Organic dust-induced interleukin-12 production activates T- and natural killer cells

Similar documents
T-cell activation by organic dust in vitro

Detailed step-by-step operating procedures for NK cell and CTL degranulation assays

Rapid antigen-specific T cell enrichment (Rapid ARTE)

Optimizing Intracellular Flow Cytometry:

Direct ex vivo characterization of human antigen-specific CD154 + CD4 + T cells Rapid antigen-reactive T cell enrichment (Rapid ARTE)

Optimizing Intracellular Flow Cytometry:

Technical Resources. BD Immunocytometry Systems. FastImmune Intracellular Cytokine Staining Procedures

ACTIVATION AND EFFECTOR FUNCTIONS OF CELL-MEDIATED IMMUNITY AND NK CELLS. Choompone Sakonwasun, MD (Hons), FRCPT

Optimizing Intracellular Flow Cytometry

Medical Virology Immunology. Dr. Sameer Naji, MB, BCh, PhD (UK) Head of Basic Medical Sciences Dept. Faculty of Medicine The Hashemite University

NTD Vaccine Design Toolkit and Training Workshop Providence, RI January 05, 2011 Cytokines Leslie P. Cousens, PhD EpiVax, Inc.

Page 1 of 2. Product Information Contents: ezkine Th1 Activation 2 Whole Blood Intracellular Cytokine Kit

Development of a T Cell Activation Assay Comparison of Commercial and In-House Methods

BD Cytofix/Cytoperm Plus Fixation/Permeabilization Kit (with BD GolgiStop protein transport inhibitor containing monensin) (Cat. No.

Organic dust from pig environment induces activation of human T cells

Immunology lecture: 14. Cytokines: Main source: Fibroblast, but actually it can be produced by other types of cells

The Adaptive Immune Responses

MATERIALS AND METHODS. Neutralizing antibodies specific to mouse Dll1, Dll4, J1 and J2 were prepared as described. 1,2 All

TCR, MHC and coreceptors

Interferon γ regulates idiopathic pneumonia syndrome, a. Th17 + CD4 + T-cell-mediated GvH disease

Chapter 23 Immunity Exam Study Questions

Basis of Immunology and

Adaptive Immunity to Bacteria. T cell subsets

Introduction to Immune System

Chapter 24 The Immune System

Supplementalgfigureg1gSchematicgdiagramgofgtumor1modellingg

BD Pharmingen. Human Th1/Th2/Th17 Phenotyping Kit. Technical Data Sheet. Product Information. Description Components:

Human CD4+T Cell Care Manual

Monocyte subsets in health and disease. Marion Frankenberger

Introduction to Immunology and the Immune System

Bead Based Assays for Cytokine Detection

CELL MEDIATED IMMUNE RESPONSE

IFN-γ Secretion Assay Detection Kit (PE) human

Scott Abrams, Ph.D. Professor of Oncology, x4375 Kuby Immunology SEVENTH EDITION

Cytokines (II) Dr. Aws Alshamsan Department of Pharmaceu5cs Office: AA87 Tel:

Principles of Adaptive Immunity

BD FastImmune. BD FACS lysing solution and. using BD FACS Permeabilizing Solution

BIOTARGET-1 SERUM-FREE MEDIUM

What is the immune system? Types of Immunity. Pasteur and rabies vaccine. Historical Role of smallpox. Recognition Response

Murine polymorphonuclear neutrophils produce interferon- in response to pulmonary infection with Nocardia asteroides

Title: NATURAL KILLER CELL FUNCTIONS AND SURFACE RECEPTORS

Horizon 2020 Programme. SFS-01b Tackling losses from terrestrial animal diseases

Peptide stimulation and Intracellular Cytokine Staining

SUPPLEMENTARY INFORMATION

The immune response during the luteal phase of the ovarian cycle: increasing sensitivity of human monocytes to endotoxin

chapter 17: specific/adaptable defenses of the host: the immune response

DYNAMICS IN EXPRESSION OF THE IL-12 RELATED CYTOKINE TRANSCRIPTS OF IL-12A, IL-12B AND IL-23 AFTER STIMULATION OF HUMAN PBMC

ACTIVATION OF T LYMPHOCYTES AND CELL MEDIATED IMMUNITY

Chapter 13: Cytokines

Technical Innovation. Key terms: flow cytometry; brefeldin A; monensin; intracellular cytokines; monocytes; IL-1 ; IL-6; TNF- ; rheumatoid arthritis

Microbiology 204: Cellular and Molecular Immunology

Detection of T cell cytokine production as a tool for monitoring immunotherapy

Unit title: The Immune Response System

Application Information Bulletin: Human NK Cells Phenotypic characterizing of human Natural Killer (NK) cell populations in peripheral blood

ezkine Th1/Th17 Whole Blood Intracellular Cytokine Kit Catalog Number: RUO: For Research Use Only. Not for use in diagnostic procedures.

LAB 1, Immunology. Laboratory manual Immunology and Infection Biology Biomedicine course Autumn 2007

Cytokines modulate the functional activities of individual cells and tissues both under normal and pathologic conditions Interleukins,

Adaptive Immunity. Jeffrey K. Actor, Ph.D. MSB 2.214,

Prof. Ibtesam Kamel Afifi Professor of Medical Microbiology & Immunology

ASSESSMENT OF LYMPHOCYTE SUBGROUPS IN CHRONIC BRUCELLOSIS BEFORE AND AFTER IMMUNOTHERAPY

Supplementary Figure S1. Flow cytometric analysis of the expression of Thy1 in NH cells. Flow cytometric analysis of the expression of T1/ST2 and

The Immune System. These are classified as the Innate and Adaptive Immune Responses. Innate Immunity

MATERIALS. Peptide stimulation and Intracellular Cytokine Staining- EFFECTOR 45RA PANEL

LYMPHOCYTES & IMMUNOGLOBULINS. Dr Mere Kende, Lecturer SMHS

Immunology Basics Relevant to Cancer Immunotherapy: T Cell Activation, Costimulation, and Effector T Cells

Ex vivo Human Antigen-specific T Cell Proliferation and Degranulation Willemijn Hobo 1, Wieger Norde 1 and Harry Dolstra 2*

Immunity. Innate & Adaptive

Slow Human Immunodeficiency Virus (HIV) Infectivity Correlated with Low HIV Coreceptor Levels

Effects of Meditation on the T-lymphocytes, B-lymphocytes and Natural Killer Cells Production

Lecture 9: T-cell Mediated Immunity

CD14 + S100A9 + Monocytic Myeloid-Derived Suppressor Cells and Their Clinical Relevance in Non-Small Cell Lung Cancer

Research Article Citrus/Cydonia Comp. Can Restore the Immunological Balance in Seasonal Allergic Rhinitis-Related Immunological Parameters In Vitro

Supplementary Figures

Online supplement. Phenotypic, functional and plasticity features of classical and alternatively activated

Immune Surveillance. Immune Surveillance. Immune Surveillance. Neutrophil granulocytes Macrophages. M-cells

1. The scavenger receptor, CD36, functions as a coreceptor for which TLR? a. TLR ½ b. TLR 3 c. TLR 4 d. TLR 2/6

Factors Which Predispose to the Onset of Autoimmune Disease. A Senior Honors Thesis

Principle of the FluoroSpot assay. Anti-tag mab-green. Streptavidin-Red. Detection mab-tag. Detection mab-biotin. Analyte. Analyte.

Chapter 5. Enhanced differentiation of B-cells towards immunoglobulin-secreting cells in rheumatoid arthritis

DNA vaccine, peripheral T-cell tolerance modulation 185

Immunofluorescent Staining of Intracellular Cytokines for Flow Cytometric Analysis

Fluorochrome Panel 1 Panel 2 Panel 3 Panel 4 Panel 5 CTLA-4 CTLA-4 CD15 CD3 FITC. Bio) PD-1 (MIH4, BD) ICOS (C398.4A, Biolegend) PD-L1 (MIH1, BD)

Cover Page. The handle holds various files of this Leiden University dissertation.

Difference in Cytokine Production and Cell Activation between Adenoidal Lymphocytes and Peripheral Blood Lymphocytes of Children with Otitis Media

Gladstone Institutes, University of California (UCSF), San Francisco, USA

Immunology for the Rheumatologist

Apoptosis of lymphocytes in SLE: the level, correlation with dosage prednisolone and lymphocyte phenotypes

Antigen Presentation and T Lymphocyte Activation. Abul K. Abbas UCSF. FOCiS

Immune Reconstitution Following Hematopoietic Cell Transplant

Cover Page. The handle holds various files of this Leiden University dissertation

Recruitment of Mycobacterium tuberculosis specific CD4 + T cells to the site of infection for diagnosis of active tuberculosis

Defense mechanism against pathogens

Understanding immune biomarkers for use in nutrition interventions

Cellular Immune response. Jianzhong Chen, Ph.D Institute of immunology, ZJU

Structure and Function of Antigen Recognition Molecules

Adaptive Immune System

Page 1 of 3. Product Information Contents: ezkine CD8 Activation 2 Whole Blood Intracellular Cytokine Kit

NATURAL KILLER T CELLS EBOOK

Lecture 4. T lymphocytes

Type 1 Interferon Induction of Natural Killer Cell Gamma Interferon Production for Defense during Lymphocytic Choriomeningitis Virus Infection

Transcription:

Eur Respir J 22; 2: 686 69 DOI:.1183/931936.2.222 Printed in UK all rights reserved Copyright #ERS Journals Ltd 22 European Respiratory Journal ISSN 93-1936 Organic dust-induced interleukin-12 production activates T- and natural killer cells C. Müller-Suur*, K. Larsson #, J. Grunewald* Organic dust-induced interleukin-12 production activates T- and natural killer cells. C. Müller-Suur, K. Larsson, J. Grunewald. #ERS Journals Ltd 22. ABSTRACT: Exposure in swine confinement buildings causes intense airway inflammation and lymphocyte activation, as assessed by bronchoalveolar lavage. To further clarify the T-cell activation, the present in vitro study focused on intracellular cytokine production following exposure to organic dust from swine houses. Whole blood from healthy donors was incubated with swine dust, phytohaemagglutinin (positive control) or Roswell Park Memorial Institute 164 medium (negative control), and the production of intracellular interferon (IFN)-c, tumour necrosis factor (TNF)-a, interleukin (IL)-4 and IL-12 was analysed by flow cytometry. Cells were double stained for specific cell surface markers on T-cells (CD3z, CD4z, CD8z), natural killer (NK) cells (CD6zCD16z) and monocytes (defined as CD14z cells). Following 1 h of incubation of whole blood with swine dust, CD14z cells produced high levels of TNF-a and IL-12, whereas CD3z, CD4z and CD8z T-cells and CD6zCD16zNK cells required a longer incubation time (22 h) to produce IFN-c and TNF-a. When antibodies that block the IL-12 receptor were added to whole blood incubated with swine dust, NK cell production of IFN-c was attenuated and CD69 expression on CD3z cells decreased. In conclusion, this study indicates that swine dust can, at least in part, stimulate phagocytic cells to activate natural killer cells and T-lymphocytes through the production of interleukin-12. Eur Respir J 22; 2: 686 69. *Dept of Medicine, Division of Respiratory Medicine, Lung Research Laboratory L2:1, Karolinska Hospital, and # Lung and Allergy Research, the Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden. Correspondence: C. Müller-Suur Dept of Medicine Division of Respiratory Medicine Lung Research Laboratory L2:1 Karolinska Hospital 171 76 Stockholm Sweden Fax: 46 817741 E-mail: lotta.muller-suur@ks.se Keywords: Intracellular cytokines lymphocyte stimulation organic dust Received: March 12 22 Accepted after revision: April 23 22 The present authors have previously demonstrated that exposure to dust in a swine confinement facility induces activation of T-cells in vivo, as assessed by analyses of cells obtained through bronchoalveolar lavage [1]. The authors have also shown that T-cells in whole blood exposed to dust in vitro express the activation markers CD69, CD2 and human leucocyte antigen-dr in a dose- and time-dependent manner [2]. Plasma obtained from blood that had been incubated with dust for 24 h, i.e. "conditioned plasma", induced a high CD69 expression on T-cells (CD3z) in whole blood [3]. Since no increased CD69 expression on T-cells was observed in blood depleted from phagocytic cells, and since an increased production of interleukin (IL)-12 and interferon interferon (IFN)- c was detected in whole blood stimulated with swine dust, the authors suggested that soluble mediators derived from phagocytic cells may be responsible for the lymphocyte activation. It is known that cytokines, such as tumour necrosis factor (TNF)-a and IL-12, are capable of inducing T-cell activation [4, ]. IL-12 is produced by activated monocytes but also by other antigen-presenting cells and neutrophils, and it has pleiotropic effects on T-cells and natural killer (NK) cells [6]. The aim of the present study was to investigate whether swine dust could induce phagocytic cells (CD14z monocytes) to produce the cytokines TNF-a and IL-12 and/or T- and NK cells to produce TNF-a, IFN-c and IL-4. In addition, the authors wanted to clarify the role of IL-12 in lymphocyte activation by using of IL-12 receptor blocking antibodies. Subjects Materials and methods Venous blood was collected from (two males) nonallergic, nonsmoking, healthy subjects, with a mean age of 44 yrs (range 27 6). All subjects gave their informed consent and the study was approved by the Ethics Committee of Karolinska Institutet, Stockholm, Sweden. Stimulation with dust was collected in a swine confinement buildingy1. m above the ground and dissolved in Roswell Park Memorial Institute (RPMI) 164 medium (Gibco Laboratories, Paisley, UK), sonicated for min and diluted in whole blood to a final concentration of mg?ml -1. The polyclonal activator, phytohaemagglutinin (PHA), used as positive control in T- and NK cell analysis, was also dissolved in

CYTOKINE PRODUCTION AFTER EXPOSURE TO SWINE DUST 687 RPMI 164, sonicated for min and diluted in whole blood to a final concentration of mg?ml -1. Unstimulated whole blood containing RPMI 164 was used as negative control. Staining of surface markers and intracellular cytokines For analyses of monocytes (CD14z cells) (n=6), whole blood was incubated for 1 h with dust or RPMI 164 in the presence of brefeldin A (Golgi Plug TM ; PharMingen, San José, CA, USA). Brefeldin A inhibits the intracellular transport, implying that cytokines produced during the activation are intracellularly retained (protocol according to the manufacturer). For lymphocyte analyses (n=), whole blood was diluted 1:1 with RPMI containing L-glutamine and incubated for 12 h with swine dust or PHA followed by an additional -h incubation in the presence of 1 mg brefeldin A?mL blood -1. All incubations were performed at 37uC in the presence of % carbon dioxide. After stimulation, red blood cells were lysed (PharmLyse; PharMingen) and washed with staining buffer (phosphate buffered saline (PBS) containing 1% foetal calf serum). The cells were centrifugated to a pellet at 6g for min, the supernatant was aspirated and cells (y26 3 ) were diluted in ml staining buffer. The respective cell subset and/or activation marker-specific monoclonal antibody (Mab) was added and incubated for 3 min, washed in staining buffer and then fixed and permeabilised by adding Cytofix/Cytoperm solution (PharMingen) for 2 min. Cells were then washed with Perm/Wash solution (PharMingen) and incubated for min at room temperature (RT) in the dark. They were then centrifuged for min at 6g. The supernatant was aspirated and the cell pellet was resuspended in Perm/ Wash solution containing cytokine-specific Mab for intracellular staining and incubated for 3 min at RT in the dark. Cells were washed with Perm/Wash solution (without Mab) and thereafter centrifuged for min at 6g. The supernatant was aspirated and the cells were resuspended in PBS containing 4% formaldehyde (Cellfix; Becton Dickinson, San José, CA, USA). The cells were then analysed by flow cytometry. In a second experimental set up (n=6), a combination of the Mabs 2.4E6 and 2B (PharMingen) directed to the IL-12 receptor b1 subunit, were used to block the human IL-12 receptor [7]. Blocking antibodies or isotype controls (mouse immunoglobulin (Ig)G1 and rat IgG2a; PharMingen) were added 1 h prior to dust incubation. Cells were then incubated with dust, PHA or RPMI. Cytokine production by T- and NK cells as well as T-cell CD69 expression were investigated with and without IL-12 receptor blocking Mab. Monoclonal antibodies and flow cytometric analysis Cells were characterised by subgroup specific fluorochrome conjugated Mab. For identification of T-cells, CD3, CD4, CD8-peridinin clorophyll protein (PerCP) conjugated Mab (Becton Dickinson) were used, while NK cells were identified using CD6z CD16z-phycoerythrin (PE) conjugated Mab (Becton Dickinson). Monocytes were identified by forward and sidescatter parameters and by staining with CD14-PerCP (Becton Dickinson). T-cell activation was measured by double staining CD3 and the early activation marker CD69, using flourescein isothiocyanate (FITC)-conjugated anti-cd3 Mab and PE-conjugated anti-cd69 Mab (Becton Dickinson). IFN-c, IL-4 and TNF-a specific Mabs were obtained from Becton Dickinson and IL-12 specific Mab were obtained from PharMingen. All intracellular cytokine specific Mab were FITC conjugated. Cells were analysed by flow cytometry using fluorescenceactivated cell sorter Calibur (Becton Dickinson). Positive cells were expressed as percentages among the different subsets (CD3z, CD4z, CD8z T-cells, NK cells and monocytes). Statistics Results are presented as medians (2th 7th percentiles). Comparisons were performed by analysis of variance (ANOVA). All p-values of v. were considered as statistically significant. Results Incubation with dust for 1 h induced a significant production of TNF-a in the monocytes, i.e. CD14z peripheral blood cells (n=6), compared to nonstimulated control cells (pv.1, fig. 1a). Similarly, dust induced a significant IL-12 production in the monocytes compared to the negative control (pv.1, fig. 1b). No intracellular cytokine production was observed in lymphocytes after 1 h of dust incubation. After time kinetic pilot experiments, 22-h incubation, including brefeldin A for the last h, was used. The dust induced significantly higher IFN-c levels in NK cells after 22-h incubation compared to negative controls (p=.1, fig. 2a). Similarly, NK cells produced significantly more TNF-a compared to negative controls (pv., fig. 2b). PHA (positive control) also induced high levels of IFN-c and TNF-a in NK cells (pv.1, fig. 2a and b). CD3z T-cells, CD4z T-cells and CD8z cells only produced low levels of IFN-c, TNF-a and IL-4 after dust stimulations (table 1), although the increased production of IFN-c by CD4zand CD8zT-cells was significant (pv. and p=., respectively). A reduction in dust-induced IFN-c production by NK cells from 6.3 1.8% was observed in the presence of IL-12 receptor blocking antibodies (n=6, p=.17), while no difference in the NK cell production of IFN-c was found in the presence of control antibodies (fig. 3). CD69 expression on T-cells was reduced from 19.1% (17.1 28.2) to 12.2% (11. 2.2) when whole blood was stimulated by dust in the presence of IL-12 receptor blocking antibodies (fig. 4).

688 C. MÜLLER-SUUR ET AL. a) 2 2 a) 3 2 TNF-a % 1 IFN-c % 2 1 b) IL-12 % 2 2 1 b) TNF-a % 9 8 7 6 4 3 2 1 * PHA Fig. 1. Intracellular a) tumour necrosis factor (TNF)-a and b) interleukin (IL)-12 production by CD14z cells (monocytes) under control conditions (control) or following 1-h incubation with swine dust (dust) (n=6). Data are presented as median and 2th 7th percentiles. : pv.1. Discussion In the present study, it was shown that monocytes in peripheral whole blood could be stimulated to produce TNF-a and IL-12 after 1-h incubation with dust from a swine confinement facility. No intracellular cytokine production was observed in lymphocytes after incubation with dust at this early time point. However, as seen in the findings of LERTMEMONGKOLCHAI et al. [8], after 22-h incubation with dust, both T-lymphocytes and NK cells produced IFN-c and low levels of TNF-a and IL-4. Furthermore, it was shown that blocking of the IL-12 receptor inhibited the dustinduced IFN-c production by NK cells as well as T-cell activation. Fig. 2. Intracellular a) interferon (IFN)-c and b) tumour necrosis factor (TNF)-a production by natural killer cells under control conditions (control), following 22-h incubation with swine dust (dust) and phytohaemagglutinin (PHA). Data are presented as median and 2th 7th percentiles (n=). *: pv.; : pv.1. In time kinetic studies of whole blood stimulated with dust, it was found that 1-h incubation was enough to induce monocytes to produce TNF-a and IL-12. A previous report [9] also showed a rapid IL-12 production by monocytes after stimulation with Trypanosoma cruzi. The present authors previously found 24 h of incubation to be optimal with regard to T-cell activation by swine dust. In the present study, the incubation was reduced to 22 h, with only h brefeldin A, due to the toxicity of this substance. The present authors have previously reported that dust failed to activate T-cells in peripheral blood depleted from phagocytes [3]. However, plasma separated from dust-incubated whole blood, i.e. conditioned plasma, and added to peripheral blood mononuclear cells over night, was highly capably of Table 1. Cytokine production by T-cell subsets after stimulation with organic dust IFN-c TNF-a IL-4 p-value p-value p-value CD3z.1 (.2).834 2. (1.7 4.6).3 (.2.9) NS 2. (.6 6.).2 (.6).663 1.6 (.9 2.1) CD4z.4 (.2.).46 1.8 (1.8 2.3) 1.3 (.9 1.4 ) NS 4. (3. 6.6).8 (.4 1.6) NS 3.8 (1.8.1) CD8z.4 (.3.9).38. (4.4.2) 1.3 (.4 1.7) NS 2.8 (1.6 3.7).3 (.2.) NS 2.4 (1. 3.) Data are presented as medians and (2th 7th percentiles). IFN: interferon; TNF: tumour necrosis factor; IL: interleukin; NS: nonsignificant and pw.1. n=.

CYTOKINE PRODUCTION AFTER EXPOSURE TO SWINE DUST 689 CD6+CD16+ % IFN-c inducing CD69 expression on T-cells (CD3z). Such conditioned plasma contained high levels of IL-12 and IFN-c, probably released from phagocytic cells upon stimulation. Thus, IL-12 may be one of the components required for lymphocyte activation by the organic dust. This suggestion is supported by the finding that IL-12 is required for lipopolysaccharide (LPS)-induced activation of NK cells, and that no IL-12 was found in monocyte-depleted cell cultures where the cells were stimulated with LPS []. In the present study, whole blood was preincubated for 1 h with IL-12 receptor blocking Mabs. Used in combination, these two Mabs have an inhibitory effect on the IL-12-mediated functions [7]. A significantly decreased production of IFN-c by NK cells was found when blood was preincubated with IL-12 % CD69 expression on CD3+ T-cells 12 ** 8 6 4 2 4 3 3 2 2 1 Mab IL-12 blocking Mab Fig. 3. Intracellular interferon (IFN)-c production in natural killer cells in blood preincubated with control antibodies (control Mab) or blocking antibodies to the interleukin-12 receptor (IL-12 blocking Mab), following 22-h incubation with (p) or without (h) organic dust. Data are presented as median and 2th 7th percentiles (n=6). **: p=.1. + control Mab + blocking Mab Fig. 4. CD69 expression on T-cells in blood following 22-h incubation with Roswell Park Memorial Institute (RPMI) medium only (control), with organic dust only (dust), with organic dust and control antibodies (dustzcontrol Mab), or with organic dust and blocking antibodies to the interleukin-12 receptor (dustz blocking Mab). Data are presented as individual CD69 expressions on CD3z T-cells. receptor blocking antibodies. Any influence on T-cell IFN-c production was difficult to evaluate due to the low T-cell IFN-c levels. However, preincubated blood with IL-12 receptor blocking antibodies clearly decreased the activation of T-cells, as judged from the reduced CD69 expression. One mechanism through which monocytes recognise swine dust antigens could be via the CD14 receptor to LPS [11], and the dust is known to contain small amount of LPS [12]. Interestingly, human T-lymphocyte activation by LPS has been shown to be dependent on monocytes, and IL-12 to be one of the important costimulatory factors [13]. In the present study, monocytes rapidly produced TNF-a and IL-12 after incubation with swine dust but when stimulated with LPS only, no distinct IL-12 production was found (data not shown). Thus, other components than LPS are also important for the organic dust stimulation of monocytes. In conclusion, it has been shown that organic dust can stimulate interleukin-12 production in CD14z cells and interferon-c production in T- and natural killer cells. In the presence of dust and interleukin-12 blocking antibodies, the interferon-c production was reduced in natural killer cells as was the CD69 expression on T-cells. In order to clarify the mechanism for in vivo activation of human T- and natural killer cells further studies will be necessary, including cytokine analyses in bronchoalveolar lavage fluid cells and peripheral blood cells before and after exposure of healthy volunteers to swine dust. References 1. Müller-Suur C, Larsson KA, Malmberg PO, Larsson PH. Increased number of activated lymphocytes in human lung following swine dust inhalation. Eur Respir J 1997; : 376 38. 2. Müller-Suur C, Larsson PH, Larsson K. T-cell activation by organic dust in vitro. Respir Med 2; 94: 821 827. 3. Müller-Suur C, Larsson PH, Larsson K, Grunewald J. Lymphocyte activation after exposure to swine dust: a role of humoral mediators and phagocytic cells. Eur Respir J 22; 19: 4 7. 4. Presky DH, Minetti LJ, Gillessen S, et al. Analysis of the multiple interactions between IL-12 and the high affinity IL-12 receptor complex. J Immunol 1998; 16: 2174 2179.. Aste-Amezaga M, D9Andrea A, Kubin M, Trincheieri G. Co-operation of natural killer cell stimulatory factor/interleukin-12 with other stimuli in the induction of cytokines and cytotoxic cell associated molecules in human T and NK cells. Cell Immunol 1994; 16: 48 492. 6. Trinchieri G. Interleukin-12: a cytokine produced by antigen presenting cells with immunoregulatory functions in the generation of T-helper cell type 1 and cytotoxic lymphocytes. Blood 1994; 84: 48 427. 7. Wu CY, Warrier RR, Carvajal DM, et al. Biological function and distribution of human interleukin-12 receptor beta chain. Eur J Immunol 1996; 26: 34 3. 8. Lertmemongkolchai G, Cai G, Hunter CA, Bancroft GJ. Bystander activation of CD8z T cells contributes

69 C. MÜLLER-SUUR ET AL. to the rapid production of IFN-c in response to bacterial pathogens. J Immunol 21; 166: 97 1. 9. Frosch S, Kraus S, Fleischer B. Trypanosoma cruzi is a potent inducer of interleukin-12 production in macrophages. Med Microbiol Immunol 1996; 18: 189 193.. Goodier MR, Londei M. Lipopolysaccharide stimulates the proliferation of human CD6zCD3- NK cell: A regulatory role of monocytes and IL-. J Immunol 2; 16: 139 147. 11. Diamond G, Legarda D, Ryan LK. The innate immune response of the respiratory epithelium. Immunol Rev 2; 173: 27 38. 12. Crock B, Robertson JF, Travers Glass SA, Botheroyd EM, Lacey J, Topping MD. Airborne dust, ammonia, micro-organism, and antigens in pig confinement houses and the respiratory health of exposed farm workers. Am Ind Hyg Assoc J 1991; 2: 271 279. 13. Mattern T, Flad HD, Brade L, Rietschel ET, Ulmer AJ. Stimulation of human T lymphocytes by LPS is MHC unrestricted, but strongly dependent on B7 interactions. J Immunol 1998; 16: 3412 3418.