Case Report Early and Late Endograft Limb Proximal Migration with Resulting Type 1b Endoleak following an EVAR for Ruptured AAA

Similar documents
Case Report Late Type 3b Endoleak with an Endurant Endograft

Case Report A Case of Successful Coil Embolization for a Late-Onset Type Ia Endoleak after Endovascular Aneurysm Repair with the Chimney Technique

THE ENDURANT STENT GRAFT IN HOSTILE ANEURYSM NECK ANATOMY

Improving Endograft Durability with EndoAnchors

Endovascular Repair o Abdominal. Aortic Aneurysms. Cesar E. Mendoza, M.D. Jackson Memorial Hospital Miami, Florida

Feasibility of aortic neck anatomy for endovascular aneurysm repair in Korean patients with abdominal aortic aneurysm

3. Endoluminal Treatment of Infrarenal Abdominal Aortic Aneurysm

How to select FEVAR versus EVAR + endoanchors in short-necked AAAs

Technique and Tips for Complicated AAA Cases with Stent Graft

Nellix Endovascular System: Clinical Outcomes and Device Overview

My personal experience with INCRAFT in standard and challenging cases

Case Report Chimney-Graft as a Bail-Out Procedure for Endovascular Treatment of an Inflammatory Juxtarenal Abdominal Aortic Aneurysm

Disclosures. EVAR follow-up: actual recommendation. EVAR follow-up: critical issues

Bifurcated system Proximal suprarenal stent Modular (aortic main body and two iliac legs) Full thickness woven polyester graft material Fully

Important Update to Field Safety Notice Nellix EndoVascular Aneurysm Sealing System Updated Instructions for Use (IFU)

Abdominal and thoracic aneurysm repair

Peter I. Kalmar, 1 Peter Oberwalder, 2 Peter Schedlbauer, 1 Jürgen Steiner, 1 and Rupert H. Portugaller Introduction. 2.

Research Article Survival Comparison of Patients Undergoing Secondary Aortic Repair

Research Article Comparison of Colour Duplex Ultrasound with Computed Tomography to Measure the Maximum Abdominal Aortic Aneurysmal Diameter

Hostile Neck During EVAR, The Role Of Endoanchores

symptomatic aneurysms or aneurysms that grow >1cm/yr

Management of Endoleaks

Abdominal Aortic Aneurysms. A Surgeons Perspective Dr. Derek D. Muehrcke

ENCORE, a Study to Investigate the Durability of Polymer EVAR with Ovation A Contemporary Review of 1296 Patients

Anatomical challenges in EVAR

Anatomy-Driven Endograft Selection for Abdominal Aortic Aneurysm Repair S. Jay Mathews, MD, MS, FACC

Analysis of Type IIIb Endoleaks Encountered with Endologix Endografts

How to Categorize the Infrarenal Neck Properly? I Van Herzeele Dept. Thoracic and Vascular Surgery, Ghent University, Belgium

Hostile Proximal Neck: A New Conformable EVAR Device

GORE EXCLUDER AAA Endoprosthesis demonstrates long-term durability. Michel Reijnen Rijnstate Hospital Arnhem, The Netherlands

Case Report Tortuous Common Carotid Artery: A Report of Four Cases Observed in Cadaveric Dissections

Predictors of abdominal aortic aneurysm sac enlargement after EVAR Longterm results from the ENGAGE Registry

History of the Powerlink System Design and Clinical Results. Edward B. Diethrich Arizona Heart Hospital Phoenix, AZ

Considerations for a Durable Repair

From 1996 to 1999, a total of 1,193 patients with

MODERN METHODS FOR TREATING ABDOMINAL ANEURYSMS AND THORACIC AORTIC DISEASE

A New EVAR Device for Infrarenal AAAs

SANWICH TECHNIQUE TO REDUCE COMPLICATIONS WHEN TREATING BILATERAL INTERNAL ILIAC ARTERY

Percutaneous Approaches to Aortic Disease in 2018

Robert F. Cuff, MD FACS SHMG Vascular Surgery

Chungbuk Regional Cardiovascular Center, Division of Cardiology, Departments of Internal Medicine, Chungbuk National University Hospital Sangmin Kim

Case Report Endovascular Repair of a Large Profunda Femoris Artery Pseudoaneurysm

Eccentric stent graft compression: An indicator of insecure proximal fixation of aortic stent graft

Access More Patients. Customize Each Seal.

Conflicts of Interest. When and Why Complex EVAR in Tx of juxta/suprarenal AAA? Summary. Infrarenal EVAR for short necks 2y postop

Mid-term results from ANCHOR: How does this data influence the treatment algorithm for hostile EVAR anatomies

Endovascular Aneurysm Sealing System for Treating Abdominal Aortic Aneurysms: Early Outcomes from a Single Center

Treating very short necks ( 4mm <10mm) using the Endurant stent graft + EndoAnchors: 1-year results and current insights

Challenging anatomies demand versatility.

Description. Section: Surgery Effective Date: April 15, Subsection: Surgery Original Policy Date: December 6, 2012 Subject:

Abdominal Aortic Aneurysm (AAA)

Influence of patient selection and IFU compliance on outcomes following EVAS

Management of Endoleaks. Michael Meuse, M.D Vascular and Interventional Radiology 12/14/09

Challenges. 1. Sizing. 2. Proximal landing zone 3. Distal landing zone 4. Access vessels 5. Spinal cord ischemia 6. Endoleak

Aortic Neck Issues Associated Clinical Sequelae/Implications for Graft Choice

Tips and techniques for optimal stent graft placement in angulated aneurysm necks

EVAR replaced standard repair in most cases. Why?

Right Choice for Right Angles

Talent Abdominal Stent Graft

Young-Guk Ko, M.D. Severance Cardiovascular Hospital, Yonsei University Health System,

Taming The Aorta. David Minion, MD Program Director, Vascular Surgery University of Kentucky Medical Center Lexington, Kentucky, USA

RadRx Your Prescription for Accurate Coding & Reimbursement Copyright All Rights Reserved.

Standardization of the CHEVAR procedure: How a standard approach has improved outcomes. Prof Peter Holt St George s, London

COMBINED TECHNIQUE CHIMNEY + FENESTRATED ENDOGRAFT FOR COMPLEX ANEURYSMS ERIC DUCASSE - MD PHD FEVBS CHU BORDEAUX

Research Article Abdominal Aortic Aneurysms and Coronary Artery Disease in a Small Country with High Cardiovascular Burden

Case Report 1. CTA head. (c) Tele3D Advantage, LLC

Durable outcomes. Proven performance.

LOWERING THE PROFILE RAISING THE BAR

Optimizing Accuracy of Aortic Stent Grafts in Short Necks

Cook Medical. Zenith Flex AAA Endovascular Graft with Z-Trak Introduction System Physician Training

Treatment options of late failures of EVAS. Michel Reijnen Rijnstate Arnhem The Netherlands

EndoVascular Aneurysm Sealing (EVAS) with Nellix

Increased Flexibility of AneuRx Stent-Graft Reduces Need for Secondary Intervention Following Endovascular Aneurysm Repair

Type 1a Endoleak in hostile neck anatomies: Endoanchor can fix it! D. Böckler University Hospital Heidelberg, Germany

Prospective Study of the E-liac Stent Graft System in Patients with Common Iliac Artery Aneurysm: 30-Day Results

Current Status of EVAR for Infrarenal AAA. 31 st Annual Florida Vascular Society. PENN Surgery

Use of Aptus Heli-FX EndoAnchor implants with standard endografts to strengthen seal in hostile anatomies:

Durability of The Endurant Stent-Graft through 5 Years

14F OD Ovation Abdominal Stent Graft System

Bilateral use of the Gore IBE device for bilateral CIA aneurysms and a first interim analysis of the prospective Iceberg registry

The Distal Seal Zone in AAA Repair A facet of EVAR that is not to be overlooked.

Management of Endoleaks

Ultrasound Evaluation after EVAR: (Trying to) Let the CAT Scan Out of the Bag

TriVascular Ovation Prime Abdominal Stent Graft System

NEW INNOVATIONS IN ENDOLEAK MANAGEMENT

An Overview of Post-EVAR Endoleaks: Imaging Findings and Management. Ravi Shergill BSc Sean A. Kennedy MD Mark O. Baerlocher MD FRCPC

Ovation. Sean Lyden, MD Department Chair, Vascular Surgery Cleveland Clinic

BC Vascular Day. Contents. November 3, Abdominal Aortic Aneurysm 2 3. Peripheral Arterial Disease 4 6. Deep Venous Thrombosis 7 8

Zenith Renu AAA Converter Graft. Device Description Planning and Sizing Deployment Sequence Patient Follow-Up

CHALLENGING ILIAC ACCESSES AND THROMBOSIS PREVENTION

FEVAR FIFTEEN YEARS OF EFFICIENCY E.DUCASSE MD PHD FEBVS CHU DE BORDEAUX

Is EVAS a proper choice in women?

Experience of endovascular procedures on abdominal and thoracic aorta in CA region

Stanford Division of Vascular Surgery

Trattamento Endovascolare degli Aneurismi dell Aorta Addominale con Colletto Prossimale Ostile:

When to use standard EVAR with EndoAnchors or CHEVAR in short-neck AAAs LINC ASIA 18

EVAS How does this Impact EVAR Therapy

EVAS using Nellix in my practice Where are we today?

What's on the Horizon for AAA: Unilateral & Percutaneous, "UP-EVAR" System Zoran Rancic M.D., Ph.D.

The Ventana Off-the-Shelf Graft for Pararenal AAA. Andrew Holden Associate Professor of Radiology Auckland Hospital

Transcription:

Hindawi Case Reports in Vascular Medicine Volume 2017, Article ID 4931282, 5 pages https://doi.org/10.1155/2017/4931282 Case Report Early and Late Endograft Limb Proximal Migration with Resulting Type 1b Endoleak following an EVAR for Ruptured AAA Patrick T. Jasinski, Demetri Adrahtas, Spyridon Monastiriotis, and Apostolos K. Tassiopoulos Division of Vascular and Endovascular Surgery, Stony Brook Medicine, Stony Brook, NY, USA Correspondence should be addressed to Apostolos K. Tassiopoulos; apostolos.tassiopoulos@stonybrook.edu Received 20 October 2016; Accepted 9 January 2017; Published 31 January 2017 Academic Editor: Jaw-Wen Chen Copyright 2017 Patrick T. Jasinski et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Introduction. Seal zone failure after EVAR leads to type 1 endoleaks and increases the risk of delayed aortic rupture. Type 1b endoleaks,althoughrare,representatruerisktotherepair.case Presentation. We report the case of a 65-year-old female who underwent emergent endovascular repair for a ruptured infrarenal abdominal aortic aneurysm and developed bilateral type 1b endoleaks following proximal migration of both endograft limbs. The right-side failure was diagnosed within 48 hours from the initial repair and the left side at the 1-year follow-up. Both sides were successfully treated with endovascular techniques. A review of the literature with an analysis of potential risk factors is also reported. Conclusion. For patients undergoing EVAR for ruptured AAA and with noncalcified iliac arteries, more aggressive oversizing of the iliac limbs is recommended to prevents distal seal zone failures. 1. Introduction Seal zone integrity is a major determinant of the success rate of endovascular aortic aneurysm repair (EVAR). Several risk factors including neck dilatation, neck thrombus, calcifications endograft size mismatch, and endograft migration may contribute to the failure of the seal zone and subsequent type 1 endoleaks. Although less frequently described, distal seal zone failures and type 1b endoleaks represent a true threat for EVAR failure and post-evar aortic rupture. 2. Case Report A 65-year-old female with a known history of abdominal aortic aneurysm (AAA) and nephrolithiasis had avoided elective repair for years. She presented to the emergency department with severe abdominal and back pain and hypotension and was found on CT angiography to have a contained rupture of her infrarenal aneurysm that measured 7.9 cm in diameter and had significant proximal neck and iliac angulation (Figure 1). The anatomy was deemed suitable for EVAR (proximal aortic diameter 19 mm, aortic neck length 40 mm; LCIA: proximal 17 mm, distal 14 mm, length 42 mm; RCIA: proximal 12 mm, distal 14 mm, length 40 mm). Iliac tortuosity index was calculated demonstrating mild tortuosity on the left side and absent tortuosity on the right side (1.44 and 1.21, resp.) [1, 2]. Endovascular repair was carried out with a Medtronic Endurant bifurcated endograft (23 16 166 mm) which was delivered via the right common femoral artery. The contralateral limb was deployed with its distal end landing approximately 1 cm from the left common iliac artery bifurcation. At the completion arteriogram, no endoleak was identified and the distal ends of the iliac limbs were confirmed withacentimeterwithinthebifurcationoftheiliacarteries (Figure 2). The patient s hemodynamics normalized and she was transferred postoperatively to the ICU for monitoring. On postoperative day 2, the patient became hypotensive again and was found to have clinical signs of ongoing

2 Case Reports in Vascular Medicine (a) (b) Figure 1: Computed tomography angiogram of ruptured AAA at initial presentation to the emergency department. (a) Three-dimensional reconstruction of the aneurysm sac. (b) Corresponding cross-sectional demonstrating rupture of AAA with active extravasation of contrast into the retroperitoneum. Figure 2: Intraoperative aortogram at the initial procedure showing the correct placement of the endograft and limbs bilaterally. hemorrhage. A repeat CTA was performed and concern for a type 1b endoleak at the distal end of the right common iliac artery limb was raised with high suspicion of active hemorrhage within the retroperitoneum. Further review of the CTA demonstrated proximal migration of the right limb with a significant decrease in the length of the seal zone (Figure 3). The patient was immediately transferred to the operating room and a retrograde arteriogram confirmed the righttype1bendoleak(figure4).therightendograftlimb was extended distally to the right common iliac bifurcation with complete sealing of the endoleak. The patient was discharged a week later and follow-up CTs at 1 and 6 months showed regression of the aneurysm sac without evidence of type 1 or type 3 endoleaks. A small type 2 endoleak from a pair of lumbar arteries was seen. Figure 3: Computed tomography angiography performed on postoperative day 2 demonstrating the proximal migration of the right endograft limb (arrow). At the 12-month CT, however, enlargement of the aneurysm sac with suggestion of a new left type 1b endoleak and persistence of the type 2 endoleak was seen. Proximal migration of the left limb of the endograft was documented by comparison of the 12-month CTA images to the intraoperative arteriogram during the original repair and the subsequent CTA images at 1 and 6 months (Figure 5). The new type 1b endoleak was repaired by extension of the left endograft limb to the iliac bifurcation. A CT angiogram 6 months later confirmed complete resolution of the type 1b endoleak and a stable size of the aneurysm sac (Figure 6). 3. Discussion EVAR is a widely used approach for treating abdominal aortic aneurysms with excellent perioperative outcomes in

Case Reports in Vascular Medicine 3 (a) (b) (c) Figure 4: Intraoperative angiogram on postoperative day 2 demonstrating the acute proximal migration in the right common iliac artery resulting from the large aneurysm sac and the postimplantation change of the aortic anatomy. (a) (b) Figure 5: Follow-up at 12 months demonstrates a proximal migration of the left endograft limb (asterisk) on three-dimensional reconstruction of the CTA (a), leading to a type 1b endoleak as demonstrated in the aortogram (b). Figure 6: Surveillance follow-up CTA at 18 months. Three-dimensional reconstruction demonstrates the correct placement of the bilateral iliac limbs at the seal zones without evidence of endoleaks.

4 Case Reports in Vascular Medicine Figure 7: Sagittal view of computed tomography performed at 1, 6, and 12 months of follow-up demonstrating the anterior displacement of the aortic endograft. both elective and emergency procedures. However, longterm complications such as endoleaks, device migration, graft infection, and delayed rupture may threaten the initial success of the repair [3, 4]. Type 1 endoleaks result from failure of the seal zones at the proximal (Ia) or distal (Ib) attachment sites of the endograft and may be evident at the time of the repair or develop over time [5]. A number of risk factors for seal zone failure have been reported including size mismatch between the endograft and the aorta, the presence of mural thrombus or calcifications at thesealzones,andproximalneckchallenges(shortlength, increased angulation, and reversed tapering) [5, 6]. When recognized, type 1 endoleaks should be repaired to avoid persistent exposure of the aneurysm sac to the systemic circulationandpressurizationasthismayleadtofurther growth and late rupture of an aneurysm [7, 8]. In recent years, less aggressive oversizing of the endograft limbs has been suggested to reduce the risk of limb occlusions and retrograde displacement as a result of the pulsatile flow [8, 9]. Migrations of the iliac limb extensions have been well described in the current literature [10]. In a prospective twocenter analysis by Bisdas et al., the investigators examined the durability of the Endurant endograft in 273 all-comers. Device migration was reported in only 2 patients, leading to a type 1b endoleak at 49 and 53 months as a result of iliac artery aneurysmal progression [11]. Zandvoort et al. studied outcomes following EVAR in 100 consecutive patients and published their 4-year results. Although no graft migration was reported, treatment for type 1b endoleak was necessary for 5 patients and resulted from worsening of iliac aneurysmal disease [12]. Two other studies have reported excellent results with regard to type 1 endoleaks using the Medtronic system [13, 14]. Although type 1 endoleaks were significantly higher with challenging neck anatomy at 30 days, no significant difference was reported at 1 year. Our patient was treated expeditiously due to her acute presentation. She had a large aneurysm sac with relatively short and angulated common iliac arteries (Figure 1). She developedearlylimbmigrationontherightsideandatype 1b endoleak within 48 hours despite appropriate landing of the endograft limb during the initial procedure as seen in Figure 2. We measured a proximal migration of at least 2.5 cm on that side within 48 hours from the repair. The diameter of the endograft limb that we utilized was oversized by 1.8 mm compared to the diameter of the common iliac arteries (common iliac artery diameter was 14.2 mm bilaterally; endograft limb diameter was 16 mm at the original repair). When measuring the diameter of the iliac arteries at 6 months after the intervention, the vessel diameter was slightly higher measuring 1.56 cm on the right and 1.54 cm on the left side. We speculate that this discrepancy is likely due to the fact that the original CT scan images were obtained while the patient was hypotensive as a result of the rupture and deliberately kept underresuscitated to avoid further blood loss prior to the repair. We believe that this led us to underestimate the true diameter of the iliac arteries and only minimally oversize the endograft limbs. The usual practice is to oversize the endograft by 10 to 15% at the proximal seal zone and 1 to 4 mm at the distal seal zone. We believe that the true diameter of the iliac arteries was underestimated in this patient as a result of vasoconstriction leading to the early migration of the inadequately oversized iliac limbs. In addition, over the course of the first year after initial implantation, serial CT scans demonstrate a progressive anterior displacement of the endograft up to the point where the endograft limbs reach the anterior aneurysm wall (Figure 7). Although this anterior displacement clearly contributed to the proximal migration of the endograft, we assume that the minimal oversizing of the endograft limbs comparing to the true diameter of the iliac arteries was also a significant factor predisposing to proximal limb migration.

Case Reports in Vascular Medicine 5 4. Conclusion We suggest that in patients with ruptured AAA and noncalcified iliac arteries who are considered for endovascular repair more aggressive oversizing of the iliac limbs could potentially prevent distal seal zone failures. This report also underscores the need for ongoing aneurysm surveillance in these patients as aortic remodeling can contribute to endograft-related complications. Competing Interests The authors declare no competing interests related to this paper. References [1] P. G. Johnson, C. R. Chipman, S. S. Ahanchi, J. H. Kim, D. J. Dexter, and J. M. Panneton, A case-matched validation study of anatomic severity grade score in predicting reinterventions after endovascular aortic aneurysm repair, Vascular Surgery, vol. 58, no. 3, pp. 582 588, 2013. [2] W.-S. Yun and K. Park, Iliac anatomy and the incidence of adjunctive maneuvers during endovascular abdominal aortic aneurysm repair, Annals of Surgical Treatment and Research, vol. 88, no. 6, pp. 334 340, 2015. [3] I. M. Nordon, A. Karthikesalingam, R. J. Hinchliffe, P. J. Holt, I. M. Loftus, and M. M. Thompson, Secondary interventions following endovascular aneurysm repair (EVAR) and the enduring value of graft surveillance, European Vascular and Endovascular Surgery,vol.39,no.5,pp.547 554,2010. [4] M. Prinssen, E. L. G. Verhoeven, J. Buth et al., A randomized trial comparing conventional and endovascular repair of abdominal aortic aneurysms, The New England Medicine, vol. 351, no. 16, pp. 1607 1618, 2004. [5] F. J. Veith, R. A. Baum, T. Ohki et al., Nature and significance of endoleaks and endotension: summary of opinions expressed at an international conference, Vascular Surgery, vol. 35,no.5,pp.1029 1035,2002. [6]G.A.Antoniou,G.S.Georgiadis,S.A.Antoniou,G.Kuhan, and D. Murray, A meta-analysis of outcomes of endovascular abdominal aortic aneurysm repair in patients with hostile and friendly neck anatomy, Vascular Surgery,vol.57,no. 2, pp. 527 538, 2013. [7]R.J.F.Laheij,J.Buth,P.L.Harris,F.L.Moll,W.J.Stelter, and E. L. G. Verhoeven, Need for secondary interventions after endovascular repair of abdominal aortic aneurysms. Intermediate-term follow-up results of a European collaborative registry (EUROSTAR), British Surgery, vol.87, no. 12, pp. 1666 1673, 2000. [8] H. Roos, M. Ghaffari, M. Falkenberg, V. Chernoray, A. Jeppsson, and H. Nilsson, Displacement forces in iliac landing zones and stent graft interconnections in endovascular aortic repair: an experimental study, European Vascular and Endovascular Surgery,vol.47,no.3,pp.262 267,2014. [9] G.K.Mantas,C.N.Antonopoulos,G.S.Sfyroerasetal., Factors predisposing to endograft limb occlusion after endovascular aortic repair, European Vascular and Endovascular Surgery,vol.49,no.1,pp.39 44,2015. [10] T. Resch, K. Ivancev, J. Brunkwall, U. Nyman, M. Malina, and B. Lindblad, Distal migration of stent-grafts after endovascular repair of abdominal aortic aneurysms, Vascular and Interventional Radiology,vol.10,no.3,pp.257 264,1999. [11] T. Bisdas, K. Weiss, M. Eisenack, M. Austermann, G. Torsello, and K. P. Donas, Durability of the Endurant stent graft in patients undergoing endovascular abdominal aortic aneurysm repair, Vascular Surgery, vol. 60, no. 5, pp.1125 1131, 2014. [12] H. J. A. Zandvoort, F. B. Gonçalves,H.J.M.Verhagenetal., Results of endovascular repair of infrarenal aortic aneurysms using the Endurant stent graft, Vascular Surgery, vol. 59,no.5,pp.1195 1202,2014. [13]P.P.H.L.Broos,R.A.Stokmans,S.M.M.VanSterkenburg et al., Performance of the Endurant stent graft in challenging anatomy, Vascular Surgery,vol.62,no.2,pp.312 318, 2015. [14] K. P. Donas, G. Torsello, K. Weiss, T. Bisdas, M. Eisenack, and M. Austermann, Performance of the Endurant stent graft in patients with abdominal aortic aneurysms independent of their morphologic suitability for endovascular aneurysm repair based on instructions for use, Vascular Surgery,vol. 62,no.4,pp.848 845,2015.

MEDIATORS of INFLAMMATION The Scientific World Journal Gastroenterology Research and Practice Diabetes Research International Endocrinology Immunology Research Disease Markers Submit your manuscripts at https://www.hindawi.com BioMed Research International PPAR Research Obesity Ophthalmology Evidence-Based Complementary and Alternative Medicine Stem Cells International Oncology Parkinson s Disease Computational and Mathematical Methods in Medicine AIDS Behavioural Neurology Research and Treatment Oxidative Medicine and Cellular Longevity