polysomnography and Portable Polysomnography Tests, Multiple Sleep Latency Testing and Maintenance of Wakefulness Testing

PORTABLE OR HOME SLEEP STUDIES FOR ADULT PATIENTS:

Sleep Complaints and Disorders in Epileptic Patients 순천향의대천안병원순천향의대천안병원신경과양광익

Obstructive sleep apnoea How to identify?

Obstructive sleep apnea (OSA) is the periodic reduction

NATIONAL COMPETENCY SKILL STANDARDS FOR PERFORMING POLYSOMNOGRAPHY/SLEEP TECHNOLOGY

Sleepiness in Patients with Moderate to Severe Sleep-Disordered Breathing

Guidelines for the Multiple Sleep Latency Test (MSLT): A Standard Measure of Sleepiness *

Nasal pressure recording in the diagnosis of sleep apnoea hypopnoea syndrome

Florence Morisson, MSc, DMD; Anne Décary, PhD; Dominique Petit, PhD; Gilles Lavigne, MSc, DMD; Jacques Malo, MD; and Jacques Montplaisir, MD, PhD

Associations Between Subjective Night Sweats and Sleep Study Findings

Shyamala Pradeepan. Staff Specialist- Department of Respiratory and Sleep Medicine. John Hunter Hospital. Conjoint lecturer University of New Castle.

Assessment of a wrist-worn device in the detection of obstructive sleep apnea

Sleep apnea syndrome (SAS) is a chronic illness

Timing Patterns of Cluster Headaches and Association with Symptoms of Obstructive Sleep A p n e a

The recommended method for diagnosing sleep

Brian Palmer, D.D.S, Kansas City, Missouri, USA. April, 2001

Online Supplement. Relationship Between OSA Clinical Phenotypes and CPAP Treatment Outcomes

Medicare CPAP/BIPAP Coverage Criteria

Basics of Polysomnography. Chitra Lal, MD, FCCP, FAASM Assistant professor of Medicine, Pulmonary, Critical Care and Sleep, MUSC, Charleston, SC

Review of self-reported instruments that measure sleep dysfunction in patients suffering from temporomandibular disorders and/or orofacial pain

SLEEP APNEA SYNDROME AND SNORING IN PATIENTS WITH HYPOTHYROIDISM WITH RELATION TO OVERWEIGHT

Opioids Cause Central and Complex Sleep Apnea in Humans and Reversal With Discontinuation: A Plea for Detoxification

Heather M Engleman, Sascha E Martin, Ruth N Kingshott, Thomas W Mackay, Ian J Deary, Neil J Douglas

The use of overnight pulse oximetry for obstructive sleep apnoea in a resource poor setting in Sri Lanka

Assessment of Sleep Disorders DR HUGH SELSICK

Correlations among Epworth Sleepiness Scale scores, multiple sleep latency tests and psychological symptoms

FEP Medical Policy Manual

Automated analysis of digital oximetry in the diagnosis of obstructive sleep apnoea

Predictive Value of Clinical Features in Diagnosing Obstructive Sleep Apnea

Periodic Leg Movements in Narcolepsy

T he daytime consequences of the obstructive

Management of OSA in the Acute Care Environment. Robert S. Campbell, RRT FAARC HRC, Philips Healthcare May, 2018

A Deadly Combination: Central Sleep Apnea & Heart Failure

Christian Guilleminault and Pierre Philip. Stanford University Sleep Disorders Center, Palo Alto, California, U.S.A.

Daytime Sleepiness and Antihistamines

The Epworth Sleepiness Scale (ESS), which asks an individual

GOALS. Obstructive Sleep Apnea and Cardiovascular Disease (OVERVIEW) FINANCIAL DISCLOSURE 2/1/2017

SLEEP APNOEA DR TAN KAH LEONG ALVIN CO-DIRECTOR SLEEP LABORATORY SITE CHIEF SDDC (SLEEP) DEPARTMENT OF OTORHINOLARYNGOLOGY, HEAD & NECK SURGERY

Sleep Apnea: Diagnosis & Treatment

Circadian Variations Influential in Circulatory & Vascular Phenomena

Sleep and the Heart. Physiologic Changes in Cardiovascular Parameters during Sleep

Sleep and the Heart. Rami N. Khayat, MD

Simple diagnostic tools for the Screening of Sleep Apnea in subjects with high risk of cardiovascular disease

Morbidity and mortality of sleep-disordered breathing: obstructive sleep apnoea and car crash

Sleep Bruxism and Sleep-Disordered Breathing

Obstructive Sleep Apnoea. Dr William Man Thoracic and Sleep Medicine, Harefield Hospital

Efremidis George, Varela Katerina, Spyropoulou Maria, Beroukas Lambros, Nikoloutsou Konstantina, and Georgopoulos Dimitrios

New Government O2 Criteria and Expert Panel. Jennifer Despain, RPSGT, RST, AS

QUESTIONS FOR DELIBERATION

The Effect of Altitude Descent on Obstructive Sleep Apnea*

One Negative Polysomnogram Does Not Exclude Obstructive Sleep Apnea*

In-Patient Sleep Testing/Management Boaz Markewitz, MD

Key words: Medicare; obstructive sleep apnea; oximetry; sleep apnea syndromes

O bstructive sleep apnoea-hypopnoea (OSAH) is a highly

Transcription:

Sleepiness, Fatigue, Tiredness, and Lack of Energy in Obstructive Sleep Apnea* Ronald D. Chervin, MD, MS Study objectives: Sleepiness is a key symptom in obstructive sleep apnea syndrome (OSAS) and can be objectively assessed with a multiple sleep latency test (MSLT). We studied the terms that patients prefer to describe their symptoms sleepiness, fatigue, tiredness, or lack of energy and how these terms relate to objective findings. Design: Observational. Setting: University-based sleep laboratory. Patients: Consecutive OSAS patients referred for diagnostic polysomnography and an MSLT. Methods: Data were obtained from sleep studies and questionnaires. Results: Subjects included 117 men and 73 women, with a mean ( SD) age of 49 13 years, an apnea and hypopnea rate of 32 28/h of sleep, and an MSLT mean sleep latency of 7 5 min. Subjects more frequently reported problems with fatigue, tiredness, and lack of energy than sleepiness (57%, 61%, and 62% vs 47%). When required to select the one most significant symptom, more patients chose lack of energy (about 40%) than any other problem, including sleepiness (about 22%). Objective measures of sleepiness and apnea severity showed little or no association with any symptom, but female gender showed significant associations with each. Conclusions: Complaints of fatigue, tiredness, or lack of energy may be as important as that of sleepiness to OSAS patients, among whom women appear to have all such complaints more frequently than men. The diagnosis of OSAS should not be excluded based only on a person s tendency to emphasize fatigue, tiredness, or lack of energy more than sleepiness. (CHEST 2000; 118:372 379) Key words: fatigue; lack of energy; multiple sleep latency test; obstructive sleep apnea; polysomnography; sleepiness; symptoms; tiredness Abbreviations: AHI apnea/hypopnea index; CI confidence interval; MSL mean sleep latency; MSLT multiple sleep latency test; OR odds ratio; OSAS obstructive sleep apnea syndrome *From the Sleep Disorders Center and Department of Neurology, University of Michigan, Ann Arbor, MI. Supported in part by NINDS Grant K02 NS02009. Manuscript received November 4, 1999; revision accepted March 17, 2000. Correspondence to: Ronald D. Chervin, MD, MS, Sleep Disorders Center, University Hospital 8D8702, Box 0117, 1500 E. Medical Center Dr, Ann Arbor, MI 48109-0117; e-mail: chervin@umich.edu The complaint of excessive daytime sleepiness is well established as an important clue to the presence of a range of sleep disorders, among which the most common to reach medical evaluation is obstructive sleep apnea syndrome (OSAS). The International Classification of Sleep Disorders 1 lists the complaint of sleepiness or insomnia as part of the minimal criteria required to make a diagnosis of OSAS. OSAS has recently gained recognition as an important public health problem, in part because a large population-based study showed that apneic events occurred at a potentially significant rate during sleep in 24% of adult men and 9% of adult women; the frequency of OSAS was reported as 4% and 2% for the respective genders because only a fraction of persons in each group complained of excessive daytime sleepiness. 2 In clinical practice, to help assess the impact of OSAS and measure sleepiness, sleep laboratories can administer an objective test, often considered to be a gold standard, the multiple sleep latency test (MSLT) in which a short mean sleep latency (MSL) on a series of nap attempts suggests excessive daytime sleepiness. 3,4 Less costly methods are also commonly used, perhaps none more often than the Epworth sleepiness scale, an eight-item questionnaire that asks the patient to rate on a Likert scale the likelihood that he or she would doze in a variety of sedentary situations. 5 Although an emphasis on sleepiness as a feature of OSAS has undoubtedly facilitated identification of some patients with this disorder, OSAS remains 372 Clinical Investigations

undiagnosed in at least 80% of affected men and 90% of affected women. 6 We hypothesized that one potential impediment to diagnosis might also be emphasis on sleepiness, which could discourage further evaluation in patients who express their chief complaint with different terms, in particular, fatigue, tiredness, or lack of energy. Little previous work has investigated what words patients with sleep apnea choose to describe their symptoms, what variables might influence these choices, or what relationships may exist between words that are chosen and objective laboratory measures. We used data from questionnaires, nocturnal polysomnograms, MSLTs, and Epworth sleepiness scales administered in a relatively large clinical sample to examine what words patients prefer in describing their complaints, and to assess the extent to which these words are predicted by objective measures of pathology. Subjects Materials and Methods We used a sleep laboratory database to identify all subjects who met the following criteria: (1) baseline diagnostic full-night polysomnography, performed between April 1, 1997, and August 10, 1998, that demonstrated obstructive sleep apnea as defined by an apnea/hypopnea index (AHI; the number of apneas and hypopneas per hour of sleep) 5; (2) age 18 years; (3) a questionnaire that included items on sleepiness and related symptoms (described below) was completed at the time of polysomnography or within the prior 4 months; (4) an MSLT was performed because sleepiness was suspected on clinical grounds (ie, not on the basis of any more specific screening test, criterion, or questionnaire); and (5) the Epworth sleepiness scale was completed at the time of laboratory testing. Patients who also had narcolepsy (n 2) in addition to sleep apnea were excluded to avoid confounding from this cause of severe daytime sleepiness, but patients with any other comorbid diagnoses were retained because to exclude them would have created a highly selected patient sample and hindered generalization of results to other settings. The inclusion criterion of more than or equal to five apneas or hypopneas per hour of sleep is among the most commonly used to identify obstructive sleep apnea, but alternative thresholds could have been 10 events/h or even 15 events/h. 2 The lower threshold provides a sample with a range of values that is wider and more useful in tests of association with other variables. Furthermore, consensus guidelines recently published recommended an even less stringent criterion, in which the 5 events/h can include episodes of increased upper airway resistance with arousals but no apnea or hypopnea. 7 However, to check whether our results would change appreciably with a more conservative criterion, we also examined data from the subset of subjects who had an AHI 15. Procedures and Measures Nocturnal polysomnography included four EEG leads (C3-A2, C4-A1, O1-A2, O2-A1 of the 10 20 international EEG electrode placement system); two electro-oculographic leads (right and left outer canthi); chin and bilateral anterior tibialis surface electromyograms; two ECG leads; nasal and oral airflow (thermistors); thoracic and abdominal excursion (piezoelectric strain gauges); and finger pulse oximetry. Digital data were acquired and stored electronically (DEEG/TWIN; Telefactor; Conshohocken, PA). Sleep stages were scored in 30-s epochs in accordance with standard criteria 8 by technologists who, after an extensive training program, had correctly scored at least 90% of epochs in a set of reliability records. An apnea was defined as 10sof complete airflow cessation during sleep. An hypopnea was defined as a reduction in airflow, chest excursion, or abdominal excursion that led to a 4% oxyhemoglobin desaturation, an arousal, or an awakening. Minimum oxygen saturation for each study was defined as the lowest artifact-free level recorded during sleep. The MSLTs followed standard methods for collection of EEG, electro-oculogram, and chin electromyogram data. 3 Each patient s MSL was calculated as the time, averaged across all nap attempts, from lights out to the first epoch of stage 1 sleep. On the night before the MSLT, patients also completed the Epworth sleepiness scale. 5 As part of a questionnaire administered to each sleep laboratory patient for clinical purposes, the items listed in Table 1 asked which terms best represented the patient s problem. The author developed these question-items in 1996 and assessed content validity by obtaining opinions of three other academic sleep specialists. Simple parallel wording maximizes face validity for comparisons of how patients use particular terms. Table 1 Questionnaire Items About Sleepiness, Fatigue, Tiredness, and Lack of Energy, and Number of Unambiguous Responses Obtained for Each* Item No. Item Topic Unambiguous Responses, No. 1 Sleepiness is a problem for me. 188 2 Fatigue is a problem for me. 188 3 Tiredness is a problem for me. 189 4 Lack of energy is a problem for me. 190 5 Which most affects your ability to accomplish what you want? 177 6 Which is the worst problem for you? 172 7 If you could be cured completely of only one of these problems, which would you choose? 173 *For items 1 4, answers were provided on a 5-point Likert scale: 1-never, 2-seldom, 3-occasionally, 4-often, 5-almost always. For the last three items, one of four choices could be chosen: (1) sleepiness, (2) fatigue, (3) lack of energy, (4) tiredness. All four choices were self-defined; no supplementary definition was provided. CHEST / 118 / 2/ AUGUST, 2000 373

Statistical Analysis Results were summarized as mean SD or as frequencies. Differences in frequencies were assessed with 2 tests. We used the nonparametric Wilcoxon rank sum test to compare ordinal responses and nonnormally distributed continuous variables between men and women. We used logistic regression to test for associations between the main outcome variables (terms used to describe patients problems) and explanatory variables (objective polysomnographic and MSLT measures, Epworth sleepiness scale, age, and gender). To reduce outcome data to binary variables for logistic regression analysis, responses of often or almost always to items 1 to 4 in Table 1 were coded as 1, and other responses were coded as 0. Patient ratings for each complaint were also combined and tested as aggregate measures in two ways: individual complaint scores were averaged to obtain a mean complaint score, and the maximum Likert-scale response to the four complaint terms was taken as the maximum complaint score. For logistic regression models, patients with mean complaint scores 4 (often) were compared to remaining patients. Patients with maximum complaint scores of 5 (almost always) were also compared to remaining patients. Data were analyzed with computer software (SAS version 6.12; SAS Institute; Cary, NC). Odds ratios (ORs) and, 95% confidence intervals (CIs) were calculated with the profile-likelihood method. In statistical tests, the significance level was set at 0.05. Results Overview A total of 190 subjects met all inclusion criteria. Nearly all provided unambiguous answers to question items 1, 2, 3, and 4 (Table 1), and 90% did so for question items 5, 6, and 7. The mean age of the subjects was 48.6 13.1 years, and 117 subjects (62%) were men. Table 2 summarizes results of main outcome and explanatory measures for the entire group and each gender. On average, patients rated the frequency with which they suffer from sleepiness, fatigue, tiredness, and lack of energy as between occasionally and often, but 138 patients (73%) had at least one of these symptoms often or almost always, and 71 patients (37%) had a problem with at least one symptom almost always. Compared to women, men described less frequent problems with each of these conditions; the difference for sleepiness was the smallest and only attained marginal significance. The mean total recording time during polysomnography was 476 22 min, and the mean total sleep time was 372 63 min. The average patient showed objective evidence of excessive daytime sleepiness, with a MSL (Table 2) within the range reported in disorders that cause excessive daytime sleepiness. 9 The average patient had an abnormally high score (ie, 10) on the Epworth sleepiness scale 5 and a moderate level of obstructive sleep apnea. Men showed somewhat more frequent apneic events than women, but scored lower on the Epworth sleepiness scale. Frequency of Primary Complaints Fatigue, tiredness, and lack of energy were each reported to be a problem often or almost always by more of the patients (57%, 61%, and 62%, respectively) than was sleepiness (47%). Responses to question-items 5, 6, and 7 (Table 1), which in three different ways required patients to express which of the four possible complaints was most significant for them, showed that patients most often considered Table 2 Summary Measures for Outcome and Explanatory Variables* Variables All Subjects (n 190) Men (n 117) Women (n 73) p Value Outcome variables Sleepiness 3.2 (1.3) 3.1 (1.3) 3.4 (1.3) 0.0585 Fatigue 3.5 (1.2) 3.3 (1.2) 3.9 (1.2) 0.0009 Tiredness 3.7 (1.1) 3.4 (1.1) 4.1 (1.0) 0.0001 Lack of energy 3.7 (1.2) 3.4 (1.2) 4.2 (0.8) 0.0001 Mean complaint score 3.5 (1.0) 3.3 (1.1) 3.9 (0.9) 0.0002 Maximum complaint score 4.0 (1.0) 3.7 (1.1) 4.4 (0.8) 0.0001 Explanatory variables MSL, min 7.2 (4.6) 7.0 (4.7) 7.4 (4.5) 0.4840 Epworth sleepiness scale 11.7 (5.0) 10.8 (4.8) 13.2 (4.9) 0.0008 AHI 32.2 (27.9) 35.1 (28.5) 27.5 (26.3) 0.0142 Minimum oxygen saturation, % 84.4 (8.2) 84.2 (8.1) 84.8 (8.3) 0.2795 Age, yr 48.6 (13.2) 49.9 (13.8) 46.5 (11.7) 0.0720 *Data are presented as mean (SD). Wilcoxon rank sum test for difference between men and women. Values shown are means for Likert scale responses, which were reported on a scale of 1 through 5, as indicated in Table 1. 374 Clinical Investigations

lack of energy to be the major problem they faced (p 0.01 in each of three 2 tests for equal frequencies of complaints; Fig 1). Specifically, 44% of patients said that lack of energy most affected their ability to accomplish what they wanted, 36% considered lack of energy to be their worst problem, and 36% said this problem was the one that they were most eager to have cured. In comparison, only 16% of patients said sleepiness was their most limiting symptom, 25% said sleepiness was their worst problem, and 27% said that sleepiness was the one problem that they were most eager to have cured. When required to indicate one primary symptom from the four given choices, men and women showed little difference in the frequencies with which they selected individual terms (Fig 2). To characterize patients with more extreme differences between their reports of sleepiness and reports of other problems, we used data from the 52 patients who indicated that sleepiness was never (n 25) or seldom (n 27) a problem. Among these 52 patients without symptomatic sleepiness, the number of patients who reported that they had fatigue, tiredness, or lack of energy either often or almost always was 14 patients (27%), 14 patients (27%), and 17 patients (33%), respectively. The number with one or more of these three complaints often or almost always was 19 patients (37%). The mean AHI among the 52 patients without symptomatic sleepiness was 31.1 22.0, the minimum oxygen saturation was 83.7 8.5%, the MSL was 8.9 5.2 min, and 35 patients (67%) were men. Variables That Predicted Complaints Table 3 shows the results of simple logistic regression models in which the outcome was presence or absence of the indicated complaint as assessed by dichotomized responses to question-items 1, 2, 3, Figure 1. Frequency of terms as primary complaints. Figure 2. Top: frequency of terms as primary complaints among men. Bottom: frequency of terms as primary complaints among women. and 4 and the explanatory variable was that listed in the first column. Each cell shows the OR, along with its 95% CI, for the presence of the indicated complaint and an increase or decrease in the explanatory variable by about 1 SD. For simplicity, nonsignificant ORs (p 0.05) are left blank. As can be seen in the first row, MSL showed no statistically significant association with any of the four complaints. In analogous models shown in the second row, the Epworth score was significantly associated with sleepiness, tiredness, and lack of energy, but not fatigue. Patients with higher AHIs were no more likely to report frequent sleepiness or lack of energy, but they were marginally less likely to report frequent fatigue and tiredness. Minimum oxygen saturation showed no association with complaints, and age also showed none, except for a marginal association between younger age and frequency of sleepiness. Female gender was associated with a markedly increased frequency of each complaint. Independent associations between each complaint as the outcome and MSL, Epworth score, AHI, minimum oxygen saturation, age, and gender as explanatory variables were tested with multiple logistic regressions that included all the explanatory variables as covariates, except for the Epworth score (because adjustment for a variable that is highly subjective, like the outcomes, would not have been CHEST / 118 / 2/ AUGUST, 2000 375

Table 3 Simple Logistic Regression Models of Patient Complaints on Several Tested Variables* Tested Variables Change Tested Sleepiness Fatigue Tiredness Lack of Energy Mean Complaint Score Maximum Complaint Score MSL Epworth sleepiness scale AHI Minimum oxygen saturation Age Gender 5-min decrease 5-point increase 30-point increase 10%-point decrease 10-yr decrease From male to female 2.5 (1.8 3.6) 1.5 (1.1 2.1) 1.4 (1.0 1.9) 1.9 (1.4 2.6) 1.5 (1.1 2.1) 0.7 (0.5 1.0) 0.7 (0.5 0.9) *Values are given an OR (95% CI). Only statistically significant (p 0.05) ORs are shown. For all variables except gender, approximates 1 SD. 1.3 (1.0 1.6) 1.3 (1.1 1.7) 2.1 (1.2 3.9) 2.8 (1.5 5.3) 3.4 (1.8 6.7) 4.1 (2.1 8.5) 2.4 (1.3 4.4) 2.5 (1.4 4.6) useful). The MSL and the Epworth score showed no independent associations with complaints, with only one exception: the Epworth score was associated with more frequent sleepiness (OR, 2.4; 95% CI, 1.7 to 3.5). The AHI, minimum oxygen saturation, and age showed no independent associations with any complaint, except that the AHI was marginally and inversely associated with fatigue (OR, 0.6; 95% CI, 0.4 to 0.9). In contrast, female gender was independently associated with increased sleepiness (OR, 2.0; 95% CI, 1.1 to 3.8), fatigue (OR, 2.7; 95% CI, 1.4 to 5.3), tiredness (OR, 3.3; 95% CI, 1.7 to 6.6), and lack of energy (OR, 4.2; 95% CI, 2.2 to 8.8). To determine whether women complained of these problems more frequently than men because women perceived their sleepiness better than men, we tested the association of each of the four complaints with the interaction between female gender and MSL. None of the interaction terms reached statistical significance; levels of objective sleepiness were not more strongly associated with levels of complaint among women than among men. Aggregate Measures of Complaints The mean complaint scores and maximum complaint scores, dichotomized as described in the Methods section to represent presence or absence of symptoms, generally did not show stronger associations with explanatory variables than did individual complaints (Table 3, last two columns). In particular, MSL failed to show a statistically significant association with either mean or maximum complaint scores (OR, 1.0; 95% CI, 0.7 to 1.4 for each, not shown in Table 3), as did the AHI and the minimum oxygen saturation. Alternative Criterion for Obstructive Sleep Apnea When the analyses were limited to the subset of subjects with AHI 15 (n 125; mean age, 46.5 12.3 years; male subjects, 66%), the relative frequencies of the four complaints remained unchanged: fatigue, tiredness, and lack of energy were still each reported to be a problem often or almost always by more of the patients (53%, 57%, and 59%, respectively) than was sleepiness (42%). Furthermore, the four complaints were each selected as most significant (most limiting accomplishments, constituting the worst problem, and most important to eliminate) with frequencies that were nearly identical to those displayed by the entire sample (Fig 1). Within the subgroup, relative strengths of association between each of the four complaints and the independent variables listed in first column of Table 3 remained unaltered, and no tested association that failed to reach significance in the overall sample attained significance in the subgroup analysis. Discussion This study demonstrates that even when sleepiness is suspected for clinical reasons, OSAS patients may choose different words in particular, fatigue, tiredness, or lack of energy to describe their problem. We found that the proportion of patients who preferred the term sleepiness to describe their primary problem was only about 22%, while about 40% preferred lack of energy, 18% preferred fatigue, and 20% preferred tiredness. Furthermore, the level of each complaint generally showed no association with objective, gold-standard polysomnographic mea- 376 Clinical Investigations

sures of apnea severity or daytime sleepiness. Some associations were identified between complaints and results of the subjective Epworth sleepiness scale, but the best identified predictor of levels of complaints was gender; women complained of significantly higher levels of all four studied complaints. The lack of statistically significant associations between objective measures of OSAS severity and levels of subjective fatigue, tiredness, and lack of energy may not be surprising, but the absence of an association with subjective sleepiness is more difficult to explain. However, we have also made the latter observation in the past among other OSAS patients. 10 12 In contrast to objective measures of sleepiness, the current Epworth sleepiness scale scores were associated with complaints (at least before adjustment for other variables), consistent with previous findings for the complaint of sleepiness. 10 The lack of a substantial correlation between the Epworth scale and MSLT results, as implied by our current findings, is consistent with recent results of the largest series yet to explore this relationship among patients evaluated for OSAS. 12 Discrepancies between objective measures of OSAS and subjective complaints raise the possibility that the objective measures are to some extent incomplete or inadequate. However, the AHI and extent of oxygen desaturation recorded during polysomnography have proved to be sensitive correlates of risk factors for OSAS, such as obesity, 2,13 and of possible consequences such as hypertension 14 and cognitive deficits. 15,16 Similarly, the MSLT MSL has been shown to correlate with previous sleep deprivation, 17 20 and with the presence of disorders known to cause excessive sleepiness, 9,21 although the few studies of MSLT results in relation to expected long-term outcomes, such as motor vehicle accidents, have not shown a clear association. 22 Rather than a deficiency of standard objective measures, a more likely explanation for the absence of associations with patient complaints is that the daytime subjective consequences of obstructive sleep apnea are more complicated and less precise than physiologic sleep tendency measured by an MSLT. 23 Patients appear to use the complaints we studied in ways that should not be prejudged to carry diagnostic significance. We did not study excessive sleepiness as determined by detailed inquiry into sedentary activities, sleep schedules, and functional limitations; clinicians who diligently pose these questions in an effort to separate true sleepiness from fatigue, tiredness, or lack of energy may find more benefit than we could show with a simple questionnaire. However, some such clinicians may also miss the point that any of these problems, all of which are important to patients, can stem from the same chronic sleep disorder. Questions recommended in some texts 24 as useful in identification of true sleepiness often resemble those included in the Epworth scale, which among our patients showed no better association with objective measures of sleepiness than did patient complaints. We speculate that neurophysiologic changes that result from disrupted sleep may well include more than one possible manifestation. 25 In contrast to objective measures of apnea severity, male gender showed strong associations with lower levels of complaints. Compared to women, men often have more severe sleep apnea, indistinguishable MSLs on MSLTs, and less subjective sleepiness as measured by the Epworth sleepiness scale. 12 The current findings suggest that the gender discrepancy in symptom reports is even more pronounced for fatigue, tiredness, and lack of energy than for sleepiness. One potential explanation a less accurate perception of physiologic sleepiness among men was not supported by our finding that gender had no influence on the degree of association between subjective sleepiness and MSL. We suspect that cultural influences may make men less willing than women to admit that they have any of the problems we asked about. In support of this alternative explanation, when our male patients were required to select the one most applicable symptom, they chose specific terms in relative frequencies that were nearly identical to those produced by women. Finally, our findings also could be consistent with an as yet undiscovered, gender-based neurophysiologic bias in the way that daytime effects of disturbed sleep are perceived. To our knowledge, the present study is the first to directly compare patients preferences for terms that describe their main problem in untreated OSAS. Early reports suggested that sleepiness stems from nocturnal sleep deprivation or disruption seen in OSAS, 26,27 and many investigators originally referred to the syndrome as the hypersomnia sleep apnea syndrome. 1 Although the MSLT was developed and validated primarily with experimental sleep deprivation paradigms, the test was soon applied to the evaluation of OSAS patients, and widespread clinical use may have helped foster the idea that sleepiness was the relevant daytime complaint if any was to be found. The current edition of the International Classification of Sleep Disorders contains a description of OSAS, suggests criteria for its diagnosis, and reviews associated symptoms from loss of libido to morning headaches, but the entry does not mention fatigue, tiredness, or lack of energy. 1 A common lesson in medical education is that a complaint of excessive sleepiness raises the possibility of a sleep disorder, while complaints of fatigue, tiredness, or lack of energy tend to suggest other CHEST / 118 / 2/ AUGUST, 2000 377

psychiatric and medical diagnoses, for example depression and hypothyroidism. Widely used medical textbooks may not give a differential diagnosis for fatigue; those that do, often omit OSAS. 28,29 Although our study did not explore complaints among patients with conditions other than OSAS, our findings and the known high prevalence of undiagnosed obstructive sleep apnea suggest that the often-taught diagnostic dichotomy between sleepiness and other complaints may obscure appropriate diagnoses in a substantial number of patients. Some previous studies of chronic fatigue syndrome have suggested that sizable numbers of patients with this diagnosis have occult sleep disorders such as OSAS. 30 32 Among our patients who denied having more than seldom problems with sleepiness, more than a third reported that problems with fatigue, tiredness, or sleepiness occurred often or almost always. In conclusion, our finding that fatigue, tiredness, or lack of energy was the complaint that most concerned three fourths or more of our OSAS patients has several important implications for education, clinical work, and research. These symptoms merit some discussion in OSAS descriptions and diagnostic criteria. Clinicians who do not realize that OSAS patients sometimes express their problem in words other than sleepiness may miss a diagnosis believed to have important effects on quality of life, cardiovascular health, and mortality. Research studies on OSAS should not necessarily exclude patients who complain of fatigue, tiredness, or lack of energy instead of sleepiness. Population-based studies of OSAS in the past may have significantly underestimated its prevalence because case ascertainment required a complaint of sleepiness. 2 Future studies of OSAS should include assessment of complaints such as fatigue, tiredness, and lack of energy in addition to sleepiness. In particular, further study will be needed to confirm that complaints other than sleepiness also improve with treatment for OSAS. 33 References 1 American Sleep Disorders Association. International classification of sleep disorders, revised: diagnostic and coding manual. Rochester, MN: American Sleep Disorders Association, 1997; 1 401 2 Young T, Palta M, Dempsey J, et al. The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med 1993; 328:1230 1235 3 Carskadon MA, Dement WC, Mitler MM, et al. Guidelines for the multiple sleep latency test (MSLT): a standard measure of sleepiness. Sleep 1986; 9:519 524 4 American Sleep Disorders Association. The clinical use of the multiple sleep latency test. Sleep 1992; 15:268 276 5 Johns MW. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep 1991; 14:540 545 6 Young T, Evans L, Finn L, et al. Estimation of the clinically diagnosed proportion of sleep apnea syndrome in middleaged men and women. Sleep 1997; 20:705 706 7 American Academy of Sleep Medicine Task Force. Sleeprelated breathing disorders in adults: recommendations for syndrome definition and measurement techniques in clinical research. Sleep 1999; 22:667 689 8 Rechtschaffen A, Kales A. A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. Los Angeles, CA: Brain Information Service/ Brain Research Institute, UCLA, 1968; 1 12 9 Van den Hoed J, Kraemer HC, Guilleminault C, et al. Disorders of excessive daytime somnolence: polygraphic and clinical data for 100 patients. Sleep 1981; 4:23 37 10 Chervin RD, Aldrich MS, Pickett R, et al. Comparison of the results of the Epworth sleepiness scale and the Multiple Sleep Latency Test. J Psychosom Res 1997; 42:145 155 11 Chervin RD, Kraemer HC, Guilleminault C. Correlates of sleep latency on the multiple sleep latency test in a clinical population. Electroencephalogr Clin Neurophysiol 1995; 95:147 153 12 Chervin RD, Aldrich MS. The Epworth sleepiness scale may not reflect objective measures of sleepiness or sleep apnea. Neurology 1999; 52:125 131 13 Olson LG, King MT, Hensley MJ, et al. A community study of snoring and sleep-disordered breathing prevalence. Am J Respir Crit Care Med 1995; 152:711 716 14 Young T, Peppard P, Palta M, et al. Population-based study of sleep-disordered breathing as a risk factor for hypertension. Arch Intern Med 1997; 157:1746 1752 15 Cheshire K, Engleman H, Deary I, et al. Factors impairing daytime performance in patients with sleep apnea/hypopnea syndrome. Arch Intern Med 1992; 152:538 541 16 Kim HC, Young T, Matthews CG, et al. Sleep-disordered breathing and neuropsychological deficits: a population-based study. Am J Respir Crit Care Med 1997; 156:1813 1819 17 Carskadon MA, Harvey K, Dement WC. Sleep loss in young adolescents. Sleep 1981; 4:299 312 18 Carskadon MA, Dement WC. Sleep loss in elderly volunteers. Sleep 1985; 8:207 221 19 Carskadon MA, Dement WC. Cumulative effects of sleep restriction on daytime sleepiness. Psychophysiology 1981; 18:107 113 20 Carskadon MA, Dement WC. Effects of total sleep loss on sleep tendency. Percept Mot Skills 1979; 48:495 506 21 Zorick F, Roehrs T, Koshorek G, et al. Patterns of sleepiness in various disorders of excessive daytime somnolence. Sleep 1982; 5(Suppl 2):S165 S174 22 Aldrich MS. Automobile accidents in patients with sleep disorders. Sleep 1989; 12:487 494 23 Carskadon MA, Dement WC. The multiple sleep latency test: what does it measure? Sleep 1982; 5:S67 S72 24 Fletcher EC. Sleep apnea syndrome, hypersomnolence, and other sleep disorders. In: Kelley WN, DuPont HL, Glich JH, et al, eds. Textbook of internal medicine. Philadelphia, PA: Lippincott-Raven, 1997; 2077 2081 25 Chervin RD, Guilleminault C. Assessment of sleepiness in clinical practice. Nature Med 1995; 1:1252 1253 26 Guilleminault C, Tilkian A, Dement WC. The sleep apnea syndromes. Ann Rev Med 1976; 27:465 484 27 Guilleminault C, Eldridge FL, Tilkian A, et al. Sleep apnea syndrome due to upper airway obstruction: a review of 25 cases. Arch Intern Med 1977; 137:296 300 28 Plum F. Asthenia, weakness, and fatigue. In: Wyngaarden JB, Smith LH, Bennett JC, eds. Cecil textbook of medicine. Philadelphia, PA: WB Saunders, 1997; 2027 2028 29 Adams RD, Victor M, Ropper AH. Fatigue, asthenia, anxiety, 378 Clinical Investigations

and depressive reactions. In: Principles of neurology. New York, NY: McGraw-Hill, 1997; 497 507 30 Buchwald D, Pascualy R, Bombardier C, et al. Sleep disorders in patients with chronic fatigue. Clin Infect Dis 1994; 18(Suppl 1):S68 S72 31 Krupp LB, Jandorf L, Coyle PK, et al. Sleep disturbance in chronic fatigue syndrome. J Psychosom Res 1993; 37:325 331 32 Morriss R, Sharpe M, Sharpley AL, et al. Abnormalities of sleep in patients with the chronic fatigue syndrome. BMJ 1993; 306:1161 1164 33 Engleman HM, Martin SE, Kingshott RN, et al. Randomised placebo controlled trial of daytime function after continuous positive airway pressure (CPAP) therapy for the sleep apnoea/ hypopnoea syndrome. Thorax 1998; 53:341 345 CHEST / 118 / 2/ AUGUST, 2000 379