A Fuzzy-Genetic Approach for Microcytic Anemia Diagnosis in Cyber Medical Systems

Similar documents
JMSCR Vol 04 Issue 12 Pages December 2016

Superiority of Five Discriminant Indices to Distinguish Thalassemia Trait from Iron Deficiency Anemia

Dr B Lal Clinical Laboratory Pvt Ltd. Jaipur, Rajasthan, India

Red Cell Indices and Functions Differentiating Patients with the β-thalassaemia Trait from those with Iron Deficiency Anaemia

Is Mentzer Index A Reliable Diagnostic Screening Tool For Beta Thalassemia Trait?

Cut off Determination of Discrimination Indices in Differential Diagnosis between Iron Deficiency Anemia and β- Thalassemia Minor

Hi & Ha, are new indices in differentiation between Iron deficiency anemia and beta-thalassaemia trait /A Study in Sulaimani City-Kurdistan/Iraq

got anemia? IT COULD BE THALASSEMIA TRAIT

Predictive Model for Likelihood of Survival of Sickle-Cell Anaemia (SCA) among Peadiatric Patients using Fuzzy Logic

Automated Diagnosis of Thalassemia Based on DataMining Classifiers

Evaluation of five discriminating indexes to distinguish Beta-Thalassemia Trait from Iron Deficiency Anaemia

Validation of new indices for differentiation between iron deficiency anemia and beta thalessemia trait, a study in pregnant females

Clinical Study Hematological Indices for Differential Diagnosis of Beta Thalassemia Trait and Iron Deficiency Anemia

A prediction model for type 2 diabetes using adaptive neuro-fuzzy interface system.

Automated Diagnosis of Iron Deficiency Anemia and Thalassemia by Data Mining Techniques

1. Introduction. Keywords: Iron Deficiency Anemia, β-thalassemia Trait, Artificial Neural Network, Complete Blood Count, Hemoglobin

The influence of sickle cell and beta thalassaemia traits on type 2 diabetes mellitus

BETA THALASSEMIA TRAIT; DIAGNOSTIC IMPORTANCE OF HAEMATOLOGICAL INDICES IN DETECTING BETA THALASSEMIA TRAIT PATIENTS

Implementation of Inference Engine in Adaptive Neuro Fuzzy Inference System to Predict and Control the Sugar Level in Diabetic Patient

Orignal Article. Neeraja Pethe, Anil Munemane*, Suryakant Dongre ABSTRACT

Artificial Neural Networks to Determine Source of Acoustic Emission and Damage Detection

The LaboratoryMatters

Is NESTROFT better than the hematological indices for screening of betathalassemia trait: an answer in rural scenario

Thalassemia and other hemoglobinopathies among anemic individuals in Metro Manila: Preliminary findings from the National Nutrition Survey

New Bioinformatics-Based Discrimination Formulas for Differentiation of Thalassemia Traits From Iron Deficiency Anemia

BONE MARROW PERIPHERAL BLOOD Erythrocyte

Report of Beta Thalassemia in Newar Ethnicity

Anemia 1: Fourth year Medical Students/ October/21/ 2015/ Abdallah Abbadi.MD.FRCP Professor

Use of mathematical indices based on CBC data to identify patients with β thalassemia minor

Evaluation of Prevalence of Anemia and Its Sociodemographic Correlation among Undergraduate Medical College Students - A Cross Sectional Study

UTILITY OF ERYTHROCYTE INDICES FOR SCREENING OF β THALASSEMIA TRAIT IN PREGNANT WOMEN ATTENDING ANTENATAL CLINIC

ECG Rhythm Analysis by Using Neuro-Genetic Algorithms

Namık Zengin, Research assistant, Yildiz Technical University, Department of Mechatronics Engineering, Republic of Turkey,

The effects of the underlying disease and serum albumin on GFR prediction using the Adaptive Neuro Fuzzy Inference System (ANFIS)

A Fuzzy Expert System for Heart Disease Diagnosis

Original Article ABSTRACT. Sanjay Piplani 1 *, Manas Madan 1, Rahul Mannan 1, Mridu Manjari 1, Taranveer Singh 1 and Monika Lalit 2

A framework for the Recognition of Human Emotion using Soft Computing models

Lung Cancer Diagnosis from CT Images Using Fuzzy Inference System

a) Determine the HgB values for the patient samples to fill in the table below. (15 points total) (g/dl) (%) 1 (Female)

INTERELATIONSHIP BETWEEN IDA AND VITAMIN D DEFICIENCY IS NOW ESTABLISHED

A Fuzzy Improved Neural based Soft Computing Approach for Pest Disease Prediction

Complete Blood Count (CBC)

Complete Blood Count (CBC) Assist.Prof. Filiz BAKAR ATEŞ

PROGNOSTIC COMPARISON OF STATISTICAL, NEURAL AND FUZZY METHODS OF ANALYSIS OF BREAST CANCER IMAGE CYTOMETRIC DATA

IJREAS VOLUME 4, ISSUE 9 (September 2014) (ISSN ) IMPACT FACTOR FUZZY EXPERT SYTEM FOR DIAGNOSIS OF SICKLE CELL ANEMIA ABSTRACT

6.1 Extended family screening

Full Blood Count analysis Is a 3 part-diff good enough? Dr Marion Münster, Sysmex South Africa

A FUZZY LOGIC BASED CLASSIFICATION TECHNIQUE FOR CLINICAL DATASETS

Potential Use of a Causal Bayesian Network to Support Both Clinical and Pathophysiology Tutoring in an Intelligent Tutoring System for Anemias

Diagnostic Approach to Patients with Anemia

Keywords: Adaptive Neuro-Fuzzy Interface System (ANFIS), Electrocardiogram (ECG), Fuzzy logic, MIT-BHI database.

International Journal of Computer Sciences and Engineering. Research Paper Volume-5, Issue-6 E-ISSN:

Approach to a pale child

Anemia 1: Fourth year Medical Students/ Feb/22/ Abdallah Awidi Abbadi.MD.FRCP.FRCPath Professor

Thalassemia Minor: Routine Erythrocyte Measurements and Differentiation from Iron Deficiency

Identification and Classification of Coronary Artery Disease Patients using Neuro-Fuzzy Inference Systems

Step 2. Common Blood Tests, and the Coulter Counter Readout

Proposed low-cost premarital screening program for prevention of sickle cell and thalassemia in Yemen Hafiz Al-Nood 1 Abdulrahman Al-Hadi 2

Computational Intelligence Lecture 21: Integrating Fuzzy Systems and Neural Networks

Changes to CBC Reference Ranges

Development of Heart Disease

Original Paper. Inherited Haemoglobin Disorders Among Apparently Healthy Individuals- An Analysis of 105 Cases. Abstract

Anemia s. Troy Lund MSMS PhD MD

Comparison of Mamdani and Sugeno Fuzzy Interference Systems for the Breast Cancer Risk

MRI Image Processing Operations for Brain Tumor Detection

Sickle Cell Anemia A Fictional Reconstruction Answer Key

Unraveling Hemoglobinopathies with Capillary Electrophoresis

MICO Maggio 2016 Laboratory Diagnosis of Thalassemia

Evaluation of Anemia. Md. Shafiqul Bari Associate professor (Medicine) SOMC

Diagnosis Of the Diabetes Mellitus disease with Fuzzy Inference System Mamdani

Design of an Optimized Fuzzy Classifier for the Diagnosis of Blood Pressure with a New Computational Method for Expert Rule Optimization

BACKPROPOGATION NEURAL NETWORK FOR PREDICTION OF HEART DISEASE

Discloser. Objectives LETTING GO OF THE RULES OF 3. I am receiving an honorarium from Sysmex for this presentation

Question 1 Multiple Choice (8 marks)

Non Linear Control of Glycaemia in Type 1 Diabetic Patients

Heme Questions and Derivatives for the USMLE Step One Exam. Winter Storm Skylar Edition

Deep Learning Analytics for Predicting Prognosis of Acute Myeloid Leukemia with Cytogenetics, Age, and Mutations

Automated Prediction of Thyroid Disease using ANN

Original Article. Frequency of Beta Thalassemia Trait in Pediatric Age Group in a Tertiary Care Hospital in South India

Design of a Fuzzy Rule Base Expert System to Predict and Classify the Cardiac Risk to Reduce the Rate of Mortality

Predicting Heart Attack using Fuzzy C Means Clustering Algorithm

Detection of Heart Diseases using Fuzzy Logic

SICKLE CELL DISEASE. Dr. MUBARAK ABDELRAHMAN MD PEDIATRICS AND CHILD HEALTH. Assistant Professor FACULTY OF MEDICINE -JAZAN

Multilayer Perceptron Neural Network Classification of Malignant Breast. Mass

Neural Network based Heart Arrhythmia Detection and Classification from ECG Signal

Differentiating Tumor and Edema in Brain Magnetic Resonance Images Using a Convolutional Neural Network

EDUCATIONAL COMMENTARY MORPHOLOGIC CHANGES IN PERIPHERAL BLOOD CELLS

S-Beta Thalassemia leading to avascular necrosis of left hip joint in a young male - A rare case report

Around million aged erythrocytes/hour are broken down.

Genetics of Thalassemia

An ECG Beat Classification Using Adaptive Neuro- Fuzzy Inference System

* imagine if the Hb is free ( e.g. hemolysis ) in the plasma what happens?

Collect and label sample according to standard protocols. Gently invert tube 8-10 times immediately after draw. DO NOT SHAKE. Do not centrifuge.

A hybrid Model to Estimate Cirrhosis Using Laboratory Testsand Multilayer Perceptron (MLP) Neural Networks

An Edge-Device for Accurate Seizure Detection in the IoT

Microcytic Hypochromic Anemia An Approach to Diagnosis

Spectrum of Haemoglobinopathies in a Suburb of Indore (India): A Two Year Study

Case scenarios in Pediatric Hematology and Oncology. Dr. Zainul Aabideen Consultant, Pediatric Hematology and Oncology Burjeel Hospital

Edge Detection Techniques Based On Soft Computing

HAEMATOLOGICAL EVALUATION OF ANEMIA. Sitalakshmi S Professor and Head Department of Clinical Pathology St John s medical College, Bangalore

Transcription:

Journal of Biomedical Engineering and Technology, 27, Vol. 5, No., 2-9 Available online at http://pubs.sciepub.com/jbet/5//3 Science and Education Publishing DOI:.269/jbet-5--3 A Fuzzy-Genetic Approach for Microcytic Anemia Diagnosis in Cyber Medical Systems Farzaneh Latifi,*, Houman Zarrabi 2 Department of Computer Engineering, Islamic Azad University, Tehran, Iran 2 Iran ICT Research Center, Tehran, Iran *Corresponding author: farzanehlatifi24@gmail.com Abstract Microcytic anemia is the most common type of anemia in the different age groups of people. Diagnosis in the early stages could increase the chance of the treatment. Fuzzy Expert System (FES) is one of the excellent methods employed for diagnosis of different diseases because of its tremendous potential in the management of uncertainty sources that exist in the real medical systems. In this article, a Genetic Algorithm (GA) has been used for optimizing the parameters of the Membership Function (MFs) of the proposed FES for diagnosis of microcytic anemia (IDA and BTT). The proposed hybrid system was implemented in Matlab and evaluated by real dataset from patients and healthy people. High accuracy of the proposed system confirms that this method can help physicians make more accurate decisions for the diagnosis of this type of anemia. Keywords: expert system, microcytic anemia, diagnosing, cyber medical systems Cite This Article: Farzaneh Latifi, and Houman Zarrabi, A Fuzzy-Genetic Approach for Microcytic Anemia Diagnosis in Cyber Medical Systems. Journal of Biomedical Engineering and Technology, vol. 5, no. (27): 2-9. doi:.269/jbet-5--3.. Introduction The two most common types of microcytic anemia are iron deficiency anemia (IDA) and beta-thalassemia trait (BTT) that.5% of the people in the world have BTT. Each year 6 children are born by BTT and most of them are from Southeast Asia []. Carrier rate of 5% for Beta thalassemia in Pakistan [2] 2 milliard people in the world suffer from IDA that million people of them kill in each year [3]. Over the past years, there have been significant advances in the medical field, major improvements in the preventions and diagnosis of the disease [4]. Expert systems as a kind of decision making systems had an important role in the medical field [5]. There are some related works in diagnosing anemia using artificial intelligence technical. Some related works for instance, in this study represented Expert Fuzzy System (FES) to diagnose anemia that used a fuzzy logic model for diagnosing 3 case of anemia such as IDA, folic acid DA, sickle cell A [6] and A hybrid expert system combining rule-based and artificial neural network (ANN) models was constructed to evaluate some types of anemia in a 3-layered program [7]. In this article, a hybrid expert system for diagnosis of microcytic anemia has been designed using Fuzzy inference systems and GA (Fuzzy-GA). This paper is organized as follow: An overview of other related works explains in section 2. In section 3 try to show, how to diagnose iron deficiency anemia (IDA) from beta-thalassemia trait (BTT), explaining about designing of the FES and about what are Inputs/Outputs of proposed system. The results of performance of proposed Fuzzy-GA, explaining about data, and accuracy are presented in the section 4. and finally section 5 is about conclusions. 2. Review of Related Intelligent Models for Diagnosis of Anemia There were some models for diagnosing anemia for example, diagnosis of anemia in children (<8) via Artificial Neural Network (ANN) by using feed forward multilayer perceptron with 3 layers architecture. neurons used in hidden layer, activation functions: TANSIG, in toolbox of Matlab. Its inputs are HGB, HCT, MCV, MCH, MCHC (in C.B.C test). In this system just detected being anemia or not and can t diagnose common type of anemia but the proposed system in addition to diagnose being anemic or healthy, microcytic anemia also diagnose. As well as on how to recognize, the symptoms were not used that this is intended in the proposed system and enhance system reliability in diagnosis. The system can use just for helping doctors and can t work lonely. It used not enough real data [8]. There is another expert system that designed a fuzzy logic model to diagnose 3 case of anemia such as IDA, folic acid DA, sickle cell A with 5 symptoms of anemia. Its membership functions were triangular. It diagnosed 3 types of anemia such as IDA, folic acid DA, sickle cell A. Although with using FIS, the system takes advantages of managing uncertainty, in the system only the symptoms of anemia detection is used which reduces system reliability. Unlike the system, the proposed system has benefited both of them (blood

Journal of Biomedical Engineering and Technology 3 test and anemia symptoms). The system can use just for helping doctors and can t work lonely, because of not having facility of check signs of patients. The system can t work for healthy people and just rely on symptoms of illness. It didn t regard other types of anemia in proposed system [6] but the proposed system in addition to detection in healthy subjects to investigate suspicious cases also pays and an expert system to diagnose anemia using (ANN) models to evaluate it in a 3-layered program. The inputs were HCT, MCV, and RDW (in C.B.C test). The diagnosed were 3 types of anemia: iron deficiency anemia (IDA), hemoglobinopathy (HEM) and anemia of chronic disease (ACD). It didn t regard other common types of anemia in proposed system and also healthy people [7]. A FIS presented which is used to simulate a prediction model for determining the likelihood of (SCA). It did in MATLAB software. The inputs of the system are 3 symptoms of sickle cell anemia (SCA) disease such as: the level of fetal hemoglobin, genotype and the degree of anemia. The output of system is diagnosis of SCA: No, likely, yes. Results showed that fuzzy logic based model will be very useful in this aim. It just works on especial case of anemia and patients. It considered inputs that aren t acceptable for all [5]. In the Table provides an overview of comparison of studies that worked in this field with proposed system. The proposed system can help experts for making decision for diagnosis of 2 types of microcytic anemia (IDA/BTT) from healthy and it shows good results and accuracy after evaluating. In our study by regarding some symptoms of anemia, C.B.C test, knowledge of experts and use of reliable relations after discussing for detecting some common types of anemia can diagnose more reliable of other research. All materials that need to diagnose illness are available for all. 3. Methodology 3.. Diagnosing of Iron Deficiency Anemia (IDA) and Beta-Thalassemia Trait (BTT) Iron deficiency anemia (IDA) is most common in development countries especially in Iran and betathalassemia trait (BTT) saw in especially areas more such as in Mediterranean area. There are more than 25 thalassemia patients in Iran, is an important reason for diagnosing it in the early steps is necessary to design this system [9]. Detecting it in the early steps of the anemia development can increase the chance of improvement patients more. Iron deficiency anemia (IDA), is one of the most common type of anemia that patients with it are in different age groups and mostly women (2%) and children (8%) but treatment is different for them. It is caused by appearance of low count of blood cells in the patient s blood and high RDW. Normally, count of blood cells is an important part of the body s healthy [3,6,8]. There are many symptoms for different types of anemia. At the earlier steps, symptoms of anemia are in the low level. Common symptoms for anemia include fatigue, pale skin, irritability, tachycardia, and dizziness. Most people with iron deficiency anemia (IDA) have low Hemoglobin, not enough red blood cells (RBC), low MCV, low MCH and high RDW and symptoms of anemia such asirritability, tachycardia [6]. Although, most people with beta-thalassemia trait (BTT) won t show any symptoms, they have low Hemoglobin, not enough red blood cells or enough (RBC), low MCV, low MCH and high RDW. For detecting IDA from BTT blood tests of patients, the relations in Table 2 have been used that achieved good result in the studies of the researches [3,6,8,9]. Designer s name [8] [6] [7] [5] [6] The proposed hybrid Fuzzy- GA system Table. An Overview of the Related Works Methodology Inputs Outputs Advantages Disadvantages It used perceptron NN. Using a fuzzy logic model. A hybrid expert system combining rule-based and artificial neural network. A prediction FIS for determining the likelihood of (SCA) Some FES for applications in some medical area. Diagnosis of microcytic anemia from healthy using hybrid Fuzzy-GA. HGB, HCT, MCV, MCH, MCHC (in C.B.C test) Irritability, Tachycardia, Memory Weakness, Bleeding, Chronic fatigue HCT, MCV, RDW 3 symptoms of sickle cell disease For every application is different. Hb, MCV, MCH, RDW and RBC and 4 symptoms of IDA (healthy):/(anemia): 3 types of anemia: IDA, folic acid DA, sickle cell A iron deficiency anemia (IDA), hemoglobinopathy (HEM), anemia of chronic disease(acd) SCA: No, likely, yes The risk of prostate cancer, risk of coronary heart disease, degree of child anemia, determination the level of iron deficiency anemia, diagnosis of periodontal dental disease, determination of drug dose and etc Diagnosis: Healthy, IDA, BTT. It takes advantages of training NN. It takes advantages of FES such as: managing uncertainty. training and not tired, improve. Results showed that fuzzy logic based model will be very useful in this aim. As a tool can help doctors and takes Advantages of FES. As a tool can help doctors and takes Advantages of the FES (won t tired, can improve, managing uncertainty) and Work on real data the system can t work lonely. not enough real data. It can t work lonely. Regarding low feature for classifying cases of anemia. Just work on especial case of anemia and patients use inputs that aren t acceptable for all. All designed FES just can help in support decision process of physicians and can t work lonely. Not suggestion has provided for treatment yet.

4 Journal of Biomedical Engineering and Technology Table 2. Relations for Separating BTT from IDA [2] Index Relations BTT IDA England & Fraser MCV-(5xHb)-RBC < (neg) > (pos) Mentzer MCV/RBC count <3. >3. Srivastava MCH/RBC count <3.8 >3.8 Shine & Lal MCVxMCVxMCH/ <53 >53 Green & King MCVxMCVxRDW/(Hbx) <72 >72 Ricerca RDW/RBC count <3.3 >3.3 RDWI MCVxRDW/RBC <22 >22 The main reason of the Anemia is malnutrition. The human body tissues needed to receive oxygen from the RBC. As a result of decreasing it, people (he or she) may develop anemia. People should report all possible anemia symptoms to the related experts very fast. Experts need to look at the people s C.B.C test to diagnose Anemia. This test is a test that most people have had periodically and then Cells must be counted [3]. 3.2. The Proposed Fuzzy Expert System The proposed FES has been implemented in the following steps: there is a step before main steps to study the issue and collecting relevant data, then []. ) Partitioning input space of the system 2) Extracting related rules (if-then rules) 3) Choosing an appropriate inference model The knowledge of experts was used in the proposed fuzzy expert system to diagnose the microcytic anemia in the early steps. After gathering information from reliable references and related experts, the inputs and outputs of proposed system for diagnosis of microcytic types of anemia determined. As show in Table 3 the C.B.C tests and some symptoms of anemia in the preliminary conditions of disease have been considered in the input of the proposed system. Because of high precision of the Mamdani model it has been utilized in the proposed FES. The proposed FES fuzzy rules are shown in Table 4. Inputs Hb MCV MCH RDW RBC Irritability Tachycardia Dizziness Fatigue Table 3. Inputs of the Proposed System Explain Hemoglobin Mean corpuscular volume Mean Corpuscular Hemoglobin red cell mean distribution width regard as a third index in diagnosing microcytic anemia is a measure of variability in red cell size It carries oxygen to the human body. Easily made angry An abnormally rapid heart rate Feeling dizziness Feeling weakness and weariness Rules Numbers. 2. 3. 4. 5. 6. 7. 8. 9. Table 4. Fuzzy Rules of the Proposed System Rules If (HB is VERY-LOW) and (MCV is LOW) and (MCH is LOW) and (RDW is HIGH) and (RBC is LOW) and (Irritability is ) and (Tachycardia is ) and (Dizziness is ) and (Fatigue is ) then (DIAGSIS is IDA) If (HB is LOW) and (MCV is VERY-LOW) and (MCH is LOW) and (RDW is MIDDLE) and (RBC is MIDDLE) and (Irritability is ) and (Tachycardia is ) and (Dizziness is ) and (Fatigue is ) then (DIAGSIS is BTT) If (HB is LOW) and (MCV is VERY-LOW) and (MCH is LOW) and (RDW is MIDDLE) and (RBC is HIGH) and (Irritability is ) and (Tachicardia is ) and (Dizziness is ) and (Fatigue is ) then (DIAGSIS is BTT) If (HB is MIDDLE) and (MCV is MIDDLE) and (MCH is MIDDLE) and (RDW is MIDDLE) and (RBC is MIDDLE) and (Irritability is ) and (Tachicardia is ) and (Dizziness is ) and (Fatigue is ) then (DIAGSIS is HEALTHY) If (HB is VERY-LOW) or (MCV is LOW) or (MCH is LOW) or (RDW is HIGH) or (RBC is LOW) then (DIAGSIS is NEEDTOMORECHECK) If (HB is LOW) or (MCV is VERY-LOW) or (MCH is LOW) or (RDW is MIDDLE) or (RBC is MIDDLE) then (DIAGSIS is NEEDTOMORECHECK) If (HB is LOW) or (MCV is VERY-LOW) or (MCH is LOW) or (RDW is MIDDLE) or (RBC is HIGH) then (DIAGSIS is NEEDTOMORECHECK) If (HB is HIGH) or (MCV is HIGH) or (MCH is HIGH) or (RDW is LOW) or (RBC is HIGH) then (DIAGSIS is NEEDTOMORECHECK) If (HB is HIGH) or (MCV is HIGH) or (MCH is HIGH) or (RDW is LOW) or (RBC is HIGH) or (Irritability is ) or (Tachicardia is ) or (Dizziness is ) or (Fatigue is ) then (DIAGSIS is NEEDTOMORECHECK) If (HB is MIDDLE) and (MCV is MIDDLE) and (MCH is MIDDLE) and (RDW is MIDDLE) and (RBC is MIDDLE) then (DIAGSIS is HEALTHY) VERY LOW MIDDLE HIGH VERY LOW LOWMIDDLE HIGH.6.6 2 3 4 5 6 7 8 9 Hb Figure. MFs of input of the proposed FES before optimization 2 4 6 8 2 4 6 8 2 MCV Figure 2. MFs of input2 of the proposed FES before optimization

Journal of Biomedical Engineering and Technology 5 LOW MIDDLE HIGH.6.6 2 3 4 5 6 7 8 9 MCH Figure 3. MFs of input3 of the proposed FES before optimization..3.5.6.7.9 Irritability Figure 6. MFs of input6 of the proposed FES before optimization LOW MIDDLE HIGH.6.6 5 5 2 25 3 35 4 45 5 RDW Figure 4. MFs of input4 of the proposed FES before optimization..3.5.6.7.9 Tachycardia Figure 7. MFs of inputs7 of the proposed FES before optimization LOWMIDDLE HIGH.6.6 5 5 2 25 3 35 4 45 5 RBC Figure 5. MFs of input5 of the proposed FES before optimization..3.5.6.7.9 Dizziness Figure 8. MFs of input8 of the proposed FES before optimization

6 Journal of Biomedical Engineering and Technology.6 mutation must determine [,2,3,4] that all of them within the allowed amounts have been selected (mutation and crossover were considered with low amount because of keeping good genes and high for composition and use of superior genes, prospectively). This study has been considered the benefits and capabilities of a combination of both methods (the FES and GA) such as natural evolution and management of uncertainty and working with imprecise and uncertain data...3.5.6.7.9 Fatigue Figure 9. MFs of input9 of the proposed FES before optimization IDA BTT MORE-CHECK HEALTHY.6..3.5.6.7.9 DIAGSE Figure. MFs of output of the proposed FES before pptimization The Membership Functions (MFs) figures related to each input/output of the proposed FES before optimization is shown in Figure to Figure. 3.3. The Proposed Hybrid Fuzzy-GA The parameters of the MFs of the proposed FES were tuned with the genetic algorithm in this study that is done in the following steps, are shown in Figure :. Determine the proposed FES structure as an objective function. 2. Find the MFs parameters of the FES and used them as a chromosome for GA. 3. Set the GA parameter values. 4. Apply the necessary constraints to product valid chromosome. 5. Run the GA for evolving the FES. The real values of the MFs parameters has been sort for building a chromosome and all knowledge that is used in the system has been gathered from related experts. The values of the GA operations such as crossover and Figure. Implementation steps of the proposed hybrid system

Journal of Biomedical Engineering and Technology 7 4. Experimental Results This section describes the data and the results of evaluating proposed system. LOW MIDDLE HIGH 4.. The Data That Used in the Proposed System In the proposed Fuzzy-GA system used 5 real data from valid laboratory in Tehran. Data based includes 27 healthy data, 24 unhealthy data (Count Blood Cells (C.B.C) tests). 4.2. Results of Performance of Proposed Fuzzy-GA The proposed study introduced a system to diagnose different types of microcytic anemia from healthy using a hybrid Fuzzy-GA system in the early steps of this disease. The values of the mutation and crossover rate have been determined heuristically as are shown in Table 5. Table 6 shows the parameters of the GA that have been set for optimizing the proposed system and the system performance comparison is in Table 7. The Membership Functions (MFs) figures related to each input/output of the proposed FES after optimization using Fuzzy-GA system are shown in Figure 2 to Figure 2. VERY LOWLOW MIDDLE.6 HIGH 2 3 4 5 6 7 8 9 Hb Figure 2. MFs of input of the proposed FES after optimization.6 2 3 4 5 6 7 8 9 MCH Figure 4. MFs of input3 of the proposed FES after optimization LOW MIDDLE HIGH.6 5 5 2 25 3 35 4 45 5 RDW Figure 5. MFs of input4 of the proposed FES after optimization LOWMIDDLE HIGH.6 VERY LOW LOWMIDDLE HIGH.6 2 4 6 8 2 4 6 8 2 MCV Figure 3. MFs of input2 of the proposed FES after optimization 5 5 2 25 3 35 4 45 5 RBC Figure 6. MFs of input5 of the proposed FES after optimization Table 5. Comparison of the GA Parameters Mutation Rate Cross Over Rate Fitness (MSE%).5.5 88.2. 8 93.6.5.7 8.6..9 79.4..99 9.

8 Journal of Biomedical Engineering and Technology.6.6..3.5.6.7.9 Irritability Figure 7. MFs of input6 of the proposed FES after optimization..3.5.6.7.9 Fatigue Figure 2. MFs of input9 of the proposed FES after optimization IDA BTT MORE-CHECK HEALTHY.6.6..3.5.6.7.9 Tachycardia Figure 8. MFs of input7 of the proposed FES after optimization..3.5.6.7.9 DIAGSE Figure 2. MFs of output of the proposed FES after optimization.6 Table 7. Comparison of the Performance of the System Evaluation Values Before and After Optimization Methods name MSE value Accuracy (%) FES (before optimization).9 8. Fuzzy-GA(after optimization).64 93.6..3.5.6.7.9 Dizziness Figure 9. MFs of input8 of the proposed FES after optimization Table 6. The Fuzzy-GA Parameters Parameters names Values Population size Crossover Rate 8 Mutation Rate. Crossover method Scattered Mutation method Uniform Select Strategy Uniform Number of generations 2 Figure 22. The best and average performance of the GA According to the figures ( to 2) of membership functions of the proposed FES before and after optimization of their parameters, It can be noted that after optimization the membership functions has been set, as

Journal of Biomedical Engineering and Technology 9 well as compare the results of the evaluation of the proposed FES before and after optimization using the evaluation criteria Mean Squared Error (MSE), indicates that the system performance is improved. The best and average performance of the Genetic Algorithm (GA) after evolving the proposed FES is shown in Figure 22. As in the above figure is remarkable, system performance through optimization improved by reducing the amount of errors and this value from 4 generation to the next converged to a value. The average error after optimizing system parameters with the hybrid Fuzzy-GA system is.64 that is much less than the proposed FES before optimization (.9). 5. Conclusion This paper proposed a Fuzzy-GA to diagnose Microcytic Anemia (IDA and BTT) from healthy that they are common types of anemia using a combination of the FES and genetic algorithm. The proposed Fuzzy-GA was evaluated on real patents dataset. The average error after tuning system parameters with the hybrid Fuzzy-GA approach is reduced from.9 to.64.thetuned system can assist expert decision making for diagnosis of the anemia and healthy people. This approach is promising to assist early diagnosis of these types of anemia and takes advantages of fuzzy expert systems (won t tired, can improve, managing uncertainty) and genetic algorithm (natural evolution & not to need initializing). Our future work is to extend the FES for diagnosis of other types of the anemia or improve it. The results showed that the proposed Fuzzy-GA is able to diagnose the disease with high accuracy. There is different uncertainty in real system and the proposed system can manage them. References [] Rathod, DA. Kaur, A. Patel, V. Patel, K. Kabrawala, R. Patel M, and Shah, P. (27), Usefulness of Cell Counter-Based Parameters and Formulas in Detection of ß-Thalassemia Trait in Areas of High Prevalence, American Society for Clinical Pathology, 28 (4), pp 585-589. [2] Niazi, M. Tahir, M. e Raziq, F. and Hameed, A. (2), Usefulness of Red Cell Indices in Differentiating Microcytic Hypochromic Anemias, Gomal Journal of Medical Sciences, 8 (2), pp 25-29. [3] Safari fard, AS. A. (393), Iron deficiency anemia, E-Health, Volume 6, Tehran, Iran. [4] Shortliffe, E. H. and Cimino, J. J. (26), Biomedical informatics: computer applications in health care and biomedicine, Springer, New York, USA, Forth Edition. [5] Durkin, J. (994), Expert Systems: Design and Development, Prentice Hall, New York, USA. [6] Aramideh, J. and Jelodar, H. (24), Application of Fuzzy Logic for Presentation of an Expert Fuzzy System to Diagnose Anemia, Indian Journal of Science and Technology, 7(7), pp 933-938. [7] Birndorf, N. I. Pentecost, J. O. Coakley, J. R. and Spackman, K. A. (996), An Expert System to Diagnose Anemia and Report Results Directly on Hematology Forms, Computers and Biomedical Research, 29 (), pp 6-26. [8] Kaya, E. Aktan, M. E. Koru, A. T. and Akdogan, E. (24), Diagnosis of Anemia in Children via Artificial Neural Network, International Journal of Intelligent Systems and Applications in Engineering, 3 (), pp 24-27. [9] Ghafouri, M. Mostaan Sefat, L. Sharifi, Sh. Hosseini Gohari, L. Attarchi, Z. (26), Comparison of cell counter indices in differentiation of beta thalassemia minor from iron deficiency anemia, volume 2, Issue 7, 385-389 special. [] Wang, L. Translators: Teshnehlab, M. Safarpoor, N. (25), A course in fuzzy systems and control, Tenth edition, Tehran, Iran. [] Cordona O., Gomideb F., Herreraa F., Hoffmann F., and L. Magdalenad. 24. Ten years of genetic fuzzy systems: current framework and new trends. Fuzzy Sets and Systems 4: pp. 5-3. [2] Casillas J., Cordón O., Del Jesus MJ., and F. Herrera. 25. Genetic tuning of fuzzy rule deep structures preserving interpretability and its interaction with fuzzy rule set reduction. IEEE Transaction on Fuzzy Systems 3:3-29. [3] Herrera, F. 28.Genetic fuzzy systems: taxonomy, current research trends and prospects. Evolutionary Intelligence : 27-46. [4] Ishibuchi, H., Nakashima, T. and T. Murata. 996. A fuzzy classifier system that generates linguistic rules for pattern classification problems. Fuzzy Logic, Neural Networks, and Evolutionary Computation 52:35-54. [5] Idowu, AP. Aladekomo, TA. Williams, KO. and Balogun, JA. (25), Predictive Model for Likelihood of Survival of Sickle- Cell Anaemia (SCA) among Peadiatric Patients using Fuzzy Logic, Transactions on Networks and Communications, 3 (), pp. 3-44. [6] Allahverdi, N. (24), Design of Fuzzy Expert Systems and Its Applications in Some Medical Areas, International Journal of Applied Mathematics, Electronics and Computers, 2 (), pp -8.