Clinical Study Different Impact of Pretransplant Anti-HLA Antibodies Detected by Luminex in Highly Sensitized Renal Transplanted Patients

Similar documents
Transplantation in highly sensitised patients treated with intravenous immunoglobulin and Rituximab

Desensitization in Kidney Transplant. James Cooper, MD Assistant Professor, Kidney and Pancreas Transplant Program, Renal Division, UC Denver

Evaluation of Two New Antibody Detection Techniques in Kidney Transplantation. Doctoral Thesis. Dr. Petra Gombos

Original Article Diagnostic Immunology INTRODUCTION

Why so Sensitive? Desensitizing Protocols for Living Donor Kidney Transplantation

HLA and Non-HLA Antibodies in Transplantation and their Management

Renal transplantation in sensitized recipients with positive luminex and negative CDC (complement-dependent cytotoxicity) crossmatches

BK virus infection in renal transplant recipients: single centre experience. Dr Wong Lok Yan Ivy

SELECTED ABSTRACTS. All (n) % 3-year GS 88% 82% 86% 85% 88% 80% % 3-year DC-GS 95% 87% 94% 89% 96% 80%

Sylwia Mizia, 1 Dorota Dera-Joachimiak, 1 Malgorzata Polak, 1 Katarzyna Koscinska, 1 Mariola Sedzimirska, 1 and Andrzej Lange 1, 2. 1.

Efficacy and Safety of Thymoglobulin and Basiliximab in Kidney Transplant Patients at High Risk for Acute Rejection and Delayed Graft Function

Organ transplantation in Bulgaria

Strategies for Desensitization

Virtual Crossmatch in Kidney Transplantation

Pre-transplant donor specific antibody and its clinical significance in kidney transplantation

Supplementary Appendix

The new Banff vision of the role of HLA antibodies in organ transplantation: Improving diagnostic system and design of clinical trials

Transplant Success in Sensitized Patients Receiving a Standardized Desensitization Therapy: 3 Year Outcomes

Posttransplant Human Leukocyte Antigen Antibodies in Stable Kidney Transplant Recipients

Research Article Opioid Use Is Not Associated with Incomplete Wireless Capsule Endoscopy for Inpatient or Outpatient Procedures

Kidney paired donation in the presence of donor-specific antibodies

Steroid Minimization: Great Idea or Silly Move?

APHERESIS FOR DESENSITIZATION OF NON-RENAL TRANSPLANTS

Post-Transplant Monitoring for the Development of Anti-Donor HLA Antibodies

Research Article Anti-HLA and Anti-MICA Antibodies in Liver Transplant Recipients: Effect on Long-Term Graft Survival

Mary Keogan, on Mary behalf Keogan of all in NHISSOT On behalf of all in NHISSOT. 4th April 2014

Even in this era of efficient immunosuppression, a positive

Review Article Clinical Relevance of HLA Antibody Monitoring after Kidney Transplantation

Management of Rejection

2017 BANFF-SCT Joint Scientific Meeting. BARCELONA March 2017

Clinical Study The Impact of the Introduction of MELD on the Dynamics of the Liver Transplantation Waiting List in São Paulo, Brazil

Utility of protocol kidney biopsies for de novo donor- specific antibodies

Current strategies to kidney allocation

Approach to Kidney Transplant in Sensitized Potential Transplant Recipients

Clinical Study Over Ten-Year Kidney Graft Survival Determinants

Research Article The Diagnostic Value of Transcription Factors T-bet/GATA3 Ratio in Predicting Antibody-Mediated Rejection

The Acceptable Mismatch program of Eurotransplant.

Antihuman leukocyte antigen (HLA) antibodies can be

Donor-Specific HLA Class I and CREG Antibodies in Complement-Dependent Cytotoxicity-Negative Renal Transplants

Incidence of Rejection in Renal Transplant Surgery in the LVHN Population Leading to Graft Failure: 6 Year Review

IMPACT OF PREFORMED AND DE NOVO ANTI-HLA DP ANTIBODIES

Long-term prognosis of BK virus-associated nephropathy in kidney transplant recipients

Supplementary appendix

Case Report Beneficial Effect of Conversion to Belatacept in Kidney-Transplant Patients with a Low Glomerular-Filtration Rate

Immunopathology of T cell mediated rejection

3/6/2017. Prevention of Complement Activation and Antibody Development: Results from the Duet Trial

Diagnosis and Management of Acute and Chronic Humoral Rejection. Lars Pape

Solid Organ Transplant

Transfusion support in Transplantation

Should red cells be matched for transfusions to patients listed for renal transplantation?

Correspondence should be addressed to Alicia McMaster;

Revisiting Traditional Risk Factors for Rejection and Graft Loss After Kidney Transplantation

Research Article Transplant Outcomes in Patients with Idiopathic Membranous Nephropathy

Research Article New Onset Diabetes Mellitus in Living Donor versus Deceased Donor Liver Transplant Recipients: Analysis of the UNOS/OPTN Database

Medicine OBSERVATIONAL STUDY

Heart Transplant: State of the Art. Dr Nick Banner

Predictors of cardiac allograft vasculopathy in pediatric heart transplant recipients

Transplant Applications of Solid phase Immunoassays Anti HLA antibody testing in solid organ transplantation

Acute rejection and late renal transplant failure: Risk factors and prognosis

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

23/10/2017. Panel Reactive Antibodies and Crossmatch by Flow Cytometry. Antibodies against. Renal transplantation. Antibody mediated rejection (AMR)

CASE REPORT ABSTRACT INTRODUCTION. Renal transplant was successfully performed after conversion.

C4d Fixing, Luminex Binding Antibodies A New Tool for Prediction of Graft Failure After Heart Transplantation

Case Report De Novo Renal Cell Carcinoma in a Kidney Allograft 20 Years after Transplant

Living-Donor Kidney Transplant in T-Cell and B-Cell Flow Cytometry Crossmatch-Positive Patients

Is it safe to transplant against HLA DSA in cardiothoracic patients? development and implementation of national Guidelines

Review of Rituximab and renal transplantation. Dr.E Nemati. Professor of Nephrology

Research Article The Natural History of Biopsy-Negative Rejection after Heart Transplantation

Microcirculation Inflammation Associates With Outcome in Renal Transplant Patients With De Novo Donor-Specific Antibodies

Desensitization for solid organ and hematopoietic stem cell transplantation

Donor-derived Cell-free DNA Improves DSA-informed Diagnosis of ABMR in Kidney Transplant Patients

Clinical impact of de-novo HLA antibodies in pancreas and islet transplantation

Research Article The Induction of IgM and IgG Antibodies against HLA or MICA after Lung Transplantation

Quantifying HLA-specific antibodies in patients undergoing desensitization Andrea Zachary a and Nancy L. Reinsmoen b

Eculizumab chez les receveurs de greffe rénal à haut risque immunologique. Mark D. Stegall Mayo Clinic, Rochester, MN

Effects of HLA-Matched Blood Transfusion for Patients Awaiting Renal Transplantation

Copyright information:

Impact of ultrasound examination shortly after kidney transplantation

HLA Part II: My Patient Has DSA, Now What?

Highly Sensitized Patient Registry: Update and Successes

Treatment Update of Sensitized Pediatric Kidney Transplant Recipients: A Review

6/19/2012. Who is in the room today? What is your level of understanding of Donor Antigens and Candidate Unacceptables in KPD?

Donor-Specific Antibodies Adversely Affect Kidney Allograft Outcomes

Review Article Incidence and Clinical Significance of De Novo Donor Specific Antibodies after Kidney Transplantation

EARLY VERSUS LATE STEROID WITHDRAWAL Julio Pascual, Barcelona, Spain Chairs: Ryszard Grenda, Warsaw, Poland

NAPRTCS Annual Transplant Report

Marta Farrero Torres₁, Marcelo Pando₂, Dolly Tyan₂, Hannah Valantine₃, Spenser Smith₃, Kiran Khush₃

The New Kidney Allocation System: What You Need to Know. Anup Patel, MD Clinical Director Renal and Pancreas Transplant Division Barnabas Health

Le migliori strategie immunosoppressive per il paziente con re-trapianto Prof. Maurizio Salvadori FIRENZE

Renal Transplant Past Present and Future David Landsberg

Single-Center Kidney Paired Donation: The Methodist San Antonio Experience

Clinical Study The Incidence and Management of Pleural Injuries Occurring during Open Nephrectomy

Hong Kong Journal Nephrol of 2000;(2): Nephrology 2000;2(2): BR HAWKINS ORIGINAL A R T I C L E A point score system for allocating cadaver

Tolerance Induction in Transplantation

Cases: CMV, HCV, BKV and Kidney Transplantation. Simin Goral, MD University of Pennsylvania Medical Center

Treatment of Chronic Antibody Mediated Rejection

The diffuse extent of peritubular capillaritis in renal allograft rejection is an independent risk factor for graft loss

Pancreas After Islet Transplantation: A First Report of the International Pancreas Transplant Registry

Transplantation in Australia and New Zealand

Correspondence should be addressed to Chul Woo Yang;

Transcription:

BioMed Research International Volume 2013, Article ID 738404, 5 pages http://dx.doi.org/10.1155/2013/738404 Clinical Study Different Impact of Pretransplant Anti-HLA Antibodies Detected by Luminex in Highly Sensitized Renal Transplanted Patients Isabel Pérez-Flores, Jose Luis Santiago, Natividad Calvo-Romero, Alberto Barrientos-Guzmán, and Ana Isabel Sánchez-Fructuoso Immunology Department, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), MartínLagoss/n,28040Madrid,Spain Correspondence should be addressed to Jose Luis Santiago; jlsantial@gmail.com Received 5 April 2013; Accepted 6 August 2013 Academic Editor: Thomas Minor Copyright 2013 IsabelPérez-Flores et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. It is well know that anti-hla antibodies are an important obstacle in kidney transplantation. Our aim was to study the clinical impact of pretransplant donor specific anti-hla antibodies (HLA-DSA), in highly sensitized (HS) patients. We analyzed retrospectively the day-of-transplant sera by Luminex Single Antigen Assay (LSA) in HS patients, and the results were correlated with episodes of humoral and cellular rejection as well as with graft and patient survival. All HS subjects received the same induction therapy and rejection episodes were biopsy proven. Thirteen patients (56.5%) preformed HLA-DSA, and we observed higher incidence of acute rejection in aforementioned patients than in the pre-transplant negatives DSA recipients (77% versus 30%, P = 0.03). The one-year graft survival was significantly reduced in positive pre-transplant HLA-DSA patients (60% versus 100%, P = 0.01 Breslow). The positive predicted value of HLA-DSA in relation to rejection reached 100% if patients lost their previous graft in the first year after transplant. Among anti-hla antibodies present in patients before transplant, HLA-DSA were significantly associated with high risk of acute humoral and cellular rejection and reduced graft survival in posttransplant outcome. The negative impact of these antibodies was even higher when patients suffered an early loss of the previous transplant. 1. Introduction A best knowledge of immune system and the introduction of several immunosuppressive agents have led to reduce the incidence of acute rejection (AR) but had a limited impact on long-term allograft survival [1]. It is well known that the waiting time for highly sensitized (HS) patients is much longer than for who are not sensitized and a longer time on dialysis has demonstrated to be a negative impact on graft survival [2]. Patients with high levels of panel reactive antibodies (PRA) have difficulty achieving a negative crossmatch and when these subjects are transplanted, they have a high risk of developing an acute rejection, mainly acute humoral or antibody-mediated rejection (AMR), and the graft survival is inferior to nonsensitized recipients [3]. Since the number of retransplanted patients is increased year by year, the study of anti-hla antibodies using a method which can improve sensitivity and specificity to detect donor specific anti-hla-antibodies (DSA) would be useful in order to avoid the acute rejection. Luminex technology is one of the solid assays which have been developed in the last few years. This technology is able to detect lower levels of alloantibody and to define them more accurately than the conventional complement-dependent cytotoxicity (CDC) assay [4 6]. Despite the negative impact of de novo DSA has been well established, the determination of the clinical relevance of the preformed anti-hla antibodies is today under consideration [7, 8]. Published studies to date have been controversial [8 12]. Several authors have pointed out that the successful allocations of suitable renal allograft have been possible in sensitized patients as a result of the detection and definition of alloantibodies with a higher degree of sensitivity and specificity [13, 14]. However, another research even considered that single antigen assays could be a new technological barrier to transplantation in immunized recipients [15]. Our aim was to determine among all of the anti-hla antibodies, the effect of pre-transplant (pre-tx) DSA in clinical outcome. For that purpose we selected HS patients

2 BioMed Research International and we analyzed retrospectively the day of transplant sera by Single Antigen in order to elucidate how predictive were the DSA present in the receptors before kidney transplantation in acute rejection and allograft survival. 2. Subjects and Methods 2.1. Study Design. Thisisaretrospectivestudytoanalyzethe role of preformed antibodies in solid organ rejection. In order to guarantee the presence of DSA in pre-transplant sera, we selected all HS patients (defined by historical PRA >75%) transplanted in a short period of time (26 months). The induction protocol used in all HS patients was the same: thymoglobulin (1 1.2 mg/kg pre-transplant and 4 7 doses after-transplant 0.25 0.75 mg/kg/daily), tacrolimus (FK, 0.05 mg/kg pre-transplant and every 12 hours after transplant), mycophenolate mofetil (MMF, 1000 mg pretransplant, and 500 mg/12 hours after transplant) and steroids: methylprednisolone (MPN 250 mg pretransplant and 1 mg/kg/daily after transplant, with progressive doses being decreased to obtain20mgfirstweekand10mginthe2ndand3rdmonths). No desensitization protocol was performed. Allpatientsreceivedsteroidspulsesasafirst-linetreatment for cellular rejection, and in the most severe cases we added thymoglobulin. In patients with AMR, the treatment was based on intravenous immunoglobulin (IVIG, 2 g/kg of weight), and when there was severe rejection (Banff grade II or III), we added plasmapheresis or rituximab (1 4 doses of 375 mg/m2 in 7/10 cases). 2.2. HLA Antibody Analysis. The analysis of anti HLA class I antibodies was carried out by Single Antigen (Tepnel Lifecodes LSA Stamford CT, Diagnostica Longwood) according to manufacturer s instruction. Luminex 100 IS 2.3 system was used for data acquisition and analysis and all beads with mean fluorescence intensity (MFI) above 3000 were considered as positives. The determination of anti HLA class II antibodies was carried out by Lifecodes Class II ID, which is a Luminex assay for detection of IgG panel reactive antibodies to HLA class II molecules. 2.3. Statistical Analysis. Normally distributed variables are expressed as mean ± standard deviation (SD) and nonnormally distributed variables are expressed as median and interquartile range (IQR). Association between qualitative variables was evaluated by chi-square test or Fisher s exact test when necessary. Effect was calculated as risk ratio (RR) and 95% confidence interval. Quantitative variables by groups were evaluated with t-student or U Mann-Whitney. Level of significance was P < 0.05 SPSS v. 13.0 software was used in statistical analysis (Chicago, Illinois). 3. Results We selected 23 HS patients out of 191 subjects transplanted inourrenaltransplantunitbetween2007and2008and followed during 25 months (median of followup 14 months, see Figure 1). Donors characteristics, HLA mismatch, and cold ischemia time were similar between high and low Graft survival 1 0.8 0.6 0.4 0.2 0 0 1 3 5 7 9 11 13 15 17 19 21 23 25 Time (months) DSA positive DSA negative P = 0.0104 Log rank P = 0.0125 Breslow Figure 1: Allograft survival depending on positivity of DSA (median followup:14months). immunological risk patients and when we analyzed the HS patients separately by presence or absence of preformed DSA (Table 1). From 23 HS recipients, 22 were retransplanted and the 56% showed HLA-DSA in the the day-of-transplant sera with mean fluorescence intensity (MFI) of 6000 (3345-8990). The incidence of AR and the death censored allograft one year survival was significantly different between non- HS group and the HS patients (Table 1). Interestingly, we find differences in AR and death censored allograft one year survival when we compare HS patients with and without preformed DSA (Table 1). In fact, these differences are due to HS patients with preformed DSA because only these recipients were significantly different from non-hs patients (P = 0.002 for AR and P < 0.001 for death censored 1 year allograft survival) and no differences were found between HS patients with nonpreformed DSA and non HS-patients (P = 0.6 and P = 0.7,resp.). In Table 2, weanalyzedthemainknownriskfactors involved in acute rejection in the HS patients group. Only one out of nine factors studied was statistically different when we compared patients who suffered humoral and/or cellular acute rejection with recipients free from rejection. This factor, the presence of pre-transplant donor anti-hla antibodies, was even more critical in risk of graft failure than the PRA class I or class II values (Table 2). We also performed a Kaplan-Meier survival analysis, and the presence of DSA in the pre-transplant sera correlates with a pour graft outcome (60% versus 100%; Figure 1) Infact, sixpatientsweretransplantectomyzed(mean25daysafter transplant)andallofthemweredsapositivesinthepretransplant sera. Although 77% of patients who presented acute rejection episodes showed DSA pre-transplant, there were 3 out 13 patients with pre-transplant DSA without any type of acute rejection (positive predictive value = 70%; P = 0.03). In order to improve this predictive value, we analyzed the characteristics of all data which could be implied in acute

BioMed Research International 3 Table 1: Demographic and clinical characteristics. Non-HS HS HS Pre-Tx DSA HS non-dsa P n = 167 n = 23 n = 13 n = 10 P Donor Gender (% male) 69% 68% 0.9 71% 68% 0.7 Age (years, mean ± SD) 40 ± 15 39 ± 10 0.8 41 ± 12 40 ± 8 0.8 Recipient Gender (% male) 64% 62% 0.8 61.5% 30% 0.1 Age (years, mean ± SD) 50 ± 13 44 ± 10 0.03 43 ± 12 44 ± 16 0.9 HLA mismatch (median, IQR) 4 (3 5) 4 (3 5) 4 (3 5) 4 (3 5) Cold ischemia time (hours, mean ± SD) 19 ± 5 18± 6 0.4 19 ± 5 17± 7 0.4 Delayed graft function (DGF) 62% 65% 0.7 67% 63% 0.5 Acute rejection (AR) 33% 57% 0.03 77% 30% 0.03 Death censored 1 year allograft survival 96% 78% 0.008 46% 100% 0.007 DGF was defined as the need for dialysis during the first week after transplant. Table 2: Univariable study of risk factors of acute rejection in HS group. Acute rejection Non rejection (n =13) (n=10) Age of donor (years, mean ± SD) 40 ± 9 42± 5 0.5 Age of recipient (years, mean ± SD) 44 ± 10 43 ± 13 0.8 Number of transplant (0/1/2/3) 0/9/3/1 1/8/1/0 0.4 HLA mismatch (median, IQR) 4 (4-5) 4 (4-5) 0.7 DCD (%) 54% 50% 0.6 Cold ischemia time (hours, mean ± SD) 18 ± 6 19± 7 0.7 Maximum PRA 83 ± 19 65 ± 25 0.07 Current PRA 46 ± 35 25 ± 24 0.2 PRA class I 69 ± 24 81 ± 14 0.3 PRA class II 44 ± 33 28 ± 33 0.3 Pre-transplant DSA (%) 10 (77%) 3 (30%) 0.03 MFI of DSA (mean ± SD) 6188 ± 1670 5824 ± 2533 0.8 DCD: donation after cardiac death. MFI: mean fluorescence intensity. rejection. Neither induction treatment (it was the same one forallthepatients)norimmunizationevents,22outof23 had a previous transplant, could be considered as critical predictive factor. We also analyzed the number, class and MFIvalueofthepre-transplantDSAandnodifferenceswere found between patients with and without acute rejection. Regarding clinical parameters, we considered the number of previous transplant, elapsed time after the last transplant, whether patient had suffered AR in the previous transplant and the survival of the last graft. Interestingly, only the early loss of previous graft showed a significant statistically association with the presence of preformed DSA and improved its predictive value of rejection. In fact, when patients lost P Acute rejection (%) 100 80 60 40 20 0 100% (8/8) <1 year >1 year 40% (2/5) PrDSA + RR 2.5 (1 7.3.1) P = 0.035 P = 0.442 37.5% (3/8) 0% (0/1) PrDSA Figure 2: Relationship between early loss of previous transplant, preformed DSA against the new graft, and incidence of rejection. PrDSA: performed DSA. Duration of previous renal transplant: < or >1year. theprevioustransplantbeforefirstyearandpreformeddsa againstthenewgraft,thepresenceofarwas100%(figure 2). 4. Disscusion Whereas CDC crossmatch positivity is an absolute contraindication to kidney transplantation, the clinical relevance of DSA detected by Luminex technology in patients with CDCcrossmatchnegativeremainstodayunclear.Itiswell knows that Luminex solid assay has a higher sensitivity than the CDC, hence the number of anti-hla antibodies positive patients increases when this technique is used and therefore the group of HS patients is also higher [15]. The major limitation of our study is the size of our cohort that can compromise the statistical power; however, due to the fact that all subjects were HS patients transplanted in a short period of time with identical immunosuppression protocol allow us to consider that conclusions of our study

4 BioMed Research International could be interesting. Moreover, the majority of the cases were biopsied during the followup. Patients with positives DSA in the pre-transplant sera showed a worse prognosis than subjects without DSA. Additional to elevated incidence of acute rejection, this group of patients had a higher graft loss than the aforementioned control group. Opposite to our finding, Gupta et al. [10] have reported that acute rejection episodes, delayed graft function, and one-year graft survival was similar between patients with and without HLA specificities defined by solid phase assay. It could be explained by the fact that in their group of patients with HLA antibodies before transplant, only 4 out 16 patients with DSA and 4 out of 22 patients without DSA (NDSA) had ahistorichlaclassipra>50% (cut-off value that they considered patients as HS). However, all our patients had a historic PRA >75% that mean all of them are HS subjects and therefore the pre-transplant immunologic background was similar in all patients under study. This presence of high levels of anti-hla antibodies guarantees the presence of pretransplant DSA even to a subtyping allele likelier than in patients with lower PRA values in which antibodies against to a specific HLA-allele could not cover all subtypes of this allele included the next donor s alleles. In a large retrospective study, Süsal et al. [11] have reported also no association of kidney graft loss with anti- HLA antibodies detected by LSA. The main limitation of this study was exposed by authors because they have no biopsy data for confirmation of immunological graft loss, hence this group includes all causes of graft failure not only the immune system mediated. It is clear that the implication of pre-transplant DSA in kidney allograft loss must be focused in causes due to immune system. Supporting our results that pre-transplant DSA is a risk factor of rejection, Loupy et al. and Amico et al. have reported that these preformed antibodies correlate with a high incidence of subclinical AMR [9, 16] andrecently,kanterberga et al. [17] findthatpre-txdsawereassociatedwithacute vascular and chronic rejection and poorer graft outcome. In conclusion, although the positive predictive value of DSA by LSA is 70% in our study considering the overall cohort, when we add the qualitative and indirect data of early loss of previous transplant, the potential of worse graft outcome increases to 100% (all patients with humoral type III rejection and graft loss belong to this group). In these cases we would be able to talk about DSA susceptible patients who are more sensitive to foreign HLA antigens and usually the graft loss occurs in a period of time lower than a year. We considered that the presence of both pre-transplant DSA and earlylossofthepreviousorganisahighriskfactorforrejection. In case that DSA not disappear in a reasonable period, desensitization protocols (e.g., plasma exchange and intravenous immunoglobulin) could be necessary to transplant these patients and to avoid the almost sure nephrectomy. Acknowledgments The authors thank Antonia Rodriguez de la Peña for expert technical assistance and Cristina Fernandez for her help in statistical analysis. References [1] H.U.Meier-Kriesche,A.O.Ojo,J.A.Hansonetal., Increased impact of acute rejection on chronic allograft failure in recent era, Transplantation,vol.70, no.7,pp. 1098 1100,2000. [2] H. U. Meier-Kriesche and B. Kaplan, Waiting time on dialysis as the strongest modifiable risk factor for renal transplant outcomes: a paired donor kidney analysis, Transplantation,vol. 74, no. 10, pp. 1377 1381, 2002. [3] A. Piazza, E. Pocci, L. Borrelli et al., Impact of donor-specific antibodies on chronic rejection occurrence and graft loss in renal transplantation: posttransplant analysis using flow cytometric techniques1, Transplantation, vol. 71, no. 8, pp. 1106 1112, 2001. [4]R.A.BrayandH.M.Gebel, Strategiesforhumanleukocyte antigen antibody detection, Current Opinion in Organ Transplantation,vol.14,no.4,pp.392 397,2009. [5] N.El-Awar,J.Lee,andP.I.Terasaki, HLAantibodyidentification with single antigen beads compared to conventional methods, Human Immunology, vol. 66, no. 9, pp. 989 997, 2005. [6] R.Pei,J.H.Lee,N.J.Shih,M.Chen,andP.I.Terasaki, Single human leukocyte antigen flow cytometry beads for accurate identification of human leukocyte antigen antibody specificities, Transplantation,vol.75,no.1,pp.43 49,2003. [7] H.M.Gebel,O.Moussa,D.D.Eckels,andR.A.Bray, Donorreactive HLA antibodies in renal allograft recipients: considerations, complications, and conundrums, Human Immunology, vol. 70, no. 8, pp. 610 617, 2009. [8] C. Lefaucheur, C. Suberbielle-Boissel, G. S. Hill et al., Clinical relevance of preformed HLA donor-specific antibodies in kidney transplantation, Contributions to Nephrology, vol. 162, pp. 1 12, 2009. [9] P. Amico, G. Hönger,M.Mayr,J.Steiger,H.Hopfer,and S. Schaub, Clinical relevance of pretransplant donor-specific HLA antibodies detected by single-antigen flow-beads, Transplantation,vol.87,no.11,pp.1681 1688,2009. [10] A.Gupta,V.Iveson,M.Varagunam,S.Bodger,P.Sinnott,andR. C. Thuraisingham, Pretransplant donor-specific antibodies in cytotoxic negative crossmatch kidney transplants: are they relevant? Transplantation, vol. 85, no. 8, pp.1200 1204, 2008. [11] C. Süsal, J. Ovens, K. Mahmoud et al., No association of kidney graft loss with human leukocyte antigen antibodies detected exclusively by sensitive luminex single-antigen testing: a collaborative transplant study report, Transplantation, vol. 91, no. 8, pp. 883 887, 2011. [12] E. M. Van Den Berg-Loonen, E. V. A. Billen, C. E. M. Voorter et al., Clinical relevance of pretransplant donor-directed antibodies detected by single antigen beads in highly sensitized renal transplant patients, Transplantation,vol.85,no.8,pp.1086 1090, 2008. [13] A. W. Bingaman, C. L. Murphey, J. Palma-Vargas, and F. Wright, A virtual crossmatch protocol significantly increases access of highly sensitized patients to deceased donor kidney transplantation, Transplantation,vol.86,no.12,pp.1864 1868,2008. [14] S.Vaidya,D.Partlow,B.Susskind,M.Noor,T.Barnes,andK. Gugliuzza, Prediction of crossmatch outcome of highly sensitized patients by single and/or multiple antigen bead luminex assay, Transplantation, vol. 82, no. 11,pp. 1524 1528, 2006. [15] A. Gupta and P. Sinnott, Clinical relevance of pretransplant human leukocyte antigen donor-specific antibodies in renal patients waiting for a transplant: a risk factor, Human Immunology,vol.70,no.8,pp.618 622,2009.

BioMed Research International 5 [16] A. Loupy, C. Suberbielle-Boissel, G. S. Hill et al., Outcome of subclinical antibody-mediated rejection in kidney transplant recipients with preformed donor-specific antibodies, American Transplantation,vol.9,no.11,pp.2561 2570,2009. [17] J. Kanter Berga, A. Sancho Calabuig, E. Gavela Martinez et al., Pretransplant donor-specific HLA antibodies detected by single antigen bead flow cytometry: risk factors and outcomes after kidney transplantation, Transplantation Proceedings, vol. 44, no. 9, pp. 2529 2531, 2012.

MEDIATORS of INFLAMMATION The Scientific World Journal Gastroenterology Research and Practice Diabetes Research International Endocrinology Immunology Research Disease Markers Submit your manuscripts at BioMed Research International PPAR Research Obesity Ophthalmology Evidence-Based Complementary and Alternative Medicine Stem Cells International Oncology Parkinson s Disease Computational and Mathematical Methods in Medicine AIDS Behavioural Neurology Research and Treatment Oxidative Medicine and Cellular Longevity